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Abstract

A (d, n, r, t)-hypercube is an n×n×· · ·×n (d-times) array on nr symbols such that
when fixing t coordinates of the hypercube (and running across the remaining d − t
coordinates) each symbol is repeated nd−r−t times. We introduce a new parameter,
r, representing the class of the hypercube. When r = 1, this provides the usual
definition of a hypercube and when d = 2 and r = t = 1 these hypercubes are Latin
squares. If d ≥ 2r, then the notion of orthogonality is also inherited from the usual
definition of hypercubes. This work deals with constructions of class r hypercubes and
presents bounds on the number of mutually orthogonal class r hypercubes. We also
give constructions of sets of mutually orthogonal hypercubes when n is a prime power.

1 Introduction

Before defining and studying sets of orthogonal hypercubes of class r, we briefly review some
standard definitions and notions involving sets of orthogonal hypercubes without specified
class number. Under the later terminology, the standard definition of hypercube corresponds
to hypercubes of class 1.

Definition 1.1. Let d, n, t be integers, with d > 0 and n > 0. A (d, n, t)-hypercube of
dimension d, order n and type t is an n× n× · · · × n (d times) array on n distinct symbols
such that in every co-dimension-t-subarray (that is, fix t coordinates of the array and allow
the remaining d− t coordinates to vary) each of the n symbols appears exactly nd−(t+1) times.

Moreover, two such hypercubes are said to be orthogonal if when superimposed each of
the n2 possible distinct pairs occurs exactly nd−2 times.

Finally, a set H of such hypercubes is mutually orthogonal if any two distinct hypercubes
in H are orthogonal.

∗The final three authors are supported in part by NSERC of Canada.
MSC (2010) Classification Number: 05B15.
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We use the term co-dimension-t-subarray (or simply t-subarray) to emphasize that t
coordinates are fixed and that the remaining d− t coordinates vary. In the case of a square
(which of course has dimension d = 2), a 1-subarray is just a row or column while if d = 3,
a 1-subarray is a plane (containing n2 cells) parallel to two of the coordinate axes while a
2-subarray is a line (containing n cells) parallel to an axis. When d = 2 and t = 1 the
definition of a hypercube reduces to the well studied case of a Latin square.

An upper bound on the maximal number of orthogonal hypercubes with various types
appears in [5, Theorem 3.2]. We note that the maximum number of orthogonal hypercubes
of dimension d, order n and type 1 is upper bounded by (nd−1)/(n−1)−d and when n = q
is a prime power, this bound can be achieved using linear polynomials with coefficients in
the finite field containing q elements.

This paper extends the usual definition of hypercubes by considering the alphabet size to
be a power of the order. We call this power the class of a hypercube. The original definition
of a hypercube corresponds to class 1 hypercubes.

The structure of the paper is as follows. In Section 2 we present the definition of hy-
percubes of class r and give some bounds on the existence of such cubes. We then provide
constructions of such hypercubes based on other combinatorial objects and a finite field con-
struction. In Section 3 we study sets of orthogonal hypercubes when n is a prime power and
when d = 2r. We conclude the paper with some open problems in Section 4.

2 Hypercubes of class r

We examine hypercubes and sets of orthogonal hypercubes in which we increase the number
of symbols beyond the order of the hypercube. More specifically, we consider a type of
hypercube introduced by Kishen [4] where the number of symbols in the hypercube is a
positive integer power of the order of the hypercube. We begin by providing some bounds on
these hypercubes. We also provide a definition of orthogonality for such hypercubes as well
as a method for constructing individual hypercubes and orthogonal sets in certain cases.

Definition 2.1. Let d, n, r, t be integers, with d > 0, n > 0, r > 0 and 0 ≤ t ≤ d − r. A
(d, n, r, t)-hypercube of dimension d, order n, class r and type t is an n × n × · · · × n (d
times) array on nr distinct symbols such that in every co-dimension-t-subarray (that is, fix
t coordinates of the array and allow the remaining d− t coordinates to vary) each of the nr

distinct symbols appears exactly nd−t−r times.
Moreover, if d ≥ 2r, two such hypercubes are said to be orthogonal if when superimposed

each of the n2r possible distinct pairs occurs exactly nd−2r times.
Finally, a set H of such hypercubes is mutually orthogonal if any two distinct hypercubes

in H are orthogonal.

In [4], Kishen used the term “order” rather than class. In this work, we reserve the
term “order” to denote the size of the array and we use the term class in place of Kishen’s
definition of “order”. Figure 1 provides an example of a hypercube of dimension 3, order 3,
class 2 and type 0.
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0 1 2 | 4 5 3 | 8 6 7
3 4 5 | 7 8 6 | 2 0 1
6 7 8 | 1 2 0 | 5 3 4

Figure 1: A hypercube of dimension 3, order 3, class 2 and type 0.

We note that a d-dimensional hypercube of order n and class r = 1 is simply a hypercube
of dimension d and order n, and a d = 2 dimensional hypercube of class r = 1 and type
t = 1 is simply a Latin square of order n. Furthermore, the definition for orthogonality for
class r hypercubes generalizes the standard definition of orthogonality for hypercubes.

2.1 Bounds

While there always exists a hypercube of order n for any dimension d ≥ 2, the following
lemma shows that this is not the case for hypercubes of class r.

Lemma 2.2. Let r ≥ 2. If d > (n − 1)r−1 + r, then there does not exist a (d, n, r, d − r)-
hypercube.

Proof. Suppose we have a d-dimensional hypercube of order n, class r and type d − r.
Consider the symbols which occur in the coordinate axes xr+1, xr+2, . . . , xd, that is, for
j = r + 1, r + 2, . . . , d, the symbols occurring when xi = 0 for all i 6= j and allow xj to vary.
First note that they share a common point at the origin. Now, notice that the remaining n−1
symbols in each of these coordinate axes must be distinct; otherwise any (d − r)-subarray
containing two of these coordinate axes would not contain all nr symbols.

Next, consider any of these coordinate axes, say xr+1, and notice that it is contained in the
r different (d− r)-subarrays with fixed coordinates xi = xr+2 = xr+3 = · · · = xd = 0 for each
i with 1 ≤ i ≤ r. Thus, the symbols in the xr+1 coordinate axis cannot be the same as those
in any of the (d− r + 1)-subarrays with fixed coordinates xi = xr+1 = xr+2 = · · · = xd = 0
for each i with 1 ≤ i ≤ r. Considering the entries in the sub-hypercube with coordinates
not meeting the origin, this leaves (n− 1)r distinct symbols to choose from. We can use the
same argument on each coordinate axis xr+2, xr+3, . . . , xd. Since the n − 1 symbols in each
of these d − r coordinate axes must also be distinct from each other as well, we must have
that (d− r)(n− 1) ≤ (n− 1)r. Hence d ≤ (n− 1)r−1 + r.

We establish a general upper bound on the size of a set of mutually orthogonal hypercubes
as a function of dimension, order, class and type. We begin by setting up a matrix formulation
of hypercubes which is used in the proof of the bound. Let H be a hypercube of dimension
d, order n, type t, and class r. Define a nd × nr matrix

NH = (nx1,x2,...,xd,s),

where

nx1,x2,...,xd,s =

{
1 if symbol s occurs in position H(x1, x2, . . . , xd),

0 otherwise.
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If H1, H2, . . . HN are mutually orthogonal, let

M = (NH1NH2 · · ·HHN
).

We have the following lemma.

Lemma 2.3. Let i, j ∈ {1, 2, . . . , N}. Then

NT
Hi
NHj

=

{
nd−rInr if i = j,

nd−2rJnr if i 6= j,

where It is the t× t identity matrix and Jt = (1)t×t.

The proof is immediate from the definitions of the NH . We now give a bound on the
maximum number of class r hypercubes.

Theorem 2.4. The maximum number of mutually orthogonal hypercubes of dimension d,
order n, type t and class r is bounded above by

1

nr − 1

(
nd − 1−

(
d

1

)
(n− 1)−

(
d

2

)
(n− 1)2 − · · · −

(
d

t

)
(n− 1)t

)
.

Proof. Let H1, H2, . . . HN be mutually orthogonal hypercubes, M = (NH1NH2 · · ·HHN
), and

HHi
, 1 ≤ i ≤ n, as defined above. If all elements but one are known in some co-dimension-k-

subarray (k ≤ t), then the remaining element is determined because all of the hypercubes are
of type t and any co-dimension-k-subarray is a disjoint union of co-dimension-t-subarrays;
thus, each symbol appears precisely nd−k−r times. The position of each such remaining
element corresponds to a row of M .

For any fixed set of k coordinates we consider the position of the Hi determined by
setting the remaining d−k coordinates to n. The element in this position in each hypercube
is determined by the entries in the other positions of the co-dimension-k-subarray and thus
depends on the set of k coordinates chosen and their values. To avoid multiple counting as
we vary the size and selection of k coordinates, we only consider setting the fixed coordinates
to values that are not n. Thus we determine that for any value of k, there are

(
d
k

)
(n − 1)k

rows of M that are dependent on the remaining rows.
Summing over k gives at least

t∑
k=1

(
d

k

)
(n− 1)k

dependent rows. Thus

rank(M) ≤ nd −
t∑

k=1

(
d

k

)
(n− 1)k.
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We have

MTM =


nd−rInr nd−2rJnr · · · nd−2rJnr

nd−2rJnr nd−rInr nd−2rJnr

...
. . .

...
nd−2rJnr · · · nd−rInr

 = nd−2r


nrInr Jnr · · · Jnr

Jnr nrInr Jnr

...
. . .

...
Jnr · · · nrInr

 ,
and from [9] we have that its eigenvalues are Nnd−r, nd−r, 0 with multiplicities 1, N(nr −
1), N − 1 respectively. Thus

N(nr − 1) + 1 = Nnr −N + 1 = rank(MTM) = rank(M) ≤ nd −
t∑

k=1

(
d

k

)
(n− 1)k,

and we have

N ≤ 1

nr − 1

(
nd − 1−

(
d

1

)
(n− 1)−

(
d

2

)
(n− 1)2 − · · · −

(
d

t

)
(n− 1)t

)
.

When r = t = 1 the bound reduces to the well-known result [1, Section IV.22.5] on the
maximum number N of hypercubes: N ≤ (nd − 1)/(n − 1) − d. We have the following
corollary when the hypercube has the largest possible type d− r.

Corollary 2.5. The maximum number of mutually orthogonal hypercubes of dimension d,
order n, type d− r and class r is bounded above by∑d

k=d−r+1

(
d
k

)
(n− 1)k

nr − 1
.

The bound in Theorem 2.4 is nd−r + O(nd−r−1) for any type; the type only affects the
lower-order terms.

2.2 Constructions

We can relate certain classes of hypercubes to other well-known combinatorial objects, such
as orthogonal arrays.

Definition 2.6. [1, Definition III.6.1] An orthogonal array with parameter λ, strength t,
degree k and s levels, denoted OAλ(t, k, s), is a k × N array, with N = λst, with entries
from a set of s ≥ 2 symbols, having the property that in every t×N submatrix, every t× 1
column vector appears λ times.

We show later how to construct hypercubes of order n, dimension d, and class r when
n is a prime power. However if n is not a prime power, the following provides a simple
construction of dimension k, class k − d hypercubes using orthogonality of strength d. We
first give the definition of d-strength orthogonality, following [3].
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Definition 2.7. A set H of hypercubes of dimension d ≥ 2 is mutually strongly d-orthogonal
if, upon superposition of corresponding (d−j)-subarrays (that is, fix any d−j coordinates and
allow the remaining j coordinates to vary) of any j hypercubes in H with 1 ≤ j ≤ min(d, |H|),
each j-tuple appears exactly once. This is equivalent to the existence of an OA1(d, d+ |H|, n).

The following lemma generalizes two constructions, one appearing in [3] and the other
appearing in [8].

Lemma 2.8. If there exists an OA1(d, k, n) then there exists a (k, n, k − d, d)-hypercube.

Proof. Let A be an OA1(d, k, n) with symbols in Zn (any group of size n will do). All indices
of size n are also taken from Zn. We index the rows by the d-tuples of elements from Zn
taken from the first d columns of A, and construct a k-dimensional hypercube, H, of order
n and class k − d,

H((ji)0≤i<d, (cl)0≤l<k−d)

= H(j0, j1, . . . , jd−1, c0, . . . , ck−d−1) = (A((ji)0≤i<d, d+ l) + cl)0≤l<k−d.

We now show that this hypercube has type d. Suppose that d coordinates of H are fixed;
without loss of generality they are ji, 0 ≤ i < m, and cl, 0 ≤ l < d −m, where 0 ≤ m ≤ d
and m ≥ 2d−k. In the subarray defined by these fixed coordinates and permitting all others
to vary, if

H((ji)0≤i<m, (ji)m≤i<d, (cl)0≤l<d−m, (cl)d−m≤l<k−d)

= H((ji)0≤i<m, (j
′
i)m≤i<d, (cl)0≤l<d−m, (c

′
l)d−m≤l<k−d),

then,

A((ji)0≤i<m, (ji)m≤i<d, d+ l) = A((ji)0≤i<m, (j
′
i)m≤i<d, d+ l), 0 ≤ l < d−m, (1)

and

A((ji)0≤i<m, (ji)m≤i<d, d+ l) + cl

= A((ji)0≤i<m, (j
′
i)m≤i<d, d+ l) + c′l, d−m ≤ l < k − d. (2)

When l ranges from 0 to d−m− 1, d+ l varies from d to 2d−m− 1. Hence, Equation (1)
specifies a d-tuple in A in columns 0, . . . ,m−1 and d, . . . , 2d−m−1. A d-tuple in any set of
d columns of A can only appear in precisely one row, and thus ji = j′i for m ≤ i < d. These
equalities permit cancellations in Equation (2) which yield that cl = c′l for d−m ≤ l < k−d.
Thus no symbols repeat in the given subarray.

Orthogonal hypercubes exist only if d ≥ 2r. In this case, we present the following
construction of (d, n, r, r)-hypercubes which relies heavily on linear algebra over finite fields.
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Lemma 2.9. Let n be a power of a prime, let d, r be positive integers with d ≥ 2r and let
q = nr. Consider Fq as a vector space over Fn, and define cj ∈ Fq, j = 1, 2, . . . , d, such that
any r of them form a linearly independent set in Fq. The hypercube constructed from the
polynomial c1x1 + c2x2 + · · ·+ cdxd is a hypercube of dimension d, order n, class r and type
r.

Proof. We must show that each of the nr elements of Fq occurs in each co-dimension-r-
subarray exactly nd−2r times. Consider now any r-subarray, and without loss of generality
let xd−r+1, xd−r+2, . . . , xd be fixed coordinates. Then, this subarray is generated by the
polynomial c1x1 + c2x2 + · · · + cd−rxd−r. To show that every value of Fq appears exactly
nd−2r times we solve the equation c1x1+c2x2+· · ·+cd−rxd−r = λ, λ ∈ Fq. Since Fq is a simple
extension of Fn, we assume that Fq = Fn(α), where α is a root of an irreducible polynomial
of degree r over Fn. Denote cj =

∑r
i=1 ai,jα

i−1 and λ =
∑r

i=1 ai,λα
i−1 with ai,j, ai,λ ∈ Fn.

We have the following matrix equation by equating coefficients of α:
a1,1 a1,2 · · · a1,d−r
a2,1 a2,2 · · · a2,d−r

...
ar,1 ar,2 · · · ar,d−r



x1
x2
...

xd−r

 =


a1,λ
a2,λ

...
ar,λ

 .
By hypothesis, any r coefficients of x1, x2, . . . , xd are linearly independent and so, the above
matrix has rank r. Thus, the solution set of the above equation has dimension d−2r, proving
the claim.

We can draw comparisons to hypercubes constructed using Lemma 2.9 directly from the
matrices. In particular, any r × d matrix over a finite field Fn with the property that any
r columns are linearly independent yields a (d, n, r, 1)-hypercube. If d ≥ (t + 1)r, a trivial
extension of the above lemma gives that any r × d matrix with the property that any tr
columns are linearly independent yields a (d, n, r, t)-hypercube.

We remark that matrices satisfying Lemma 2.9 are studied in coding theory, see [7].

Remark 2.10. Let H be an r × d matrix over Fq such that any r columns are linearly
independent and some r + 1 columns are linearly dependent. Consider H as a parity-check
matrix of a linear code over Fq. Such a code has minimum distance r+ 1 and the number of
codewords is qd−r. When d = 2r such a code reaches the Singleton bound [7], and H is the
parity check matrix of a maximum-distance separable (MDS) code.

Corollary 2.11. Let q be a prime power. The number of (2r, q, r, r)-hypercubes is at least
the number of linear MDS codes over Fq of length 2r and rank r.

In addition, we have the following result from [2, 3].

Theorem 2.12. Let fi(x1, x2, . . . , xn) = ai1x1+ai2x2+· · ·+aidxd, i = 1, . . . , r, be polynomials
over Fq. The corresponding hypercubes are mutually strongly d-orthogonal hypercubes of
dimension d, order q and class 1 if and only if every square submatrix of (aij) is non-singular.
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Corollary 2.13. Suppose H is a set of r mutually strongly 2r-orthogonal hypercubes con-
structed from Theorem 2.12. Then, the resulting matrix defines a (2r, q, r, r)-hypercube.

In Section 3, we use Lemma 2.9 with d = 2r to construct sets of orthogonal hypercubes.

3 Sets of orthogonal hypercubes of dimension 2r

In this section, we consider only hypercubes of dimension 2r, order n, class r and type r.
We give a bound on the number of mutually orthogonal hypercubes of this form, which
significantly improves the bound in Theorem 2.4. We then construct sets of such orthogonal
hypercubes when r is a prime power and r < n.

Theorem 3.1. There at most (n− 1)r mutually orthogonal (2r, n, r, r)-hypercubes.

Proof. First, permute the symbols of each hypercube so that the r-subarray with fixed
coordinates xr+1 = xr+2 = · · · = x2r = 0 is identical for each hypercube. Now, consider
the symbol in the entry x2r = 1, x1 = x2 = · · · = x2r−1 = 0. This entry is contained
in the r subarrays with fixed coordinates xi = xr+1 = xr+2 = · · · = x2r−1 = 0 for each i
with 1 ≤ i ≤ r. Thus we cannot take any entry in the subarrays with fixed coordinates
xi = xr+1 = xr+2 = · · · = x2r = 0 for each i with 1 ≤ i ≤ r. This leaves us with (n − 1)r

choices for the symbol in entry x2r = 1, x1 = x2 = · · · = x2r−1 = 0. Furthermore, each
hypercube must have a distinct symbol in this entry since all ordered pairs (i, i), 1 ≤ i ≤ nr,
occur in the square xr+1 = xr+2 = · · · = x2r = 0. Therefore we have at most (n − 1)r

mutually orthogonal hypercubes.

Remark 3.2. Theorem 3.1, combined with Lemma 2.2 requires that r = 1 or n ≥ 3.

We observe that Theorem 3.1 is a generalization of the well-known bound for mutually
orthogonal Latin squares.

Corollary 3.3. There are at most n− 1 mutually orthogonal Latin squares of order n.

Corollary 3.4. Let n ≥ 3. There are at most (n − 1)2 mutually orthogonal (4, n, 2, 2)-
hypercubes.

Maximal sets of mutually orthogonal hypercubes are called complete. For most prime
power orders n, we can construct complete sets of (n− 1)2 mutually orthogonal (4, n, 2, 2)-
hypercubes using multivariate permutation polynomials over the finite field of order n. First,
we show how to construct two orthogonal (2r, n, r, r)-hypercubes when n is a prime power.

Theorem 3.5. Let n be a power of a prime, let r be a positive integer and let q = nr.
Denote as Fq the extension of Fn obtained by adjoining a root α of an irreducible polynomial
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of degree r over Fn, that is, Fq = Fn(α). Let

p1(x1, x2, . . . , x2r) =
r∑
j=1

αj−1xj +
2r∑

j=r+1

r∑
i=1

ai,j−rα
i−1xj and

p2(x1, x2, . . . , x2r) =
r∑
j=1

αj−1xj +
2r∑

j=r+1

r∑
i=1

a′i,j−rα
i−1xj,

with p1 6= p2 and ai,j, a
′
s,t ∈ F∗n for any i, j, s, t = 1, 2, . . . , r.

Define the matrices A and A′ by

A =


a1,1 a1,2 · · · a1,r
a2,1 a2,2 · · · a2,r

...
ar,1 ar,2 · · · ar,r

 and A′ =


a′1,1 a′1,2 · · · a′1,r
a′2,1 a′2,2 · · · a′2,r

...
a′r,1 a′r,2 · · · a′r,r

 ,
and suppose that A,A′ and A−A′ are nonsingular. Then the hypercubes generated by p1 and
p2 are orthogonal (2r, n, r, r)-hypercubes.

Proof. By Lemma 2.9 the polynomials p1 and p2 form hypercubes of dimension 2r, order n
and class r. What remains is to show that these hypercubes are orthogonal.

Let p1 =
∑r

j=1 fjα
j−1 and p2 =

∑r
j=1 fj+rα

j−1. Then, from p1 and p2 we have the
following system of equations: 

f1
f2
...
f2r

 =

[
Ir A
Ir A′

]
x1
x2
...
x2r

 .
By showing that f1, f2, . . . , f2r form an orthogonal system, we show that these two polyno-
mials construct orthogonal hypercubes.

It is known [6, Corollary 7.39] that f1, f2, . . . , f2r form an orthogonal system if and only
if P = c1f1 + c2f2 + · · · + c2rf2r is a permutation polynomial for all (c1, c2, . . . , c2r) ∈ F2r

n

with (c1, c2, . . . , c2r) 6= (0, 0, . . . , 0). Substituting gives

P =
r∑
j=1

(cj + cj+r)xj +
r∑
j=1

(
r∑
i=1

ciai,j +
2r∑

i=r+1

cia
′
i−r,j

)
xj+r. (3)

Since P is a linear polynomial in x1, x2, . . . , x2r, we have that P is a permutation polynomial
if and only if P 6= 0. Suppose, by way of contradiction, that P is not a permutation
polynomial, that is, that P = 0. Equating coefficients of x1, x2, . . . , xr gives cj = −cj+r,
j = 1, 2, . . . , r. Substituting these relations into the second term of Equation (3) gives

r∑
i=1

ci(ai,j − a′i,j) = 0, j = 1, 2, . . . , r.
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Since (c1, c2, . . . , c2r) 6= (0, 0, . . . , 0) we know that one of c1, c2, . . . , cr are nonzero. Thus, we
have a non-trivial zero-solution from the columns of A − A′, contradicting the assumption
that A− A′ is non-singular.

When r = 2 we find a complete set of mutually orthogonal hypercubes of dimension 4,
order n and class 2.

Corollary 3.6. Let n be an odd prime power. Then there exists a complete set of (n− 1)2

mutually orthogonal hypercubes of dimension 4, order n and class 2.

Proof. Denote as Fn the finite field with n elements and let Fq = Fn(α), where α is a root
of an irreducible quadratic polynomial over Fn.

Let ω be a non-square element of Fn and for any a, b ∈ F∗n, define the polynomial p(a,b) =
x1 +αx2 + (a+ bα)x3 + (b+aωα)x4. We show that any two of these polynomials p(a,b), p(x,y),
with (a, b) 6= (x, y) form mutually orthogonal hypercubes.

Let

A =

[
a b
b aω

]
and A′ =

[
x y
y xω

]
.

Clearly A is non-singular since if det(A) = 0, then ω = (b/a)2, contradicting the choice of ω.
Similarly, A′ is non-singular. Suppose now that A−A′ is singular, that is, det(A−A′) = 0.
Then (a− x)2ω− (b− y)2 = 0. If a = x then b = y, contradicting (a, b) 6= (x, y); in the same
way if b = y then a− x.

Now consider a 6= x and b 6= y. We have

ω =

(
b− y
a− x

)2

,

contradicting that ω is not a square. Hence, the matrix A − A′ is non-singular and the
conditions for Theorem 3.5 are satisfied.

Corollary 3.7. Let n = 22k, k ∈ N. Then there exists a complete set of (n − 1)2 mutually
orthogonal hypercubes of dimension 4, order n, and class 2.

Proof. Since 3 divides n− 1 = 22k− 1, we have non-cube elements in Fn; primitive elements,
for example. Let ω 6= 0 be a non-cube element of Fn, that is ω 6= r3 for any r ∈ Fn. Now,
for every a ∈ F∗n and b ∈ F∗n, let p(a,b) = x1 + (α)x2 + (a + bα)x3 + (b2 + a2ωα)x4. We show
that any two of these polynomials p(a,b), p(x,y) with (a, b) 6= (x, y) form mutually orthogonal
hypercubes. Let

A =

[
a b
b2 a2ω

]
and A′ =

[
x y
y2 x2ω

]
.

Clearly A is non-singular since if det(A) = 0, then ω = (b/a)3, contradicting the choice of ω.
Similarly, A′ is non-singular. Suppose now that det(A−A′) = 0. Then (a− x)3ω = (b− y)3.
If a = x, then b = y, contradicting that (a, b) 6= (x, y). If a 6= x, then

ω =

(
b− y
a− x

)3

,
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contradicting the choice of ω. Hence, the matrix A − A′ is non-singular and the conditions
for Theorem 3.5 are satisfied.

Unfortunately, the approach of Corollary 3.6 and Corollary 3.7 cannot be applied to solve
all of the possible n = 22k+1 cases at once. A new method is required in this case.

We now give sets of orthogonal hypercubes for r > 2. These sets are unable to meet the
bound in Theorem 3.1. We obtain sets of n− 1 mutually orthogonal hypercubes when n is
a prime power and r < n using the following application of Theorem 3.5.

Theorem 3.8. Let n be a prime power. For any integer r < n, there exists a set of n − 1
mutually orthogonal (2r, n, r, r)-hypercubes.

Proof. Let α be a primitive element of Fn and let A be the r× r Vandermonde matrix with
defining row (α, α2, . . . , αr). Since r < n, each entry of (α, α2, . . . , αr) is distinct, and so A
is non-singular. Now define Aj = αjA, for any j = 1, . . . , n − 2. Each Aj is non-singular
since A is non-singular, and the difference of any two distinct matrices in {A,A1, . . . , An−2}
is also non-singular. Therefore, the hypercubes defined using the matrices {A,A1, . . . , An−2}
in Theorem 3.5 are mutually orthogonal.

When n is a prime power, using the method of Corollary 3.6 to find sets of orthogonal
hypercubes of class r = 3 and using results about solutions of diagonal equations over finite
fields [6, Theorem 6.33], one can marginally improve the bound of n−1 mutually orthogonal
hypercubes to n + C, where C is a small positive constant. In general, the method of
Corollary 3.6 cannot be used to construct sets of orthogonal hypercubes approaching the
bound in Theorem 3.1 when r > 2. For higher class, a new method is needed.

4 Conclusions and problems

In this paper, we extend the usual definition of hypercubes by introducing a new parameter,
the class r of a hypercube, which increases the alphabet size of the hypercube. We give
necessary conditions on r for the existence of such hypercubes and present bounds and
constructions of sets of mutually orthogonal hypercubes.

When d = 2r, an upper bound on the number of mutually orthogonal hypercubes is
(n − 1)r. We give a construction of (n − 1)2 mutually orthogonal hypercubes when r = 2
when n is a prime power.

Some open problems follow.

1. Construct a complete set of mutually orthogonal (4, n, 2, 2)-hypercubes when n =
22k+1.

2. Is the (n − 1)r bound in Theorem 3.1 tight when r > 2? If so, construct a complete
set of mutually orthogonal (2r, n, r, r)-hypercubes of class r > 2. If not, determine a
tight upper bound and construct such a complete set.

11



3. Find constructions (other than standard Kronecker product constructions) of sets of
mutually orthogonal hypercubes when n is not a prime power. Such constructions will
require a new method not based on finite fields.
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