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Abstract

The concepts of ambiguity and deficiency for a bijection on a finite Abelian group were recently introduced. In
this work, we present some further fundamental results on the ambiguity and deficiency of functions; in particular,
we note that they are invariant under the well-known CCZ-equivalence, we obtain upper and lower bounds on the
ambiguity and deficiency of differentially k-uniform functions, and we give a lower-bound on the non-linearity of
functions that achieve the lower-bound of ambiguity and deficiency. In addition, we provide an explicit formula
in terms of the ranks of matrices on the ambiguity and deficiency of a Dembowski-Ostrom (DO) polynomial and
using this technique we find exact values for known cases of DO permutations with few terms. We also derive exact
values for the ambiguities and deficiencies of DO permutations obtained by trace functions. The key relationship
between the above polynomials is that they all have linearized difference map.

Index Terms

Ambiguity, Deficiency, Non-linearity, Permutation Polynomials, Finite Fields, DO-Polynomials, Linearized Poly-
nomials.

I. INTRODUCTION

Polynomials over finite rings can be viewed as maps between finite rings, or between finite groups. In this
paper, we study mappings between two finite Abelian groups of the same cardinality, in particular, bijective

mappings. A permutation polynomial over a finite ring R induces a bijective map from R to R. Due to their
applications in coding theory, combinatorics and cryptography, there has been considerable interest in studying
these permutation polynomials [30], [31], [32]. We are chiefly interested in the finite field Fq and the finite ring Zn.
For more background on permutation polynomials over finite fields we refer to [19, Chapter 7] and [23, Section
8.1]. For detailed surveys of open questions and results up to 1993 see [1], [17], [18], [21], [23]. For permutation
polynomials over Zn, we refer the readers to [22], [27].

The ambiguity and deficiency of a given bijection F on a finite Abelian group G were introduced recently in [24],
[26] to measure the surjectivity and injectivity of the difference map ∆F,a(x) = F (x+ a)−F (x) at a ∈ G. In this
work, we also primarily consider bijections, but we extend the definition to general maps between finite Abelian
groups in a natural way. In the case of maps between finite fields, attaining the minimum ambiguity implies that F is
almost perfect non-linear (APN), which means that each difference map for a 6= 0 is at worst 2-to-1. However, not
every APN function attains the minimum ambiguity and deficiency. In particular, we give lower and upper bounds
on the ambiguity and deficiency of all differentially k-uniform functions. These bounds are tight for differentially
2-uniform, equivalently APN, functions over binary fields.

The non-linearity of a function measures the distance of that function to the set of all affine functions [13]. Highly
non-linear functions are desired due to their resistance to linear cryptanalysis [20]. We relate these two concepts

Daniel Panario, Brett Stevens, David Thomson and Qiang Wang are with the School of Mathematics and Statistics, Carleton University.
E-mails: {daniel,brett,dthomson,wang}@math.carleton.ca.

Amin Sakzad is currently with the Department of Electrical and Computer Systems Engineering, Monash University, Australia. This work
was initiated when he was with the Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran and
completed at the Monash Software Defined Telecommunications Lab supported by the Talented Enhancement Scheme through the Monash
Professorial Fellowship (MPF) program. E-mail: amin.sakzad@monash.edu.

A subset of this work was presented at ITW 2011, Paraty, Brazil. The statements of Lemma 1, Theorem 10 and Theorem 13 appear in
the conference proceedings [25]. The proofs of Lemma 1 and Theorem 13 appear only in this paper (Theorem 10 is a known result and is
given without proof). Furthermore, our statement of the deficiencies of these cases differs slightly from [25].



2

by finding a lower-bound on the non-linearity of a bijection which attains optimum ambiguity and deficiency. In
the characteristic 2 case, similar relationships between known APN functions and functions with good non-linear
characteristics can be found in [5]. In contrast, in this work we focus primarily on the non-linearity of bijections
between finite fields of odd characteristics and on bijections between finite cyclic groups. Furthermore, in [5] Carlet
analyzes the non-linearity of APN and almost bent (AB) functions as well as differential 4-uniform functions, and
so on. Permutations with minimum ambiguity and deficiency (between non-2-groups) are APN, but not necessarily
vice versa [24], [26]. Similarly, in this paper we show that these functions have strong non-linearity, but they are
not necessarily perfectly balanced and therefore not necessarily bent.

Two notions of equivalence of functions which are significant in the cryptographic setting are extended affine
(EA) and Carlet-Charpin-Zinoviev (CCZ) equivalence [6]. It is well-known that EA-equivalence implies CCZ-
equivalence and the property of a function being APN is invariant under CCZ-equivalence [6]. The measures of
ambiguity and deficiency are known to be EA-invariant parameters (that is, functions which are EA-equivalent have
equal ambiguity and deficiency). In this work, we comment on the CCZ-invariance of the ambiguity and deficiency
of functions.

If the group considered is the additive group of a finite field with even characteristic, a permutation attaining the
minimum ambiguity is equivalent to an APN permutation [24]. The existence of an APN permutation of F26 was
determined in [4], and searching for APN permutations over larger binary fields is still an open problem. Instead, in
this work we investigate the ambiguity and deficiency of several well-known polynomials over finite fields without
imposing the minimum restrictions on their ambiguities and deficiencies. The polynomials considered in this paper
have a common property: all of them have linearized difference maps. These permutation polynomials are DO
permutation polynomials [2] and permutation polynomials based on trace function [7].

A summary of the paper is as follows. In Section II, we provide some basic results on ambiguities and deficiencies.
We supply some new results on ambiguities and deficiencies in Section III. In particular, we follow the well-known
proof that the APN property is invariant under CCZ-equivalence and show that ambiguity and deficiency are also
invariant under CCZ-equivalence. The lower and upper bounds on the ambiguity and deficiency of differentially
k-uniform functions are provided in this section. Additionally, we show that functions with optimal ambiguity
and deficiency also achieve good non-linearity, except over finite fields of characteristic two. In Section IV, we
introduce some permutations of interest over finite fields and compute the ambiguities and deficiencies of them.
Specifically, we derive a formula for the ambiguity and deficiency of any DO-polynomial in terms of ranks of
matrices and analyze these matrices for some specific DO permutations. Permutations based on trace functions are
also considered in this section. We present some conclusions and areas for future work in Section V.

II. PRELIMINARIES

In order to make this work self-contained, we review the notions of ambiguity and deficiency of functions, as
well as relevant results about ambiguity and deficiency.

Let us review the concept of APN functions first. Let G be a finite group, let G∗ = G \ {0} and let a ∈ G∗. The
difference map of a function F at a ∈ G∗ is given by ∆F,a(x) = F (x + a) − F (x). The function F is said to
be almost perfect non-linear (APN) if ∆F,a(x) = b has at most two solutions for all a ∈ G∗ and all b ∈ G. The
differential uniformity of F is the minimum k such that ∆F,a is at most k-to-1 for all a’s.

Now we provide the definitions of ambiguity and deficiency of a function. These notions were introduced first
in [26]. Let G1 and G2 be two finite Abelian groups (possibly of different cardinalities) and let F be a function
from G1 to G2. Furthermore, let

nk(F ) =
∣∣∣{(a, b) ∈ G∗1 × G2 :

∣∣∣∆−1F,a(b)∣∣∣ = k
}∣∣∣

for 0 ≤ k ≤ n. We call n0(F ) the deficiency of F and denote it by D(F ). Hence the deficiency measures the
number of pairs (a, b) such that ∆F,a(x) = b has no solutions. This is a measure of the surjectivity of ∆F,a: the
lower the deficiency, the closer the ∆F,a collectively are to surjective. We also define the row-a-deficiency as

Dr=a(F ) =
∣∣∣{b :

∣∣∣∆−1F,a(b)∣∣∣ = 0, b ∈ G2
}∣∣∣ .
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We similarly define a measure of the injectivity of the functions ∆F,a, called the ambiguity of F , such that the
lower the ambiguity of F , the closer the ∆F,a are to injective. The (weighted) ambiguity of F can be defined as

A(F ) =
∑

0≤k≤n
nk(F )

(
k

2

)
.

We explain this weighting as follows: contributions from n0 and n1 (that is, the number of elements of the codomain
which have 0 or 1 preimage) vanish and the weighted ambiguity of F measures the replication of pairs x and x′

such that ∆F,a(x) = ∆F,a(x
′).

One of the early motivations for studying ambiguity and deficiency specifically was an application to design
theory. Briefly, if F : G1 → G2 is a function between two Abelian groups with |G1| = |G2| = n, then we can
construct an orthogonal doubly resolvable block design on n2 points with n2 blocks of size n [9, Section II.7.7].
The point set is V = G1 × G2. The block set is also indexed by G1 × G2, where (a, b) ∈ G1 × G2, gives the block
Ba,b = {(x, F (x + a) + b) : x ∈ G1}. The two resolutions correspond to the different a ∈ G1 and the different
b ∈ G2, respectively. This design is used specifically to schedule a tournament which is broken into n rounds
with n separate venues. In the scheduling of this tournament we are interested in the number of times any pair of
players play together in the same venue in the same round. More specifically we want to minimize the number of
pairs that miss each other totally and minimize the number of pairs that play together repeatedly. One of the first
solutions to this problem came from a modification of the affine plane and achieved a globally minimal number of
repetitions, but the schedule is rejected because there are n pairs of players that always play together in every round.
A subsequent restraint was added that forbids any pair playing together more than twice. Ambiguity and deficiency
are now the natural target measures. A deficiency of d corresponds to a tournament in which (d − n + 1)n2/2
pairs miss playing together, and bounds on deficiency (see Theorem 1) give the best possible behaviour in this
measure. Ambiguity is now the simplest measure in which achieving the minimum bounds guarantees that the
worst repetitions are size two. Equivalently, ambiguity is a modification of counting the cardinality of the set
{(x, y,B) : B ∈ {Ba,b}, x 6= y, x, y ∈ B} which is a frequently encountered set in design theory. It was only
later that we recognized the connections to PNs, APNs and cryptographic applications.

Some related measures for cryptographic applications are introduced in the literature; for example, the differential
spectrum of F is the multi-set of the nk(F ). Thus, knowing the entire differential spectrum of a function implies
knowledge of the ambiguity and deficiency. The differential spectra of functions F (x) = x2

t−1 ∈ F2n [x] is consid-
ered in [3], generalizing known results on inverse functions. We therefore immediately inherit the corresponding
results on ambiguity and deficiency of these functions. The presentation of ambiguity and deficiency has some
advantages. For example, the proof of Theorem 1 below, which appears in [25], uses the equality of the ambiguity
of a function with the sum of both its row-ambiguities (with fixed direction, a, of the derivative ∆F,a) and column-
ambiguities (with fixed image b ∈ G2). These are quite natural notions in the language of ambiguity and deficiency.

The optimum ambiguity and deficiency of a mapping can be derived using the following theorem cited from [24].
Theorem 1: Let F : G → G be a permutation, where G is an Abelian group of order n. Let I be the set of

elements of order 2 in G such that ι = |I|. Then, both the ambiguity and deficiency of F are bounded below by
2(n− 1) n ≡ 1 (mod 2),
2(n− 2) n ≡ 0 (mod 2) and ι = 1,

2(n− 1)− 3ι
2 + ι2

2 n ≡ 0 (mod 2) and ι > 1.

In [24] the deficiency numbers are cited as these less a factor of n−1. This is because in [24] the authors consider
b ∈ G \ {0} since ∆F,a(x) 6= 0 for permutation functions. In this paper we consider the entire codomain, since the
inclusion of 0 to the codomain of ∆F,a maintains consistency across all functions (not necessarily permutations).
We note, however, that all of the results cited in [24] are correct in their setting.

A function whose ambiguity (deficiency) achieves the lower-bound of the above theorem is said to have optimum
ambiguity (optimum deficiency, respectively). Let OAF (G) and ODF (G) denote the optimum ambiguity and optimum
deficiency of a permutation F on G, respectively. Let p be a prime number, q = pe and Fq denote the finite field of
order q. If we suppose that G = (Fq,+), then the ambiguity and deficiency depend on the characteristic p of Fq.
The following corollary is a simple consequence of the above theorem and the fact that every non-zero element of
Fq, char(Fq) = 2, has order 2.
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TABLE I
THE OPTIMUM AMBIGUITY AND DEFICIENCY OF PERMUTATIONS OVER Fq .

OAF (Fq) ODF (Fq)

p odd 2(q − 1) 2(q − 1)
p even (q − 1)( q

2
) (q − 1)( q

2
)

Corollary 1: The optimum ambiguity and deficiency of a permutation F over a finite field Fq is given in Table I.

Optimal functions with respect to ambiguity have the APN property. In other words, if a permutation F : G → G
achieves the minimal ambiguity, then F is APN. The reverse of this statement is generally true only if the cardinality
of G is a power of 2; see [24]. The ambiguity and deficiency of some well-known permutations such as twisted
binomials and Möbius transformations are computed in [24]. These are evaluated on both additive and multiplicative
groups of the finite field Fq.

III. NEW RESULTS ON AMBIGUITY AND DEFICIENCY

In this section, we present some new important results about the ambiguity and deficiency measures. In particular,
we note that these measures are invariant under certain common types of equivalence for cryptography, we provide
lower and upper bounds on the ambiguity and deficiency of differentially k-uniform functions, and we give a
connection between functions with good (low) ambiguity and deficiency and highly non-linear functions.

A. CCZ-invariance of ambiguity and deficiency

It is a simple exercise to see that a permutation and its compositional inverse have the same ambiguity and
deficiency. Using this as motivation, we note that the ambiguity and deficiency of a function are invariant parameters
under some other transformations. For example, adding a fixed element or applying an automorphism of G to the
left or right of F , does not affect these two measures for permutations on G [24]. We extend this to common
equivalence classes of cryptographic functions.

Definition 1: A function L : G1 → G2 is linear if L(x + y) = L(x) + L(y) for all x, y ∈ G1. A function
K : G1 → G2 is affine if K(x+ y) = K(x) +K(y) + c for a fixed constant c ∈ G2 and every x, y ∈ G1.

In the classical definition of EA-equivalence, G1 = G2 = (F2e ,+). While this is the most common practical case,
our scope is more general and so we relax the restrictions on the domain and codomain.

Definition 2: Let G1 and G2 be arbitrary groups. Two functions F1 and F2 : G1 → G2 are extended affine
equivalent (EA-equivalent), denoted F1

EA∼ F2, if there exist affine permutations K1 : G2 → G2,K2 : G1 → G1 and
an affine function K3 : G1 → G2 such that

F2 = K1 ◦ F1 ◦K2 +K3.

If K3 = 0, then F1 and F2 are affine equivalent.
The nomenclature is well-defined: EA-equivalence is an equivalence relation on functions. EA-invariance of

ambiguity and deficiency was shown in [24]. We present another standard definition of equivalence, introduced
in [6]. As in EA-equivalence, we extend the usual definition to arbitrary groups. First, we introduce some necessary
notation. Let G1 and G2 be arbitrary groups. If F : G1 → G2 be a function, then the graph of F is defined as

GF = {(x, F (x)) : x ∈ G1} ⊆ G1 × G2.

Definition 3: The relation CCZ∼ defined on the set of functions G1 → G2 such that F1
CCZ∼ F2 if and only if

K(GF1
) = GF2

for some affine permutation K : G1 × G2 → G1 × G2 is an equivalence relation. Functions in the same equivalence
class are said to be Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent).

It is easy to see that EA-equivalence implies CCZ-equivalence. In other words, if two functions are EA-equivalent,
then they are CCZ-equivalent. Ambiguity and deficiency are shown to be EA-invariant parameters in [24]. Since
CCZ-equivalence classes are larger than EA-equivalence classes, showing CCZ-invariance of these parameters is a
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stronger result. We note that the proof is similar to that of the APN case, indeed the proof that the APN property
is preserved also shows that differential uniformity is preserved. For these reasons, we do not include the proof of
the following theorem.

Theorem 2: The differential spectrum of functions is invariant (up to permutation) under CCZ-equivalence.
Corollary 2: Let F : G1 → G2

CCZ∼ F ′ : G1 → G2. The properties of PN, APN, ambiguity and deficiency are all
invariant between F and F ′.

B. Results on differentially k-uniform functions

We give next our second result of this section: upper and lower bounds for the ambiguity and deficiency of
differentially k-uniform functions.

Theorem 3: Let F : G → G be a function with differential uniformity k. Suppose further that |G| = n = rk+ s,
for some r, s with 0 ≤ s < n. Then the ambiguity of F satisfies(

k

2

)
≤ A(F ) ≤ (n− 1)

(
r

(
k

2

)
+

(
s

2

))
,

and the deficiency of F satisfies
k − 1 ≤ D(F ) ≤ (n− 1) (n− r + δs) ,

where δs = 0 if s = 0 and δs = 1 otherwise.
Proof: Let F : G → G be a function having differential uniformity k. Thus, ∆F,a(x) = b has at most k solutions

for all (a, b) ∈ (G∗,G). As in the hypothesis, suppose |G| = n = rk + s for some r, s with 0 ≤ s < n.
For the lower bound, suppose ∆F,a(x) = b has k solutions for a single pair (a, b), and has either a unique

solution or no solution for all other pairs (a′, b′) 6= (a, b). Contributions to the ambiguity come only from the pair
(a, b). The lower bound on the deficiency occurs in the same scenario. In this case, |∆F,a(G)| = n − k + 1 and
∆F,a′(G) = G for a′ 6= a.

The upper bound is attained when ∆F,a(x) = b has either k solutions or no solution for all pairs (a, b).
Additionally, if k does not divide n, the maximum ambiguity and the maximum deficiency are both attained
when, for each a, the images of the remaining s elements of ∆F,a coincide.

C. Connections to non-linearity

The resistance of an S-box to linear cryptanalysis can be measured by the non-linearity of the function used in
that S-box, with highly non-linear functions preferred. We present the notions in full generality and later restrict
the definitions to the particular cases in which we use them. The general form of the non-linearity of a mapping
between any two finite groups was introduced in [13].

Let (G,+) be a finite Abelian group. The Fourier transform of any complex-valued function Φ on G is given by

Φ̂(χ) =
∑
x∈G

Φ(x)χ(x),

where χ is a character of G. Since the group of characters of G, denoted by Ĝ, is isomorphic to G itself, denote
χα to be the image of α under an arbitrary but fixed isomorphism of G to Ĝ. Then we write

Φ̂(α) =
∑
x∈G

Φ(x)χα(x).

We can therefore consider Φ̂ to be defined on the group G.
If F is a function between finite Abelian groups G1 and G2, then identifying ψβ as the image of β ∈ G2 under

any isomorphism from G2 → Ĝ2, we define the Fourier transform of F at α ∈ G1 and β ∈ G2 by

F̂ (α, β) =
∑
x∈G1

(ψβ ◦ F )(x)χα(x),

for all x ∈ G1.
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Definition 4: If F : G1 → G2, the linearity of F is given by

L(F ) = max
α∈G1,β∈G∗2

|F̂ (α, β)|.

The non-linearity of a function is finally given by the following normalized measure.
Definition 5: Let G1, G2 be finite Abelian groups, and F : G1 → G2. The non-linearity of F is given by

NL(F ) =
|G1| − L(F )

|G2|
.

The non-linearity of F is 0 if and only if F is an affine function. In the remainder of this section, we derive a
lower-bound on the non-linearity of a bijective function which achieves the minimum ambiguity and deficiency
over the additive group of a finite field (of both odd and even characteristic) and over a finite cyclic group. We
recall that such a permutation function is APN.

1) The additive group of a finite field: In what follows, we assume G1 = G2 = (Fq,+), for some prime power
q. Lower-bounds on the optimum ambiguity and deficiency of F in terms of its domain and codomain are given
in Theorem 1. We note that when q is even, functions which meet the bound in Theorem 1 are precisely the APN
functions [24]. We give bounds on the non-linearity of F depending on whether q is odd or even.

Let λF (a, b) =
∑

x∈G1 χ(aF (x) + bx), where χ is an additive character G1 → C, that is λF (a, b) = F̂ (b, a).
Thus,

|λF (a, b)|2 =
∑
x∈G1

χ(aF (x) + bx)
∑
y∈G1

χ(aF (y) + by)

=
∑
x∈G1

χ (aF (x) + bx)
∑
y∈G1

χ (−aF (y)− by)

=
∑
x,y∈G1

χ (a(F (x)− F (y)) + b(x− y)) ,

and letting z = x− y, we get

|λF (a, b)|2 =

∣∣∣∣∣∣
∑
z,y∈G1

χ (a(F (y + z)− F (y)) + bz)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
z∈G1

χ(bz)
∑
y∈G1

χ(a∆F,z(y))

∣∣∣∣∣∣
=

∣∣∣∣∣∣n+
∑

z∈G1,z 6=0

χ(bz)
∑
y∈G1

χ(a∆F,z(y))

∣∣∣∣∣∣ . (1)

Since F is a permutation, for any z ∈ G1, z 6= 0 we have ∆F,z(y) = F (y+z)−F (y) 6= 0. Thus, by the Pigeon-Hole
Principle, there is a repeated image of ∆F,z , call this image r̃0,z := r0,z/a.

a) Odd characteristic: Since F has optimum deficiency, for each z ∈ G1, z 6= 0, there is exactly one c ∈
G1\{0} such that ∆F,z(x) = c has no solution. Thus, by the Pigeon-Hole Principle there is one omitted value of

∆F,z , call this õz := oz/a and a corresponding repeated image of ∆F,z denoted r̃z := rz/a.
We must separate the case b = 0. If b = 0, then with z 6= 0 we have

|λ(a, 0)|2 =

∣∣∣∣∣∣n+
∑

z 6=0,y∈G1

χ(a∆F,z(y))

∣∣∣∣∣∣ .
We know that

∑
x∈G1 χ(x) = 0 and for each z 6= 0 we have that the image multiset of ∆F,z is given by ∆F,z(G1) =

G1\{0, õz} ∪ {r̃0,z, r̃z}. We note that r̃0,z 6= r̃z due to the minimality condition on the ambiguity. Thus,∑
y∈G1

χ(a∆F,z(y)) = 0− χ(0)− χ(oz) + χ(r0,z) + χ(rz)
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and |λ(a, 0)|2 ≤ n+ 4(n− 1) = 5n− 4.
If b 6= 0, a similar derivation gives

|λ(a, b)|2 =

∣∣∣∣∣∣n+
∑

z∈G1,z 6=0

χ(bz) (0− χ(0)− χ(oz) + χ(r0,z) + χ(rz))

∣∣∣∣∣∣
=

∣∣∣∣∣∣n−
∑

z∈G1,z 6=0

χ(bz)−
∑

z∈G1,z 6=0

χ(bz + oz) +
∑

z∈G1,z 6=0

χ(bz + r0,z) +
∑

z∈G1,z 6=0

χ(bz + rz)

∣∣∣∣∣∣
≤ n+ 4.

Hence we have the following theorem.
Theorem 4: Let G = (Fq,+) with q odd and let F be a permutation of G with optimum ambiguity and deficiency.

The non-linearity of F satisfies

NL(F ) ≥ q −
√

5q − 4

q
.

b) Even characteristic: When q is even, (Fq,+) is a 2-group, so the number of order 2 elements is q − 1.
Thus, we fit in the third case of Theorem 1. We note that functions which achieve the lower-bound of Theorem 1
are APN functions, that is ∆F,a is 2-to-1 for all a ∈ F∗q .

The balanced property of APN functions is somehow the worst possible for the analysis and the Fourier transform
does not simplify beyond Equation (1); the multiset {a∆F,z(G)} contains n/2 elements, each repeated twice. Thus,

|λ(a, b)|2 ≤

∣∣∣∣∣∣n+ 2
∑

z,y∈G1,z 6=0

χ(y1,z) + χ(y2,z) + · · ·+ χ(yn/2,z)

∣∣∣∣∣∣ ≤ n.
The bound on the linearity in this case using the coarse bounding of the triangle inequality is equal to the highest

possible from Parseval’s identity. We note that expanding the sum across all z has potential to vastly improve this
bound: if the ∆f,z(y) are evenly distributed across all z 6= 0 and all y, then |λ(a, b)| =

√
n, which is the smallest

allowable by Parseval’s identity.
Indeed, there is only one known APN permutation on finite fields of order 2e for even e. Its polynomial form

is complicated and so we refer the reader to [4]. Using SAGE [29], we calculate the non-linearity of this APN
permutation to be 3/4, hence the linearity of the APN permutation is 2d

n+1

2
e.

2) Finite cyclic groups: In what follows, suppose G1 = G2 is the finite cyclic group of order n (isomorphic to
Zn). The characters of G1 are given by ψj : G1 → C with ψj(g

k) = e2πijk/n, where g is a generator of G1 and
i =
√
−1. In particular, every character is a power of ψ1.

Let α ∈ G1 and let β ∈ G∗1 (written multiplicatively so that β 6= 1). We have F̂ (α, β) =
∑

x∈G1 (φβ ◦ F ) (x)χα(x),
where χα and φβ are the characters obtained by some injection G1 → C. We note that χ1 is the trivial character
(in what follows, we think of α′ = 0) and for α 6= 1, we set χα = ψα

′

1 and φβ = ψβ
′

1 . Then

F̂ (α, β) =
∑
x∈G1

(
ψβ
′

1 ◦ F
)

(x)ψα
′

1 (x)

=
∑
x∈G1

exp(2πiβ′ logg(F (x))/n) exp(2πiα′ logg(x)/n)

=
∑
x∈G1

exp
(
2πi/n

(
β′ logg(F (x)) + α′ logg(x)

))
=
∑
x∈G1

exp
(

2πi/n
(

logg(F (x)β
′
xα
′
)
))

=
∑
x∈G1

ψ1

(
F (x)β

′
xα
′
)
.
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Thus,

|F̂ (α, β)|2 =

∣∣∣∣∣∣
∑
x∈G1

ψ1

(
F (x)β

′
xα
′
) ∑
y∈G1

ψ1 (F (y)β′yα′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
x,y∈G1

ψ1

((
F (x)

F (y)

)β′ (x
y

)α′)∣∣∣∣∣∣ .
Set z = x/y to obtain

|F̂ (α, β)|2 =

∣∣∣∣∣∣
∑
y,z∈G1

ψ1

((
F (zy)

F (y)

)β′
zα
′

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y,z∈G1

ψ1

(
∆F,z(y)β

′
zα
′
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
z∈G1

ψ1

(
zα
′
) ∑
y∈G1

ψ1

(
∆F,z(y)β

′
)∣∣∣∣∣∣ .

We remark that if z = 1, logg(z) = logg(∆F,z) = 0 and so the sum splits as

|F̂ (α, β)|2 ≤ n+

∣∣∣∣∣∣
∑

z∈G1,z 6=1

ψ1

(
zα
′
) ∑
y∈G1

ψ1

(
∆F,z(y)β

′
)∣∣∣∣∣∣ . (2)

In a group of order n ≡ 0 (mod 2), there is only one element of order 2 (isomorphic to n/2 in Zn), and so we
need consider only the first two cases of Theorem 1.

a) n ≡ 1 (mod 2): Identical to the odd characteristic case ((Case a) above), the image multiset of ∆F,z , for
each z 6= 1, is given by G1 \ {1, oz} ∪ {r0,z, rz}. We note that r0,z 6= rz due to the minimality condition on the
ambiguity.

We recall that α = 1 maps to the trivial character (equivalently, consider α′ = 0), so that ψ1(z
α′) = 1 for all z.

Therefore, for any z 6= 1 we have that∑
y∈G1

ψ1(∆F,z(y)β
′
) = (0− ψ1(1)− ψβ′ (oz) + ψβ′ (r0,z) + ψβ′ (rz))

and so Equation (2) gives |F̂ (1, β)|2 ≤ 5n− 4.

If α 6= 1, the precise value of |F̂ (α, β)|2 depends on the number of values that zα
′

takes over the finite cyclic
group of order n. It is easy to see that the number of images is n/ gcd(n, α′)− 1. We note that in the worst case,
this cannot exceed n− 1. Thus, Equation (2) gives |F̂ (α, β)|2 ≤ 5n− 4, as in the α = 1 case.

b) n ≡ 0 (mod 2) and ι1 = ι2 = 1: The difference in the derivation when n ≡ 0 (mod 2) is only in the row
corresponding to the order-2 element γ. For the z = γ row, the row-deficiency is 1 and the image multiset of ∆F,γ

is G1 \ {1} ∪ {r}, where r is some repeated value. Every other row appears exactly as in the n ≡ 1 (mod 2) case.
The case where α = 1 and when α 6= 1 provide identical upper-bounds by the same reasoning as the n ≡ 1

(mod 2) case. So consider α = 1. Equation (2) becomes

|F̂ (1, β)|2 ≤ n+

∣∣∣∣∣∣
∑
y∈G1

ψ1

(
∆F,γ(y)β

′
)∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
∑
z∈G1

z 6=1,z 6=γ

∑
y∈G1

ψ1

(
∆F,z(y)β

′
)∣∣∣∣∣∣∣∣

≤ 5n− 6.
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TABLE II
THE LOWER-BOUNDS ON THE NON-LINEARITY OF OPTIMUM FUNCTIONS IN TERMS OF AMBIGUITY AND DEFICIENCY.

G Property Non-linearity lower-bound

(Fq,+)
char(Fq) = 2 (q −

√
(q2 + q)/2)/q

char(Fq) = p 6= 2 (q −
√
5q − 4)/q

(Zn, ·)
n odd (n−

√
5n− 4)/n

n even (n−
√
5n− 6)/n

Theorem 5: Let G be a finite cyclic group of order n and let F be a permutation of G with optimum ambiguity
and deficiency. The non-linearity of F satisfies

NL(F ) ≥

{
n−
√
5n−4
n if n is odd,

n−
√
5n−6
n if n is even.

APN permutations over Zn are considered in [12] and their non-linearity is studied in [13]. A consequence of
Parseval’s identity gives that the linearity of an APN permutation F on Zn satisfies

√
n ≤ L(F ) ≤ n. In [13], the

authors show that the linearity of their APN permutations over Zp appears to be asymptotically 2p0.55. In particular,
the APN permutation used in the SAFER cryptosystem for p = 257 has linearity 42.484. Our upper-bound on the
linearity for the case of permutations with optimal ambiguity and deficiency for this parameter is ≈ 35.791. We
conclude that permutations with optimal ambiguity and deficiency are very good candidates for S-box design due
to both their strong linearity properties as well as their resistance to differential attacks.

We summarize the connection of ambiguity and deficiency of this function to its non-linearity in Table II.

IV. AMBIGUITY AND DEFICIENCY OF POLYNOMIALS

In this section we demonstrate different methods of computing the ambiguity and deficiency of polynomials.
In particular we showcase a mix of classical methods, use the invariance of ambiguity and deficiency under EA-
equivalence and we introduce a new method for calculating the ambiguity and deficiency of Dembowski-Ostrom
polynomials based on analyzing matrices of a specific shape.

A. Specific permutations over finite fields

A permutation function over Fq is a bijective function F which maps the elements of Fq onto itself. Let Tr :
Fqr → Fq be the trace function, where Tr(α) =

∑r−1
j=0 α

qj for any α ∈ Fqr and positive integer r.
In the following, we review some well-known polynomials over the finite field Fq. In this work we are interested

in calculating ambiguity and deficiency of these functions in some specific cases of the parameters. We require the
following terminology. For any positive integer s and any prime number p, we denote the p-weight of s to be the
number of non-zero terms in its p-ary expansion. For example, the 2-weight of 13 = 8 + 4 + 1 is 3.
• Linearized polynomials [19]: The polynomial L ∈ Fq[x] with

L(x) =

e−1∑
j=0

`jx
pj (3)

is a permutation polynomial over Fq if and only if L has no roots in Fq other than 0.
• Direct constructions of Dembowski-Ostrom (DO) polynomials [11]: A polynomial f ∈ Fq[x] such that

F (x) =

e−1∑
k,j=0

ak,jx
pj+pk , (4)

is called a DO polynomial. Now, we give a list of DO permutation polynomials over Fq.
Theorem 6: [2] Let q = 2e and β be any primitive element of Fq. Let k be any integer and set d = (k, e).
Suppose F ∈ Fq[X] is a DO polynomial satisfying F (x) = xL(x) for some linearized polynomial L. Then
F permutes Fq when any of the following conditions are satisfied:
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1) L(x) = x2
k

where e/d is odd;
2) L(x) = x2

k

+ cx2
e−k

where e/d is odd and c 6= βt(2
d−1) for any integer t;

3) L(x) = x2
2k

+ c2
k+1x2

k

+ cx where e = 3k and c 6= βt(2
d−1) for any integer t.

• DO Permutations based on trace functions [2], [7]:
1) Let q be even and r be odd. Then the polynomial

F (x) = x(Tr(x) + sx), (5)

permutes Fqr for all s ∈ Fq \ {0, 1}.
2) Let 1 ≤ k ≤ e− 1 and 1 ≤ s ≤ 2e − 2. The polynomial F ∈ F2e [x] with

F (x) = x2
k

+ x+ Tr (xs) (6)

is a permutation polynomial over F2e if and only if
a) e is odd,
b) gcd(k, e) = 1
c) s has 2-weight 1 or 2.

3) Let d ≥ 1 and t ≤ 2e − 2. The polynomial F ∈ F2e [x] defined as

F (x) = xd + Tr
(
xt
)

(7)

is a permutation polynomial over F2e if and only if
a) e is even,
b) gcd(d, 2e − 1) = 1
c) t ≡ s · d (mod 2e − 1) for some 1 ≤ s ≤ 2e − 2, s has 2-weight 1 or 2.

We now compute the ambiguity and deficiency of members of the classes of permutation polynomials given
above.

B. Linearized polynomials

The ambiguity and deficiency of linearized polynomials is treated next.
Lemma 1: Let L(x) =

∑e−1
j=0 `jx

pj be a linearized polynomial over Fq, q = pe. Then D(L) = (q − 1)2 and
A(L) = (q − 1)

(
q
2

)
.

Proof: Let us consider ∆L,a for an arbitrary a ∈ F∗q :

∆L,a(x) = L(x+ a)− L(x) =

e−1∑
j=0

`j(x+ a)p
j −

e−1∑
j=0

`jx
pj

=

e−1∑
j=0

`j

(
xp

j

+ ap
j
)
−

e−1∑
j=0

`jx
pj =

e−1∑
j=0

`ja
pj .

Thus, ∆L,a is a constant function for every a ∈ F∗q . In other words, for every a ∈ F∗q there exists a unique
b =

∑e−1
j=0 `ja

pj such that ∆L,a(x) = b has exactly q solutions and there are q − 1 choices for b′ ∈ Fq, where
∆L,a(x) = b′ has no solution. Since there are q− 1 elements like a in Fq, n0 = D(L) = (q− 1)2 and nq = q− 1.
Hence we get A(L) = nq

(
q
2

)
= (q − 1)

(
q
2

)
.

C. DO polynomials

In this section we compute the ambiguity and deficiency of some known DO permutation polynomials. The
authors of [10] characterize DO polynomials as those (reduced) polynomials whose discrete difference polynomials
are linearized. More specifically, they give the following equivalence on DO polynomials.

Theorem 7: [10] Let F ∈ Fq[X] with deg(F ) < q. Then the following conditions are equivalent:
1) F = D + L+ c where D is a DO polynomial, L is a linearized polynomial and c ∈ Fq is a constant;
2) for each a ∈ F∗q , ∆F,a = La + ca where La is a linearized polynomial and ca ∈ Fq is a constant (both

depending on a).
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This key fact on the relation between linearized polynomials and DO polynomials helps us to compute the
ambiguity and deficiency of some DO permutation polynomials. Let F be a polynomial defined over a ring R. The
value set of F is given by VF = {F (x) : x ∈ R}. The ambiguity and deficiency of a polynomial depend on the
multiset of the images of ∆F,a and the size of the value set of ∆F,a. When F is a DO polynomial, the values of
the ambiguity and deficiency depend only on the value sets of the linearized polynomial La.

Theorem 8: [19, Page 362] For any linearized polynomial L(x) =
∑r−1

j=0 `jx
qj ∈ Fqr , denote by L the matrix

`0 `qr−1 · · · `q
r−1

1

`1 `q0 · · · `q
r−1

2
...

...
...

`r−1 `qr−2 · · · `q
r−1

0

 . (8)

Then L is a permutation polynomial over Fqr if and only if det(L) 6= 0.
The same matrix in Equation (8) also provides the cardinality of the value set of L.

Corollary 3: [8], [14] Let L(x) =
∑r−1

j=0 `jx
qj ∈ Fqr [x] be a linearized polynomial and let L be the matrix in

Equation (8). Then the value set of L, VL, satisfies |VL| = qrk(L), where rk(L) denotes the rank of the matrix L,
and the number of preimages of each image is given by qr−rk(L).

Theorem 9: Let F be a DO polynomial and let ∆F,a = La+ ca, for any a ∈ F∗qr , as in Theorem 7. Furthermore,
let La be the matrix corresponding to La given in Equation (8). The ambiguity and deficiency of F are respectively
given by

A(F ) =
∑
a∈F∗qr

qrk(La)

(
qr−rk(La)

2

)
,

D(F ) =
∑
a∈F∗qr

(
qr − qrk(La)

)
.

Proof: Since La is a linearized polynomial, we have |VLa
| = qrk(La) and every b ∈ VLa

contains the same
number of preimages, qr−rk(La). The calculation of A(F ) and D(F ) are immediate from the definition.

We now present the ambiguity and deficiency of DO permutation polynomials coming from Theorem 6.
Theorem 10: Let k be any integer and set d = (k, e). Suppose F ∈ F2e [x] is a DO polynomial satisfying

F (x) = xL(x) = x2
k+1. Then D(F ) = (2e − 1)(2e − 2e−d) and A(F ) = (2e − 1) (2e−d)

(
2d

2

)
.

If d = 1, then F is the APN Gold function over F2e which has optimal ambiguity and deficiency [24]. The proof
of this result appears in [25] using basic techniques and can also be derived using Theorem 9. We illustrate our
new method, which involves analyzing the ranks of various forms of matrices, with the following theorem.

Theorem 11: Let β be any primitive element of F2e . Let either e = 3k or 2e = 3k with d = gcd(e, k) = e/3.
Also, let F (x) = xL(x) ∈ F2e [x] be the DO permutation polynomial, where L(x) = x2

k

+ cx2
e−k

and c 6= βt(2
d−1)

for any integer t. Then, the deficiency of f is

D(F ) = 2e (2e − 1)− (2e − 1) 22d,

and the ambiguity of f is

A(F ) = (2e − 1) 22d
(

2e−2d

2

)
.

Proof: Assume that 2e = 3k, as the proof when e = 3k is analogous. Suppose F is given as in the hypothesis,
then

∆F,a(x) = (x+ a)
(

(x+ a)2
k

+ c(x+ a)2
e−k
)
− x

(
x2

k

+ cx2
e−k
)

= ax2
k

+ cax2
e−k

+
(
a2

k

+ ca2
e−k
)
x+ ca,
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where ca ∈ F2e . Let La = ∆f,a− ca and let d = gcd(e, k). Since 2e = 3k, we have d = e−k, e = 3d and k = 2d.
The e× e matrix La in Equation (8) can be broken into diagonal blocks of size d× d, where the j-th entry along
the diagonal is given in the following expression and every other entry is equal to 0

Lj =


(
a2

k

+ ca2
e−k
)2j

a2
(e−k)+j

(ca)2
k+j

(ca)2
j

(
a2

k

+ ca2
e−k
)2(e−k)+j

a2
k+j

a2
j

(ca)2
(e−k)+j

(
a2

k

+ ca2
e−k
)2k+j

 , j = 0, 1, . . . , e− k − 1.

We substitute d = e− k and 2d = k for clarity and perform the following row operations to La:

1. Rowj ← Rowj +

(
a2

2d

+ ca2
d

a

)2j

Row2d+j , j = 0, 1, . . . , d− 1;

2. Rowd+j ← Rowd+j + c2
j

Row2d+j , j = 0, 1, . . . , d− 1,
to get a new block matrix of the form

Lj ∼


0 Φj Φ22d

j

0 a2j

a2d+j Φj
a2j

a2d+j Φ22d

j

a2
j

(ca)2
d+j

(
a2

2d

+ ca2
d
)22d+j

 ,
where

Φj =

a2d

+

(
a2

2d

+ ca2
d
)
c2

d

a2
d

a

2j

.

It is clear that rk(Lj) ≤ 2 and thus rk(La) ≤ 2d. To show equality, we determine that Φj 6= 0 for any j,
0 ≤ j ≤ d− 1 and for any a ∈ F2e .

Suppose that Φ0 = 0, then re-arranging gives

a = c2
d

a2
2d

+ c2
d+1a2

d

. (9)

Raise to the power of 22d and multiply by c2
d

to obtain

c2
d

a2
2d

= c2
d+1
(
a2

d

+ c2
2d

a
)
.

Substituting for the left-hand side using Equation (9) gives

a+ c2
d+1a2

d

= c2
d+1a2

d

+ c2
2d+2d+1a,

thus
1 = c2

2d+2d+1 = c(2
3d−1)/(2d−1),

contradicting that c 6= βt(2
d−1) for a primitive element β.

A different proof, suggested by an anonymous referee, can be provided using the following equations x2
k+1 + cx2

e−k+1 = x2
k+1 + cx2

2k+1 =
(
x+ cx2

2k
)
◦ x2k+1 e = 3k,

x2
k+1 + cx2

e−k+1 = x2
k+1 + cx2

k/2+1 =
(
x2

k

+ cx
)
◦ x2k/2+1 e = 3k/2.

(10)

The polynomial x + cx2
2k

has no non-zero roots, since x + cx22k = x(1 + cx2
2k−1) and if β 6= 0 is a root,

c = β−(2
2k−1), contradicting the condition on c. A similar argument can be applied to x2

k

+cx. Thus, both of these
polynomials are permutation polynomials. Therefore, x2

k+1 + cx2
e−k+1 and x2

k+1 + cx2
e−k+1 are EA-equivalent to

x2
k+1 and x2

k/2+1, respectively. Since ambiguity and deficiency are EA-invariant parameters, their ambiguity and
deficiency are the same as the DO polynomials given in Theorem 10 with the further constraint 3d = e.
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Theorem 12: Let β be any primitive element of F2e and let F (x) = xL(x) be the DO permutation polynomial
over F2e where L(x) = x2

2k

+ c2
k+1x2

k

+ cx for which e = 3k and c 6= βt(2
d−1) for any integer t. Then the

deficiency of F is
D(F ) = 2e (2e − 1)− (2e − 1) 22k

and the ambiguity of F is

A(F ) = (2e − 1) 22k
(

2k

2

)
.

Proof: For e = 3k, the polynomial F (x) = x2
2k+1+c2

k+1x2
k+1+cx2 is EA-equivalent to x2

2k+1+c2
k+1x2

k+1,
and x2

2k+1+c2
k+1x2

k+1 is also EA-equivalent to the first polynomial in Equation (10). The rest of the proof follows
from Theorem 10 and the EA-invariance of ambiguity and deficiency.

D. DO permutations based on traces

First, we use the matrix method of Theorem 9 to give the ambiguity and deficiency of the DO permutation
polynomial coming from a trace function given in Equation (5).

Theorem 13: Let s ∈ Fq \ {0, 1} and F (x) = x(Tr(x) + sx) be the DO permutation polynomial over Fqr for
even q and odd r. Then the deficiency of F is

D(F ) = qr(qr − 1)− (qr − qr−1)qr−1 − (qr − q)

and the ambiguity of F is

A(F ) =
(
qr − qr−1

)
qr−1

(
q

2

)
+ (qr − q)

(
qr−1

2

)
.

Proof: Let us consider ∆F,a(x) for a ∈ F∗qr ; we have

∆F,a(x) = (x+ a)(Tr(x+ a) + s(x+ a))− x(Tr(x) + sx)

= xTr(a) + aTr(x) + aTr(a) + sa2.

The corresponding matrix La as in Equation (8) is

La =


a+ Tr(a) aq aq

2 · · · aq
r−1

a (a+ Tr(a))q aq
2 · · · aq

r−1

...
...

...
. . .

...
a aq aq

2 · · · (a+ Tr(a))q
r−1

 .
If Tr(a) = 0, then rk(La) = 1. Let us suppose that Tr(a) 6= 0, then the following elementary row operations
1. Rowj ← Rowj − Row1, j = 2, . . . , r;
2. Column1 ← Column1 − Columnj , j = 2, . . . , r,
reduce La to

L′a =


0 aq aq

2 · · · aq
r−1

0 Tr (aq) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · Tr
(
aq

r−1
)
 ,

where we have used the identities Tr (a) = Tr (aq) = Tr(a)q. Thus we have rk (L′a) = r− 1. Theorem 9, with the
observation that there are both qr−1 trace-0 and qr−1 trace-1 elements, completes the proof.

Theorem 13 illustrates the power of the matrix method of Theorem 9 when the difference map is a linearized
polynomial with high weight, in contrast to the previously considered low-weight DO binomial (Gold polynomial)
and trinomials. Now, we treat the permutation polynomials based on traces introduced in Equations (6) and (7),
see also [7], using a classical method due to the more complicated expression of their difference maps.
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Theorem 14: Let 1 ≤ k ≤ e− 1 and 1 ≤ s ≤ 2e − 2. Let F (x) = x2
k

+ x+ Tr (xs) ∈ F2e [x], where e is odd,
gcd(k, e) = 1 and s has 2-weight 1 or 2. If s has 2-weight 1, then the ambiguity and deficiency are respectively
given by

A(F ) = (2e − 1)

(
2e

2

)
,

D(F ) = 2e (2e − 1)− (2e − 1) = (2e − 1)2.

If s has 2-weight 2, then the ambiguity and deficiency are respectively given by

A(F ) =
(
2e+1 − 22

)(2e−1

2

)
+

(
2e

2

)
D(F ) = 2e (2e − 1)−

(
2e+1 − 22

)
− 1.

Proof: If s has 2-weight 1, then f is linearized and the result follows from Lemma 1. Suppose now that s has
2-weight 2, that is s = 2w + 2j for some 0 ≤ w < j. Then,

∆F,a(x) = a2
k

+ a+ Tr
(

(x+ a)2
w+2j

)
+ Tr

(
x2

w+2j
)

= a2
k

+ a+ Tr
(
x2

w

a2
j

+ a2
w

x2
j

+ a2
w+2j

)
.

Since e is odd, Tr(1) = 1 and it follows that (a, b) = (1, 1) is the only pair with exactly 2e solutions for ∆F,a(x) = b.
There are 2e−1 elements x2

w

a2
j

+ a2
w

x2
j

+ a2
w+2j

satisfying

Tr
(
x2

w

a2
j

+ a2
w

x2
j

+ a2
w+2j

)
= t0 ∈ F2,

so we only need to enumerate the number of pairs

(a, b) = (a, a2
k

+ a+ t0)

such that a ∈ F2e \ {0, 1}. It is simple to see that the number of pairs is 2(2e − 2). This completes the proof.
We note that the linearized portion of Equation (6) (i.e., x2

k

+ x = F (x)− Tr(xs)) does not affect the ambiguity
or deficiency of F , since its difference map is constant. Thus, the ambiguity and deficiency of F would remain
unchanged by replacing x2

k

+x with any linearized polynomial. However, such a change may affect the permutation
properties of F .

The polynomial given in Equation (7) can be decomposed as F (x) = (x + Tr(xs)) ◦ xd, where the monomial
xd defines a permutation polynomial. Since ambiguity and deficiency are invariant under EA-equivalence, we treat
here the initial case d = 1.

Theorem 15: Let F (x) = x+ Tr(xs) ∈ F2e [x], where e is even and s has 2-weight 1 or 2. The ambiguity and
deficiency of F are respectively given by

A(F ) = (2e − 1)

(
2e

2

)
,

D(F ) = (2e − 1)2,

when s has 2-weight 1 and

A(F ) =
(
2e+1 − 23

)(2e−1

2

)
+ 3

(
2e

2

)
,

D(F ) = 2e (2e − 1)−
(
2e+1 − 23

)
− 3,

when s has 2-weight 2.
Proof: If s has weight 1, then F is linearized and the result follows from Lemma 1. Suppose now that s has

2-weight 2, that is s = 2w + 2j for some 0 ≤ w < j. Then,

∆F,a(x) = a+ Tr
(

(x+ a)2
w+2j

)
+ Tr

(
x2

w+2j
)

= a+ Tr
(
x2

w

a2
j

+ a2
w

x2
j

+ a2
w+2j

)
.
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Since e is even, Tr(1) = 0 and F4 ⊆ F2e . We claim the only pairs (a, b) with exactly 2e solutions for ∆F,a(x) = b
satisfy that a ∈ F∗4. Let β be the primitive element of F2e and F∗4 = {1, η, η+1} with η = β(2

e−1)/3. For a non-unit
a ∈ F∗4, it is clear that a2

k

= a when k is even and a2
k

= a + 1 otherwise. For every a ∈ F∗4, if the parity of w
and j is the same, then

Tr
(
x2

w

a2
j

+ a2
w

x2
j

+ a2
w+2j

)
= Tr

(
x2

w

a2
w

+ a2
j

x2
j

+ a2
w+1
)

= Tr (xa)2
w

+ Tr (xa)2
j

+ Tr
(
a2

w+1
)

= Tr(a).

On the other hand, without loss of generality we can assume that w is even and j is odd and we have

Tr
(
x2

w

a2
j

+ a2
w

x2
j

+ a2
w+2j

)
= Tr

(
x2

w

a+ (a+ 1)x2
j

+ a(a+ 1)
)

= Tr
(
x2a2

)2w−1

+ Tr
(
x2a2

)2j−1

+ Tr (1)

= 0.

It is clear that there are 2e−1 elements satisfying

Tr
(
x2

w

a2
j

+ a2
w

x2
j

+ a2
w+2j

)
= t0,

for each choice of t0 ∈ F2. So the number of pairs with

(a, b) = (a, a+ t0)

such that a ∈ F2e \ {0, 1} is of interest. A simple enumeration implies that the number of pairs is 2(2e − 4). This
completes the proof.

V. CONCLUDING REMARKS AND FURTHER WORK

In this work, we establish the CCZ-invariance of the ambiguity and deficiency parameters. We give an upper and
a lower bound on the ambiguity and deficiency of differentially k-uniform functions, showing that ambiguity and
deficiency are finer measures than differential uniformity. We give a lower-bound on the non-linearity of permutations
which achieve optimal ambiguity and deficiency. For functions over finite cyclic groups and the additive group of
a finite field of odd cardinality, we show that these permutations approach optimal non-linearity. We also study and
derive explicit values of the ambiguity and deficiency of some permutation polynomials over finite fields including
linearized polynomials, DO polynomials, including three specific DO permutations, and two polynomials based on
the trace function.

For future work on the ambiguity and deficiency of permutations, we plan to study the ambiguity and deficiency
of (reversed) Dickson Polynomials [15], [16] as well as Rédei functions [28].

Acknowledgments: We would like to thank two anonymous reviewers for their insightful comments and suggestions
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