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Ambiguity and deficiency of reversed Dickson permutations

Daniel Panario, Amin Sakzad, and David Thomson

Abstract. We give the ambiguity and deficiency of two classes of binary
reversed Dickson polynomials. The determination of their ambiguity and de-

ficiency depends on new results on the 2-divisibility of binomial coefficients.
We also give some conjectures regarding the ambiguity and deficiency for the

other two classes of binary reversed Dickson polynomials.

1. Introduction

Linear and differential cryptanalysis are two well-known attacks against sym-
metric key cryptosystems which use S-boxes as part of the encryption-decryption
procedure [Bih91, Mat94]. An S-box can be considered as a map between fi-
nite groups, most commonly the additive and multiplicative groups of a finite field.
The S-box should be perfect non-linear (PN) or almost perfect non-linear (APN)
in order to best resist against both linear and differential cryptanalysis. One of
the most well-known parameters to measure against linear cryptanalysis is non-
linearity [Car04, Dra10].

The ambiguity and deficiency of a function were introduced in [Pan11-1,
Pan10] and a thesis on the topic appears in [Thom12]. Theoretical results on the
ambiguity and deficiency of permutation functions were presented in [Pan11-1]
and [Pan13]. In particular, lower bounds on the ambiguity and deficiency are de-
rived for permutations of both additive and multiplicative groups of finite fields.
Functions that achieve these lower bounds were constructed in [Pan11-1]. Like
other differential properties of functions, the ambiguity and deficiency are both
invariant under extended-affine (EA) and Carlet-Charpin-Zinoviev (CCZ) [Car98]
equivalences [Pan11-1, Pan13]. Attaining the minimum ambiguity implies that
the function itself is almost perfect non-linear. In the case of finite fields, the reverse
is true only in characteristic 2 [Pan11-1]. It has also been shown that permuta-
tions that achieve the lowest possible ambiguity are also highly non-linear (that
is, they achieve a high non-linearity). The ambiguity and deficiency of functions
whose difference map is a linearized polynomial are derived in [Pan13]. Numerical
experiments on the ambiguity and deficiency of monomials and (reversed) Dickson
polynomials are also provided in [Pan11-2].

Key words and phrases. Dickson polynomials, almost perfect non-linear functions, ambiguity
and deficiency.
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In this paper, we study the ambiguity and deficiency of binary reversed Dickson
polynomials. Studying these values for Dickson polynomials entails the study of
2-divisibility of expressions of the form n

n−j
(
n−j
j

)
that appear in the coefficients of

these polynomials. In Section 3, we provide results of the 2-divisibility of binomial
coefficients. We apply those computations in Section 4 to provide the ambiguity
and deficiency to two of four known types of binary reversed Dickson permutations.
We give some comments on the ambiguity and deficiency of the remaining cases
based on some numerical computations in Sage.

Notation. We use capital letters to denote functions. Capital calligraphic
letters are used for sets. The elements of a set and numbers are denoted by small
letters and Greek letters. Matrices are denoted by bold capital letters.

2. Background material

We briefly recall the definitions of reversed Dickson polynomials. Then we
review the concepts of ambiguity and deficiency related to permutation polynomials.

2.1. Reversed Dickson polynomials. In this paper, we are interested in
computing the ambiguity and deficiency of reversed Dickson polynomials. One
motivation for our interest is that reversed Dickson polynomials have close relations
to APN functions [Hou10, Hou09]. Hence, studying differential properties of these
polynomials may shed some light on the differential behaviour of these important
functions. Next we define a Dickson polynomial first, then we introduce reversed
Dickson polynomials.

Dickson polynomials [Lidl93] [Lidl97] are defined as the (unique) bi-variate
polynomial Dn defined by the equation Dn(x1+x2, x1x2) = xn1 +xn2 . The univariate
Dickson polynomial is denoted Dn(x, c) ∈ Fq, where c ∈ Fq. If c = 0, then Dn(x, 0)
is a monomial. A reversed Dickson polynomial is obtained by reversing the role of
the variable and parameter of the univariate Dn, thus considering instead Dn(c, x).
To be precise, let q = pe be a prime power; then the reversed Dickson polynomial
is

(1) Dn(c, x) =

bn/2c∑
j=0

n

n− j

(
n− j
j

)
(−x)jcn−2j .

It can be shown that the permutation behaviour of Dickson polynomials de-
pends only whether c = 0 or c 6= 0. For c 6= 0, it is well-known that the Dickson
polynomial Dn(x, c) defines a permutation of Fq if and only if gcd(n, q2 − 1) = 1.
In the reversed Dickson case, only some sufficient conditions for Dn(c, x) to de-
fine a permutation of Fq are known. In particular, a desirable pair [Hou10]
(q, n) = (pe, n) indicates that Dn(c, x) is a permutation polynomial over Fq. Table 1
gives the list of known desirable pairs when p = 2.

n condition

2k + 1 (k, 2e) = 1 (Gold)

2e + 2k + 1, k > 0 (k − 1, e) = 1, e even (cubic)

22k − 2k + 1 (k, 2e) = 1 (Kasami)

28k + 26k + 24k + 22k − 1 e = 5k (Dobbertin)

Table 1. Reversed Dickson permutation polynomials, Dn(1, x),
over F2e .
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There are also some known conditions for reversed Dickson polynomials to be
permutations in odd characteristic [Hou10]. However, in this paper we only focus
on the binary case.

2.2. Differential properties: ambiguity and deficiency. Let G be a fi-
nite Abelian group of cardinality n and let F be a bijective map on G. Let
G∗ = G \ {0}. For any a ∈ G∗, the difference map of F with parameter a is
∆F,a(x) = F (x+ a)− F (x). Properties of a function’s difference maps are critical
in determining its resistance to differential cryptanalysis. In particular, differential
cryptanalysis requires finding pairs of plaintexts and their corresponding cipher-
texts whose differences occur with “significant” probability. Thus, the difference
maps of a candidate function should be as close to injective as possible.

Let

αi(F ) =
∣∣∣{(a, b) ∈ G∗ × G :

∣∣∣∆−1F,a(b)
∣∣∣ = i

}∣∣∣
for 0 ≤ i ≤ n.

Definition 2.1. Let G be a finite Abelian group and let F : G → G. The
deficiency of F , denoted D(F ), is given by

D(F ) = α0(F ) =
∣∣∣{(a, b) ∈ G∗ × G : ∆−1F,a(b) = ∅

}∣∣∣ .
When the function is clear, we simply write αi = αi(F ). The deficiency mea-

sures the number of pairs (a, b) such that ∆F,a(x) = b has no solutions. Thus, the
deficiency is a collective measure of the surjectivity of the difference maps ∆F,a,
where a ranges over G∗: the lower the deficiency the closer the ∆F,a are to surjective.

Definition 2.2. Let G be a finite Abelian group and let F : G → G. The
(weighted) ambiguity of F , denoted A(F ), is given by

A(F ) =
∑

0≤i≤n

αi(F )

(
i

2

)
.

Analogously to the deficiency, the ambiguity of F is a collective measure of
the injectivity of the difference maps ∆F,a(x): the lower the ambiguity of F the
closer the ∆F,a are to injective. We explain this weighting as follows: contributions
from α0 and α1 (that is, the number of elements of the codomain which have 0
or 1 preimage) vanish, and the weighted ambiguity of F measures the number of
distinct pairs x and x′ such that ∆F,a(x) = ∆F,a(x′).

Some related measures are introduced in the literature. In particular, the dif-
ferential spectrum of F is the (multi-)set of αi(F ); see [Blon11], for a treatment
of the differential spectrum of some special functions. Lower bounds on the ambi-
guity and deficiency of a permutation function can be derived using the following
theorem.

Theorem 2.3. [Pan11-1] Let F : G → G be a permutation where G is an
Abelian group of order n. Let I be the set of elements of order 2 in G such that
ι = |I|. Then, both the ambiguity and deficiency of F are bounded below by

2(n− 1) n ≡ 1 (mod 2),
2(n− 2) n ≡ 0 (mod 2) and ι = 1,

2(n− 1)− 3ι
2 + ι2

2 n ≡ 0 (mod 2) and ι > 1.
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Moreover, over the finite field with 2e elements, the optimum (smallest) ambiguity
and deficiency of a permutation, denoted Opt A(2e) and Opt D(2e), respectively,
are given by 2e−1(2e − 1).

The ambiguity and deficiency of a number of well-known permutations such
as linearized polynomials, twisted binomials, Möbius transformations, Dembowski-
Ostrom polynomials [Blokh01, Dem68], permutations from [Char08] and some
cases of Dickson polynomials are computed in [Pan11-1, Pan11-2, Pan13]. These
are evaluated on either the additive or multiplicative groups of the finite field Fq.

3. Divisibility of binomial coefficients

The coefficients of reversed Dickson polynomials involve expressions of the form
n
n−j

(
n−j
j

)
. Studying the ambiguity and deficiency of reversed Dickson polynomials

first requires studying the divisibility of binomial coefficients. Since we are chiefly
concerned with the binary case, we require only the parity of the binomial coef-
ficients. The exact divisibility is given by Goethegluck [Goe87], however for our
purposes we apply Lucas’ lemma, see, for example, [Fine47].

Theorem 3.1. Let p be a prime, and let n =
∑r
i=0 nip

i and k =
∑r
i=0 kip

i,
with 0 ≤ ni, ki < p. Then(

n

k

)
=

(
n0
k0

)(
n1
k1

)
· · ·
(
nr
kr

)
(mod p).

Moreover, the form of the coefficients of Dickson polynomials leads to an im-
portant simplification which we use throughout this work.

Lemma 3.2. Let n be a positive integer, then

n

n− j

(
n− j
j

)
= 2

(
n− j − 1

j − 1

)
+

(
n− j − 1

j

)
.

Hence, the parity of n
n−j

(
n−j
j

)
is equal to the parity of

(
n−j−1

j

)
.

Proof. We have

n

n− j

(
n− j
j

)
=
n− j + j

n− j

(
n− j
j

)
= (1 +

j

n− j
)

(
n− j
j

)
=

(
n− j
j

)
+

j

n− j

(
n− j
j

)
=

(
n− j
j

)
+

(
n− j − 1

j − 1

)
.

Using Pascal’s rule
(
n−j
j

)
=
(
n−j−1

j

)
+
(
n−j−1
j−1

)
yields the conclusion. �

As we will see, computing the base-2 expansion of the coefficients becomes more
complicated as the number of non-zero elements in the expansion of n grows. Thus,
Lemma 3.2 is particularly useful to calculate

(
m
v

)
when m is odd. We encounter

this situation in each case below by considering
(
n−j−1

j

)
=
(
(n−1)−j

j

)
.

Theorem 3.3.

(1) Let n = 2k + 1 and j ≤ n; then for some i,{
2 - n

n−j
(
n−j
j

)
j = 0 or j = 2i, 0 ≤ i ≤ k − 1,

2 | n
n−j

(
n−j
j

)
otherwise.
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(2) Let n = 2e + 2k + 1, e > k > 0, then{
2 - n

n−j
(
n−j
j

)
j = 0, j = 2i, i 6= k, i ≤ e− 1, or j = 2i + 2s, i ≥ k, s < k,

2 | n
n−j

(
n−j
j

)
otherwise.

(3) Let n = 22k − 2k + 1, then{
2 - n

n−j
(
n−j
j

)
j = 0 or j = 2i − 2k + 2s, i ≥ k, 0 ≤ s < k,

2 | n
n−j

(
n−j
j

)
otherwise.

(4) Let n = 28k + 26k + 24k + 22k − 1 and j ≤ n, then{
2 - n

n−j
(
n−j
j

)
j = δr2

r + δs2
s + δt2

t + δw (2w + · · ·+ 1) ,

2 | n
n−j

(
n−j
j

)
otherwise,

where δr, δs, δt, δw ∈ {0, 1} with
6k ≤ r ≤ 8k − 1,
4k ≤ s ≤ 6k − 1,
2k − 1 ≤ t ≤ 4k − 1,
0 ≤ w ≤ 2k − 2,

satisfy the conditions:
(a) If δ2k−1 = 1, then w = 2k − 2 and δw = 1; otherwise,
(b) If δt = 0, then δ4k = 0,
(c) if δs = 0, then δ6k = 0,
(d) if δr = 0, then δ8k = 0.

Proof. We prove each of the cases above separately.
Part (1): n = 2k + 1. By Lemma 3.2, the parity of n

n−j
(
n−j
j

)
is equal to the

parity of
(
(n−1)−j

j

)
=
(
2k−j
j

)
.

We use Theorem 3.1 to find the parity of n
n−j

(
n−j
j

)
. By Lemma 3.2, we require

the 2-ary expansion of 2k − j for all j. Let j =
∑k−1
i=0 ji2

i and denote by b the
smallest index such that jb = 1. To compute the 2-ary expansion of 2k − j, we
make use of diagrams of the form

k k − 1 · · · b · · · 0

2k 1 0 · · · 0 · · · 0
j 0 0 · · · 1 · · · 0

2k − j 0 1 k−2complementb+1 1 · · · 0

,

where αcomplementβ means to replace each bit ji with ji = 1 − ji for α ≥ i ≥ β.
The method is grade-school subtraction in base 2.

By Theorem 3.1, the parity of
(
2k−j
j

)
is 0 whenever there is a 0 in the bottom

row (corresponding to a bit of 2k − j) and a 1 in the middle row (corresponding to
the same bit of j). This occurs whenever j has more than one non-zero bit in its
expansion; that is, when j 6= 0, 2b for some b, as required.

Part (2): n = 2e + 2k + 1, k > 0. By Lemma 3.2, the parity of n
n−j

(
n−j
j

)
is equal to the parity of

(
(n−1)−j

j

)
=
(
2e+2k−j

j

)
. Similar to Part (1), we require

the 2-ary expansion of 2e + 2k − j and 2e + 2k − 2j for 0 < j < 2e−1 + 2k−1. If
j =

∑e−1
i=0 ji2

i, let b be the first index less than k for which jb = 1 and let t be
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the first index greater than k for which jt = 1 (if they exist). An example of the
corresponding diagram is of the form

e · · · t · · · k · · · b · · · 0

2e + 2k 1 · · · 0 · · · 1 · · · 0 · · · 0
j 0 · · · 1 · · · jk · · · 1 · · · 0

2e + 2k − j

.

We now have cases according to the form of j and the existence and values of b and
t, as well as the expansion of j at its k-th bit. If jt, respectively jb, does not exist
we say jt = 0, respectively jb = 0. Some cases are trivial: if jt = jb = 0, then j = 0
or j = 2k.

Suppose jb = 0. Then jt = 1 and we reduce to the following diagram

e · · · t · · · k · · · b · · · 0

2e + 2k 1 · · · 0 · · · 1 · · · 0 · · · 0
j 0 · · · 1 · · · jk · · · 0 · · · 0

2e + 2k − j 0 e−1complementt+1 1 · · · 1− jk · · · 0 · · ·

.

Now, suppose jb = 1. First, we treat jk = 0. Suppose also jt = 1, then we
reduce the diagram to

e · · · t · · · k · · · b · · · 0

2e + 2k 1 · · · 0 · · · 1 · · · 0 · · · 0
j 0 · · · 1 · · · 0 · · · 1 · · · 0

2e + 2k − j 0 e−1complementt+1 1 · · · 0 k−1complementb+1 1 · · ·

.

If jt = jk = 0, the diagram is

(2)

e · · · t · · · k · · · b · · · 0

2e + 2k 1 · · · 0 · · · 1 · · · 0 · · · 0
j 0 · · · 0 · · · 0 · · · 1 · · · 0

2e + 2k − j 1 · · · 0 · · · 0 k−1complementb+1 1 · · ·

.

Now consider the case jb = jk = 1. Suppose also jt = 1, then the diagram is

e · · · t · · · k · · · b · · · 0

2e + 2k 1 · · · 0 · · · 1 · · · 0 · · · 0
j 0 · · · 1 · · · 1 · · · 1 · · · 0

2e + 2k − j 0 e−1complementt+1 0 · · · 1 k−1complementb+1 1 · · ·

,

and finally if jt = 0, then we reduce

(3)

e · · · t · · · k · · · b · · · 0

2e + 2k 1 · · · 0 · · · 1 · · · 0 · · · 0
j 0 · · · 0 · · · 1 · · · 1 · · · 0

2e + 2k − j 0 · · · 1 · · · 1 k−1complementb+1 1 · · ·

.

This gives the 2-ary expansion of the differences 2e + 2k− j. As in Part (1), by

Theorem 3.1, the binomial coefficient
(
n−1−j

j

)
≡ 0 (mod 2) whenever there is a 0

in the bottom row (corresponding to a bit in the binary expansion of n−1−j) with
a 1 in the same position of the middle row (corresponding to a bit in the binary
expansion of j). Table 2 summarizes conditions for when the binomial coefficient,
and hence the coefficient of the reversed Dickson polynomial, is even. The statement
of the lemma is a simple restatement of these conditions.
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jb jk jt other
0 0 1 j` = 1, ` > t
0 1 0 all
0 1 1 all
1 0 0 j` = 1, b+ 1 ≤ ` ≤ k + 1
1 0 1 j` = 1, b+ 1 ≤ ` ≤ k + 1 or ` > t
1 1 0 j` = 1, b+ 1 ≤ ` ≤ k + 1
1 1 1 all

Table 2. Conditions for when the binomial coefficient
(
2e+2k−j

j

)
is even.

The proofs of Part (3) and (4) are similar; the main difference arises in the
presence of the minus sign in each n in Part (3), and with both the presence of
a minus plus an additional two non-zero bits in Part (4). In Part (3), the binary
expansion of 2e − 2k, for e > k, produces a run of 1s between the (e − 1)-th and
k-th bits. As always, if producing the diagram with the 2-ary expansion of n − 1
on top, j in the middle row and n − 1 − j on the bottom-most row, the parity of(
n−1−j

j

)
is even by Theorem 3.1 whenever there is a 0 on the bottom row with a

corresponding 1 on the middle row. If this occurs in the s-th bit, then js = 1 and
there is a 1 in the first row of the diagram corresponding either to a 1 in the first
row, which is created by a borrow or is unaffected by a borrow.

We omit the full proofs of the remaining cases, and give one concrete example
of Part (3) which illustrates the reasoning above. Suppose n = 2e − 2k + 1. If
k+1 = e (we include this case only for completeness, since we are chiefly concerned

with the case n = 22k − 2k + 1), then 2e − 2k = 2k, and the parity of
(
2k

j

)
is given

determined in Part (1). Otherwise, we have a diagram of the form

e e− 1 · · · t · · · k · · · b · · · 0

2e − 2k 0 1 · · · 1 · · · 1 · · · 0 · · · 0
j · · · jt · · · jk · · · jb · · · 0

2e + 2k − j

.

Suppose j = 2k+1 + 2k + jk−12k−1 + · · ·+ jb+12b+1 + 2b, for some b < k. Then the
diagram is

e e− 1 · · · k + 2 k + 1 k · · · b · · · 0

2e − 2k 0 1 · · · 1 1 1 · · · 0 · · · 0
j 0 0 · · · 0 1 1 · · · 1 · · · 0

2e + 2k − j 0 1 · · · 0 1 1 k−1complementb+1 1 · · · 0

,

and the parity is even if and only if j` = 1 for some b+ 1 ≤ ` ≤ k − 1, since 1s are
created on the top row by the borrow from bit b. This exact reasoning shows that
the parity is odd for j = 2b + 2` − 2k for k + 1 ≤ ` ≤ e− 1.

The Dobbertin case, Part (4), combines elements of both Parts (2) and (3),
and we omit the proof for brevity. �

4. Ambiguity and deficiency of reversed Dickson polynomials

Let p be a prime and let q = pe. A linearized polynomial L is of the form L(x) =∑e−1
i=0 aix

pi ∈ Fq[x]. Linearized polynomials are equivalent to linear operators over
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finite fields. Furthermore, an affine polynomial is given by L(x) + c, where c is a
constant in Fq. Difference maps act on polynomials over finite fields in a similar
fashion as differentiation over the reals; indeed, the difference map of a function
is often called the (discrete) derivative of the function. Instead of reducing the
degree of the polynomial by 1, taking the difference map of a monomial reduces its
p-weight (that is, the sum of the digits in the p-ary expansion of its degree) by one.
We use this fact to state the ambiguity and deficiency of an affine polynomial.

Lemma 4.1. Let L(x) =
∑e−1
j=0 `jx

pj be a linearized polynomial over Fq, q = pe,

and let c ∈ Fq. Then D(L+ c) = (q − 1)2 and A(L+ c) = (q − 1)
(
q
2

)
.

Proposition 4.2. Let F (x) = Dn(1, x) be the reversed Dickson polynomial
over Fq, q = 2e, n = 2k + 1 and (k, 2e) = 1 obtained from the Gold function. The
ambiguity and deficiency of F satisfies D(F ) = (q−1)(q−2) and A(F ) = (q−1)

(
q
2

)
,

respectively.

Proof. By Theorem 3.3, Dn(1, x) = 1 + Tr(x), which is a linearized polyno-
mial, plus a constant. The ambiguity and deficiency follows from Lemma 4.1. �

The ambiguity and deficiency of the reversed Dickson polynomial Fn(x) =
Dn(1, x) for q = 2e, n = 2e + 22 + 1, and e 6= 4 was given in [Pan11-2] and satisfy

A(Fn) = 22e−3
(

4

2

)
+ (2e − 4)

(
2e−1

2

)
+

(
2e

2

)
and

D(Fn) = 2e(2e − 1)−
(

22e

8
+ 2e − 3

)
.

A generalization of this result to the cubic binary reversed Dickson permutations,
see Table 1, is given next.

Theorem 4.3. Let q = 2e, with e even and let n = 2e + 2k + 1. Moreover, let
gcd(k − 1, e) = 1 and let gcd(k, e) = d. Then the ambiguity and deficiency of the
reversed Dickson polynomial Fn(x) = Dn(1, x) satisfy

A(Fn) =

{
22e−d−1

(
2d

2

)
+ (2e − 2d)

(
2e−1

2

)
+ (2d−1 − 1)

(
2e

2

)
, k/d ≡ 1 (mod 2),

22e−d−1
(
2d

2

)
+ (2e − 2d+1)

(
2e−1

2

)
+ (2d − 1)

(
2e

2

)
, k/d ≡ 0 (mod 2);

D(Fn) =

{
22e − 22e−d−1 − 2e+1 + 2d−1 + 1, k/d ≡ 1 (mod 2),

22e − 22e−d−1 − 2e+1 + 2d + 1, k/d ≡ 0 (mod 2).

Proof. Let k = 2t and Gv,w(x) = x2
v

+x2
v+1

+ · · ·+x2
w

for x ∈ F2e (observe
that G0,e−1(x) = Tr(x), where Tr is the trace function from F2e to F2).

By Theorem 3.3, the reversed Dickson polynomial Fn(x) = Dn(1, x) satisfies

Fn(x) =

2e−1+22t−1∑
j=0

n

n− j

(
n− j
j

)
(−x)j

= 1 + Tr(x) + x2
2t

+G0,2t−1(x)G2t,e−1(x).

Hence, the difference map ∆Fn,a(x) = Fn(x+ a)− Fn(x) satisfies

∆Fn,a(x) = Tr(a) + a2
2t

+G0,2t−1(a)G2t,e−1(x)

+G0,2t−1(x)G2t,e−1(a) +G0,2t−1(a)G2t,e−1(a).
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We observe that ∆Fn,a is of the form Ca + La(x), where Ca ∈ Fq is a constant
(depending only on a) and La ∈ Fq[x] is a linearized polynomial whose coefficients
depend on a.

We recall the result of [Pan13, Corollary 3]: for any linearized polynomial

L(x) =
∑e−1
i=0 aix

qi , its value set has size qrk(A), where rk(A) is the rank of the
e×e auto-circulant matrix A with defining column (a0, a1, . . . , ae−1). Moreover, the
number of times each image is repeated is precisely qe−rk(A). If a0, a1, . . . , ae−1 ∈
Fq, then the auto-circulant matrix is simply circulant and has associated polynomial
A(x) = a0 + a1x + · · · + ae−1x

e−1. In addition, it is well-known [Ing56] that an
e× e circulant matrix has rank equal to e− deg(gcd(A(x), xe − 1)).

If Tr(a) = 0, then G0,2t−1(a) = G2t,e−1(a), and the linearized part of ∆Fn,a,
La(x) = G0,2t−1(a)Tr(x).

First, we determine when G0,2t−1(a) = 0. By telescoping, (1 + a)G0,2t−1(a) =

a2
2t

+ a = 0 implies a ∈ F22t ; that is, G0,2t−1(a) = 0 implies a ∈ F22t ∩ F2e = F2d .
Moreover, for a ∈ F2d , G0,2t−1(a) = (2t/d)Trd(a), where Trd is the trace function
from F2d to F2. If 2t/d is odd, then G0,2t−1(a) = 0 if and only if a is a trace-0
element of F2d . Otherwise if 2t/d is even, then G0,2t−1(a) = 0 for all a ∈ F2d .
Whenever G0,2t−1(a) = 0, ∆Fn,a(x) = a for all x.

For all a with Tr(a) = 0 and G0,2t−1(a) 6= 0, there are exactly two values of b ∈
F2e such that ∆Fn,a(x) = b has solutions for x in F2e , namely b = a2

2t

+G0,2t−1(a)t0,
where t0 ∈ {0, 1}. Moreover, for each such pair (a, b), the equation ∆Fn,a(x) = b
has exactly 2e−1 solutions. This can be also be realized by observing that the first
column of the auto-circulant matrix A has every entry equal to G0,2t−1(a), hence
has rank 1 whenever G0,2t−1(a) 6= 0 and rank 0 otherwise.

Now, consider those a ∈ F2e with Tr(a) = 1. With G0,2t−1(a) = 1+G2t,e−1(a),
we have ∆Fn,a(x) = Ca +G0,2t−1(a)Tr(x) +G0,2t−1(x), where Ca is a constant de-
pending only on a. Thus, we need to consider only the value set of G0,2t−1(a)Tr(x)+

G0,2t−1(x), which is linearized. We observe that (G0,2t−1(a)+δ)2
i

= Gi,2t−1+i(a)+
δ, with indices taken modulo e and with δ = 0, 1. We further denote Gi,2t−1+i(a)+δ

by G
(δ)
i . Let

A2t,a =



G
(1)
0 · · · G

(0)
2t−1 G

(0)
2t · · · G

(1)
e−1

G
(1)
0 · · · G

(0)
2t−1 G

(0)
2t · · · G

(1)
e−1

...
...

...
...

G
(1)
0 · · · G

(1)
2t−1 G

(0)
2t · · · G

(0)
e−1

G
(0)
0 · · · G

(1)
2t−1 G

(1)
2t · · · G

(0)
e−1

...
...

...
...

G
(0)
0 · · · G

(0)
2t−1 G

(0)
2t · · · G

(0)
e−1

G
(0)
0 · · · G

(0)
2t−1 G

(0)
2t · · · G

(1)
e−1


.

As before, we reduce A2t,a by the row operation (with rows indexed by 0)

(1) Row j ← Row j − Row j − 1 for 1 ≤ j ≤ e− 1, and
(2) Row 0 ← Row 0 − Row e− 1.

What remains is the circulant matrix with defining column v = (vi)
e−1
i=0 , with v0 =

v2t = 1 and vi = 0 for i 6= 0, 2t. The associated polynomial V (x) =
∑e−1
i=0 vix

i =
1+x2t. The rank of the matrix defined by v is given by e−deg(gcd(1+x2t, 1+xe)) =
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e − gcd(2t, e) = e − d. In each case, the value set has cardinality 2e−d and each
image is repeated exactly 2d times.

We give all values of αi > 0 for i > 0 in the following table.

α2d α2e−1 α2e

2t/d ≡ 1 (mod 2) 2e−1 · 2e−d 2(2e−1 − 2d−1) 2d−1 − 1
2t/d ≡ 0 (mod 2) 2e−1 · 2e−d 2(2e−1 − 2d) 2d − 1

Moreover, the deficiency of Fn, D(Fn) = α0 is given by subtracting the row-sum
from 2e(2e − 1) in the appropriate row of the above table. �

Numerical results on the differential spectrum and ambiguity and deficiency of
the Kasami and Dobbertin binary reversed Dickson permutation polynomials from
Table 1 are calculated using a SAGE program and provided in Tables 3–5.

e k α0 α2 α4 α6 α8 α10

5 3 596 316 60 40 0 0
7 3 9703 5146 1239 168 0 0
7 5 9829 4950 1260 210 7 0
8 3 39775 19510 5072 740 149 34
8 5 39889 19398 4960 860 123 50
9 5 159634 77670 20286 3648 340 54
9 7 159070 78354 20520 3348 322 18

Table 3. Differential spectrum of the Kasami reversed Dickson
polynomial Dn(1, x) for q = 2e, n = 22k − 2k + 1 and (k, 2e) = 1.

e k α0 α2 α4 α2e−1 α2e−1+2

4 3 159 58 16 5 2
6 5 2769 951 281 24 7
8 7 46317 13196 5640 91 36

Table 4. Differential spectrum of the reversed Dickson polyno-
mial Dn(1, x) for q = 2e, n = 22k − 2k + 1 and k = e− 1.

We can draw some inferences from our tables. As we observe in Theorem 4.3,
the form of the ambiguity and deficiency for reversed Dickson permutations can
be case dependent, which is confirmed for the Kasami case by comparing Tables 3
and 4. In Table 3, we observe that the i for which αi are non-zero are “low”, in
comparison to those i in Table 4. Moreover, based on Table 4, in the particular case
k = e−1 we can draw the conjecture that the Kasami reversed Dickson polynomial
Dn(1, x) over Fq with q = 2e, n = 22k− 2k + 1 satisfies α2e−1 +α2e−1+2 = 2e−1− 1.

One of our motivations for studying the reversed Dickson polynomials was their
connection to almost perfect nonlinear functions [Hou10, Hou09]. The differen-
tial uniformity of a function is the largest i such that αi > 0. If a function is almost
perfect nonlinear, it has differential unifomity at most 2, and in the case of permu-
tations in even-degree extensions of F2, only one known almost perfect non-linear
permutation is known [Bro10]. Therefore, functions with differential uniformity
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e k (D(F ),Opt D(2e)) (A(F ),Opt A(2e)) MC
5 1 (656, 496) (1396, 496) (10, 5)
10 2 (655774, 523776) (1296588, 523776) (28, 30)

Table 5. Ambiguity and deficiency of the Dobbertin reversed
Dickson polynomial Dn(1, x) for e = 5k and n = 28k + 26k +
24k + 22k − 1.

at most 4 are preferred, such as the inverse map used in the Advanced Encryption
Standard.

The last column of Table 5 provides a pair which denotes the maximum colli-
sions (MC). For example, (10, 5) in last column of the first row of Table 5 means
that there are exactly 5 pairs of (a, b) ∈ F∗q × Fq such that ∆f,a(x) = b has exactly
10 distinct solutions. Therefore, the differential uniformity of the first two cases of
the Dobbertin reversed Dickson polynomial is 10, when e = 5 and 28 when e = 10,
so unfortunately we do not believe that these functions will be suitable for use in
systems where resistance against differential attacks is necessary.
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