
Rationalizing Substitutions

By Angelo Mingarelli

In this chapter we look at a few more substitutions that can be used effectively
to transform some types of integrals to those involving rational functions. In
this way we may be able to integrate the original functions by referring to the
method of Partial Fractions from Chapter 8. Before we start though we need
to remind the reader of a notion called the least common multiple of two given
positive integers. As the phrase suggests, the least common multiple (abbr.
lcm) of two numbers x, y (assumed integers) is the smallest number that is a
multiple of each one of x and y. For example, the lcm{2, 4} = 4, since 4 is
the smallest number that is a multiple of both 2 and itself. Other examples
include, the lcm{2, 3, 4} = 12, lcm{2, 3} = 6, lcm{2, 5} = 10, lcm{2, 4, 6} = 12
etc. Thus, given two fractions, say 1/2 and 1/3, the least common multiple of
their denominators is 6.

As a typical example we’re going to try to get rid of those crazy looking roots
in integrands so as to make the new expression look like a rational function.

Example 1 Evaluate the integral
∫ √

x

1 + x
dx.

Solution: Well, in order to eliminate the “square root” here it would be nice to
try out the substitution x = z2, dx = 2z dz. This is because∫ √

x

1 + x
dx =

∫
z

1 + z2
2z dz

=
∫

2z2

1 + z2
dz

= 2
∫ (

1 − 1
1 + z2

)
dz

= 2z − 2 Arctan (z) + C

= 2
√

x − 2 Arctan (
√

x) + C,

where C is the usual constant of integration. Note that the guessed substitution
gave us a rational function in z which, coupled with the method of partial
fractions, allowed for an easy integration.

Okay, but what if the original intergand involves many different roots or frac-
tional roots? The general method involves the notion of a least common multiple
introduced above.
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Example 2 Evaluate the integral
∫

1√
x + 3

√
x

dx.

Solution: Here we have two different powers of x, namely 1/2 and 1/3 (these
two fractions have been simplified so that their numerators and denominators
have no common factors). Then we let n be the lcm of their denominators;
n = lcm{2, 3} = 6 and then use the substitution x = z6, dx = 6z5 dz. Looks
weird, right? But it works, because then the roots of x become powers of z . . .∫

1√
x + 3

√
x

dx =
∫

1
z3 + z2

(6z5 dz)

=
∫

6z3

z + 1
dz

= 6
∫ (

z2 − z + 1 − 1
z + 1

)
dz

= 2z3 − 3z2 + 6z − 6 log |z + 1| + C

= 2(x1/6)3 − 3(x1/6)2 + 3z2 − 6 log |x1/6 + 1|
= 2

√
x − 3 3

√
x + 3z2 − 6 log(x1/6 + 1) + C,

where C is a constant. Note that x ≥ 0 up here is necessary for the last line to
hold or else we get complex numbers.

The idea on how to proceed seems clearer, no?

Now we describe the general method: Let’ say we have an inte-
grand with lots of roots (i.e., many fractional powers of the variable of
integration), say,

p1

q1
,
p2

q2
,
p3

q3
, . . . ,

pm

qm
,

where the pi, qi are integers and the fractions are each written in their
lowest form (i.e., the numerators and denominators have no common fac-
tors). Let

n = lcm {q1, q2, q3, . . . , qm} .

Then the substitution x = zn may be tried in order to reduce the integral
to a rational function in z (so that the method of partial fractions can be
tried . . . ).

When can we use this device? Well, if the integrand is a quotient of linear
combinations of fractional powers of the variable of integration then
we can use it to simplify the integral. Examples of such expressions are

2 + 3
√

x − 5x2/3

1 − 6x2 +
√

x
,

t3 −√
t

t1/4 − 8
,

−2
3
√

x − 2x3/4
.

Example 3 Evaluate the integral
∫

1
x + x2/3

dx.

Solution: The only powers of x here are 1 and 2/3. So, the lcm of the denomi-
nators is 3. Thus, we let x = z3, dx = 3z2 dz. Then∫

1
x + x2/3

dx =
∫

1
z3 + z2

(3z2 dz)
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=
∫

3
z + 1

dz

= 3 log |z + 1| + C

= 3 log | 3
√

x + 1| + C,

and C is a constant.

Example 4 Evaluate
∫ √

t

2 + 4
√

t
dt.

Solution: The powers of t here are 1/4 and 1/2 and the lcm of their denomi-
nators is 4. Thus, we let t = z4, dt = 4z3 dz. Then
∫ √

t

2 + 4
√

t
dt =

∫
z2

2 + z
(4z3 dz)

= 4
∫

z5

z + 2
dz

= 4
∫ (

z4 − 2z3 + 4z2 − 8z + 16 − 32
z + 2

)
dz

=
4
5
z5 − 2z4 +

16
3

z3 − 16z2 + 64z − 128 log |z + 2|

=
4
5
(t1/4)5 − 2(t1/4)4 +

16
3

(t1/4)3 − 16(t1/4)2 + 64t1/4 − 128 log |t1/4 + 2|

=
4
5
t4/5 − 2t +

16
3

t3/4 − 16t1/2 + 64t1/4 − 128 log |t1/4 + 2| + C,

where C is a constant.

Example 5 Evaluate the integral
∫ 1

0

3 4
√

x

2
√

x + 5 3
√

x
dx.

Solution: Now we have three different powers of x, namely 1/2, 1/3 and 1/4
with n, the lcm of their denominators, given by n = lcm{2, 3, 4} = 12. The
substitution to try is then x = z12, dx = 12z11 dz. Using this we get,∫

3 4
√

x

2
√

x + 5 3
√

x
dx =

∫
3z3

2z6 + 5z4
(12z11 dz)

= 36
∫

z14

z4(2z2 + 5)
dz

= 36
∫

z10

2z2 + 5
dz

= 36
∫ {

1
2

z8 − 5
4

z6 +
25
8

z4 − 125
16

z2 +
625
32

− 3125/32
2z2 + 5

}
dz (by long division)

= 36 ·
{

1
18

z9 − 5
28

z7 +
5
8

z5 − 125
48

z3 +
625
32

z − 625
64

√
10 Arctan

(
1
5

√
10 z

)}

= 2 z9 − 45
7

z7 +
45
2

z5 − 375
4

z3 +

+
5625

8
z − 5625

16

√
10Arctan

(
1
5

√
10 z

)
,
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= 2 (x1/12)9 − 45
7

(x1/12)7 +
45
2

(x1/12)5 − 375
4

(x1/12)3 +

+
5625

8
(x1/12) − 5625

16

√
10Arctan

(
1
5

√
10 (x1/12)

)

= 2 x3/4 − 45
7

x7/12 +
45
2

x5/12 − 375
4

x1/4 +

+
5625

8
x1/12 − 5625

16

√
10Arctan

(
1
5

√
10 (x1/12)

)
+ C

where C is a constant. This is an antiderivative, so the required definite integral
is easily evaluated. We see that∫ 1

0

3 4
√

x

2
√

x + 5 3
√

x
dx = (2 x3/4 − 45

7
x7/12 +

45
2

x5/12 − 375
4

x1/4

+
5625

8
x1/12 − 5625

16

√
10Arctan

(
1
5

√
10 (x1/12)

)
)
∣∣∣∣
1

0

= 2 − 45
7

+
45
2

− 375
4

+
5625

8
− 5625

16

√
10Arctan

(
1
5

√
10
)

,

≈ 0.4898298573.

Note: The integrand is undefined at x = 0 even in the limiting sense as x → 0+,
so this is really an improper integral. But still, the integral exists, as you can
see. The situation is akin to the one experienced when we integrate the function
x−1/4 from x = 0 to x = 1. Even though the integrand is undefined at x = 0,
there is a finite area under the graph of the integrand between those limits.

0.0.1 Integrating rational functions of trig. expressions

We recall that the method described in Chapter 7.5 is to be used when the
integrand is a sum of powers of trigonometric expressions such as sinm x, cosn x
or even secp x, tanq x. But what does one do if the integrand is a rational
function in these quantities? In other words how do we integrate an expression
of the form

2 + sin2 x − cos3 x

sin x + cosx
?

This problem was taken up a long time ago and the mehtod described in what
follows is sometimes called the Weierstrass substitution. It is based on the fact
that trig. identities (see Appendix C and the text) can be used to simplify
such rational expressions once we make a preliminary substitution. The general
statement is something to the effect that

Any rational function of sinx and cosx can be integrated using the sub-
stitution

z = tan
(x

2

)
followed by the method of partial fractions (see Chapter 7.4).

The whole procedure can be quite lengthy but the end product is that we can
find an antiderivative for such expressions! So, why does this curious looking
change of variable work? Here’s why.
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We need to write out every term involving a sine function or a cosine function
in terms of the new variable z, right? In fact, we will show that any power of
either sinx or cosx will be transformed into a power of z. In this way we can
see that any rational expression in these trig. functions will become ordinary
rational functions so that the method of partial fractions can be used.

To begin with let’s look at what happens to sinx when we perform the substi-
tution z = tan(x/2). In other words let’s write sin x in terms of z. To do this
we first note that

z = tan
(x

2

)
=⇒ x = 2Arctan z.

So, we really have to find sinx = sin(2Arctan z) in terms of z and thus we set
up a triangle of reference, see Figure 1. Writing θ = Arctan z and using the
identity sin 2θ = 2 sin θ cos θ we have to find sin θ and cos θ.

Now from Figure 1 we have that

sin θ =
z√

1 + z2
, cos θ =

1√
1 + z2

,

so that

sin x = 2 sin θ cos θ = 2 · z√
1 + z2

· 1√
1 + z2

=
2z

1 + z2
.

Of course, we obtained cos θ as well using this calculation, that is, we found
that since θ = x/2,

cos(x/2) =
1√

1 + z2
.

Figure 1But the trigonometric identity cos 2φ = 2 cos2 φ−1, valid for any angle φ, means
that we can set φ = x/2 so that

cosx = 2 cos2(x/2) − 1 = 2
(

1√
1 + z2

)2

− 1 =
1 − z2

1 + z2
.

Finally, we need to determine the new “dx” term. This is not difficult since
z = tan(x/2) implies that dz = (1/2) sec2(x/2) dx. But the trig. identity
sec2 φ − tan2 φ = 1 valid for any angle φ means that we can set φ = x/2 as
before. This then gives us

dz

dx
= (1/2) sec2(x/2) = (1/2)(1 + tan2(x/2)) = (1/2)(1 + z2).

From this and the Chain Rule we also get that

dx

dz
=

2
1 + z2

.

The preceding discussion can all be summarized in Table 1, for reference pur-
poses.

Example 6 Evaluate the integral I ≡
∫

1
4 cosx − 3 sinx

dx.
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Any rational function of sinx and cosx can be integrated using the sub-
stitution

z = tan
(x

2

)
. In this case the preceding substitution demands that

sinx =
2z

1 + z2
, cosx =

1 − z2

1 + z2
,

and
dx

dz
=

2
1 + z2

,

so that the “dx” term can be replaced formally by

dx =
2 dz

1 + z2
,

so that we can effect the integration.

Table 1: Rationalizing subtitutions for certain quotients of trigonometric func-
tions

Solution: The integrand is a rational function of the sine and cosine function so
we can use the substitution in Table 1. Thus,

I =
∫

1

4
(

1−z2

1+z2

)
− 3

(
2z

1+z2

) ( 2 dz

1 + z2

)
,

= 2
∫

1
4(1 − z2) − 3(2z)

dz,

=
∫

1 − 2z

z + 2
dz

=
∫ {

2/5
1 − 2z

+
1/5

z + 2

}
dz, (using partial fractions)

=
∫ {

− 4/5
z − (1/2)

+
1/5

z + 2

}
dz,

= −4
5

log |z − 1
2
| + 1

5
log |z + 2| + C,

= −4
5

log | tan(x/2) − 1
2
| + 1

5
log | tan(x/2) + 2| + C.

Example 7 Evaluate
∫ 2

0

1
2 + sin x

dx.

Solution: Using the substitution z = tan(x/2), etc. we find that an antideriva-
tive is given by evaluating

∫
1

2 + sin x
dx =

∫
1

2 +
(

2z
1+z2

) ( 2 dz

1 + z2

)
,

=
∫

1
z2 + z + 1

dz



Addendum to Calculus by Angelo Mingarelli 7

=
∫

1(
z + 1

2

)2 +
(√

3
2

)2 dz

=
2
√

3
3

Arctan

(√
3

3
(2z + 1)

)

=
2
√

3
3

Arctan

(√
3

3
(2 tan(x/2) + 1)

)
.

So the value of the given definite integral is given by∫ 2

0

1
2 + sin x

dx =
2
√

3
3

Arctan

(√
3

3
(2 tan(x/2) + 1)

) ∣∣∣∣
x=2

x=0

=
2
√

3
3

(
Arctan

(√
3

3
(2 tan(1) + 1)

)
− Arctan

(√
3

3

))

≈ .7491454107

Example 8 Evaluate the following integral: I ≡
∫

sin x

1 + sin x
dx.

Solution: This integrand is a rational function in sinx. So, as before we let

sin x =
2z

1 + z2
, cosx =

1 − z2

1 + z2
, and

dx

dz
=

2
1 + z2

. Then

I =
∫ 2z

1+z2

1 + 2z
1+z2

(
2 dz

1 + z2

)
,

=
∫

4z

(1 + z)2(1 + z2)
dz

=
∫ {

2
1 + z2

− 2
(1 + z)2

}
dz (using partial fractions + 3 coffees!)

= 2 Arctan z +
2

1 + z

= 2 Arctan (tan(x/2)) +
2

1 + tan(x/2)

= x +
2

1 + tan(x/2)
+ C,

where C is a constant.

There is another way of handling this problem though, but it is tricky, and one
would have to have had a revelation of sorts to see it . . . Here goes. Note that

sin x

1 + sin x
=

sinx(1 − sin x)
(1 + sin x)(1 − sin x)

=
sin x(1 − sin x)

cos2 x

= tan x secx − tan2 x,

= tan x secx − sec2 x + 1.

and so, using this newly derived identity, we can easily integrate the desired
function. Why? Well,∫

sin x

1 + sin x
dx =

∫
(tan x sec x − sec2 x + 1) dx
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=
∫

tan x secxdx −
∫

sec2 xdx + x + C∗

= sec x − tan x + x + C∗,

where C∗ is a constant of integration. Now note that the two answers aren’t
quite the same so they MUST differ by a constant (from the theory of the
integral). Let’s see. Comparing our “two answers” we only need to show that
the functions

2
1 + tan(x/2)

, and secx − tan x

differ by a constant. Why is this true? Using the important identities

cos2 φ =
1 + cos 2φ

2
, sin2 φ =

1 − cos 2φ

2
,

we find that (after we set φ = x/2),

tan
(x

2

)
=

√
1 − cosx

1 + cosx
.

This, in turn, gives us

2
1 + tan(x/2)

=
2

1 +
√

1−cos x
1+cos x

=
2
√

1 + cosx√
1 + cosx +

√
1 − cosx

=
2
√

1 + cosx(
√

1 + cosx −√
1 − cosx)

(1 + cosx) − (1 − cosx)

=
2(1 + cosx) − 2

√
1 − cos2 x

2 cosx

= secx + 1 − 2

√
sin2 x

2 cosx
= secx + 1 − tan x.

Thus, the two functions differ by the constant 1 (as we wanted to show).

Example 9 Evaluate the following integral using two different methods: I ≡∫
sinx

2 + cos2 x
dx.

Solution: Since we have a rational function of sine and cosine we can use the
substitution in Table 1. It follows that

I =
∫ (

2z
1+z2

)
2 +

(
1−z2

1+z2

)2

2 dz

1 + z2

=
∫

4z

2(1 + z2)2 + (1 − z2)2
dz

=
∫

4z

3z4 + 2z2 + 3
dz,
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which can then be integrated using the method of partial fractions (but it will be
tedious!). Nevertheless, another option lies in the change of variable cosx = u,
du = − sin xdx which gives us that

I = −
∫

1
2 + u2

du

= −1
2

∫
1

1 + ( u√
2
)2

du

= −1
2

√
2Arctan

(
1
2

√
2u

)
, (using u =

√
2 tan θ, etc)

= −1
2

√
2Arctan

(
1
2

√
2 cosx

)
+ C.

Exercise Set 1

Evaluate the following integrals using any method.

1.
∫

cos t

3 + sin t
dt

2.
∫ √

x

1 + 2
√

x
dx

3.
∫

t2/3

1 + t
dt

4.
∫ π/2

0

sin 2t

2 + cos t
dt

5.
∫

1
2 + 3

√
x

dx

6.
∫

sin x

tan x + cosx
dx

7.
∫

2 sec t

3 tan t + cot t
dt

8.
∫

2 −√
x

2 +
√

x
dx

9.
∫ √

1 + u

1 − u
du (Hard)

10.
∫

sin
√

x√
x

dx

11.
∫

1
2x(1 − 4

√
x)

dx

12.
∫

1
x2(1 + 3

√
x)

dx

13.
∫ √

a + u

b − u
du (a, b are constants)
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14.
∫ √

x

1 + 3
√

x
dx

15.
∫ √

x√
x − 3

√
x

dx

16.
∫ 1

0

1
1 + 3

√
x

dx

17.
∫

1
3
√

x − 4
√

x
dx

18.
∫ ∞

0

1
1 +

√
x

dx

19.
∫

sin
√

x√
x + 1

dx (Hard)

20.
∫ 1

0

1
1 + 3

√
x

dx

21.
∫ π

0

1
cosx + 2 sinx

dx

22.
∫ ∞

0

1
1 + 4

√
x

dx

23.
∫ π

0

1
cos 2x + sin 2x

dx

24.
∫ π/2

0

cosx

sinx + cosx
dx

25.
∫ ∞

0

1
1 + sin2 x

dx
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