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Abstract We present a method for computing pth roots using a polynomial basis

over finite fields Fq of odd characteristic p, p ≥ 5, by taking advantage of a binomial

reduction polynomial. For a finite field extension Fqm of Fq our method requires p− 1

scalar multiplication of elements in Fqm by elements in Fq. In addition, our method

requires at most (p − 1)dm/pe additions in the extension field. In certain cases, these

additions are not required. If z is a root of the irreducible reduction polynomial, then

the number of terms in the polynomial basis expansion of z1/p, defined as the Hamming

weight of z1/p or wt
(
z1/p

)
, is directly related to the computational cost of the pth

root computation. Using trinomials in characteristic 3, Ahmadi et al. [1] give wt
(
z1/3

)
is greater than 1 in nearly all cases. Using a binomial reduction polynomial over odd

characteristic p, p ≥ 5, we find wt
(
z1/p

)
= 1 always.
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1 Introduction

The problem of efficient root extraction is motivated by the pairing computation prob-

lem in cryptography, see [3,4], for example. In addition, computing pth roots of elements

expressed as polynomials is used in factorization algorithms, see [8, Algorithm 3.110]

and [5], for example. Barreto [2] uses the so-called folklore algorithm for computing

cube roots over finite fields of characteristic 3. He simplifies the computation using a

trinomial reduction polynomial, and eliminates the use of multiplications in the exten-

sion field to compute the cube roots. Barreto’s methods work for trinomials xm+axk+b
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where m ≡ k (mod 3). In particular, for a root z of the reduction trinomial, he shows

wt
(
z1/3

)
=

{
3 if m ≡ k ≡ 1 (mod 3),

2 if m ≡ k ≡ 2 (mod 3),

where wt
(
z1/3

)
is the Hamming weight (the number of non-zero terms under the

polynomial basis) of the expansion of z1/3. The Hamming weight of z1/3 is directly

related to the computational cost of the root extraction problem. Barreto [2] presents

a comparison of timings for the Duursma-Lee algorithm [4] for computing the Tate

pairing and notes an approximate 10% decrease in the overall pairing time. Ahmadi

et al. [1] generalize Barreto’s results by giving wt
(
z1/3

)
where z is a root of the

irreducible trinomial over F3 used to define an extension field. Table 1 summarizes the

results in [1].

Table 1 Hamming weight of z1/3, where z is a root of xm + axk + b; l = d(m − 1)/3ke +
d(m− 1− k)/3ke and l′ = d(2m− 1)/3ke+ d(2m− 1− k)/3ke+ d(2m− 1− 2k)/3ke.

wt
(
z1/3

)
Condition

m 6≡ −k (mod 3)
3 m ≡ k ≡ 1 (mod 3)
2 m ≡ k ≡ 2 (mod 3)
3 m 6= 3k, k 6= 1
1 m = 3k, a = 1
2 m = 3k, a = −1
2 k = 1
≤ 5 m ≡ 0 (mod 3), k ≡ 2 (mod 3)

∈ {l, l + 1, l + 2} m ≡ 1 (mod 3), k ≡ 0 (mod 3)
∈ {l′, l′ + 1, l′ + 2, l′ + 3} m ≡ 2 (mod 3), k ≡ 0 (mod 3)

m ≡ −k (mod 3)
∈ {m/d− 2,m/d− 1,m/d} d = gcd(m, k)

In this paper, we consider the pth root computation using a polynomial basis in

finite fields of odd characteristic p, p ≥ 5, by using a binomial reduction polynomial1.

There appears to be some recent interest in cryptographic applications using charac-

teristic p, p ≥ 5, see [6,11]. Since we use binomials, we begin by providing a condition

on the existence of irreducible binomials over Fq, where q is a power of an odd prime

p, p ≥ 5. Then we explicitly compute the 5th root of an element in extensions of F5

formed by using an irreducible binomial. We generalize our results to compute pth

roots in any finite field Fmq of odd characteristic p such that an irreducible binomial of

degree m over Fq exists. In every case we show that wt
(
z1/p

)
= 1, where z is a root

of the irreducible binomial.

2 Existence of Irreducible Binomials

For efficient finite field arithmetic using a polynomial representation it is desirable to

use reduction polynomials with as few non-zero terms as possible. In characteristic two

1 Without loss of generality, all binomials considered in this paper are monic.
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there is only one irreducible binomial, x+1, and therefore the use of trinomials is desir-

able. Swan [10] showed that irreducible trinomials are permitted in characteristic two

for approximately half of all degrees, see also [9]. In higher characteristic, in principle it

is possible for irreducible binomials to exist. The following is a sufficient and necessary

condition on the existence of irreducible binomials in finite fields of odd characteristic,

see [7, Theorem 3.75].

Theorem 1 Let q be a prime power, let f(x) = xm−a be a binomial over Fq, m ≥ 2,

and let e be the multiplicative order of a. Then f is irreducible if and only if

(1) gcd ((q − 1)/e,m) = 1,

(2) each prime factor of m divides e,

(3) if m ≡ 0 (mod 4) then q ≡ 1 (mod 4).

We observe that irreducible binomials over Fq may only exist for certain degrees

m. Consider an irreducible binomial f(x) = xm−a, m ≥ 2, over F3. Then, a 6= 1 since

otherwise 1 is a root of f . We apply Theorem 1 with q = 3 and a = 2. Condition (1)

is always satisfied and Condition (2) gives that m is a power of two. Combining this

with Condition (3) gives that there is only one nonlinear irreducible binomial over F3,

namely x2 − 2.

We now consider Theorem 1 for a general q to determine for which degrees m we

find irreducible binomials over Fq.

Theorem 2 Let Fq be a finite field of odd characteristic p, p ≥ 5. There exists an

irreducible binomial over Fq of degree m, m 6≡ 0 (mod 4), if and only if every prime

factor of m is also a prime factor of q − 1. For m ≡ 0 (mod 4) then there exists an

irreducible binomial over Fq of degree m if and only if q ≡ 1 (mod 4) and every prime

factor of m is also a prime factor of q − 1.

Proof Let Fq be a finite field of odd characteristic p, p ≥ 5. We analyze the conditions

of Theorem 1 to determine for which degrees m there exist an irreducible binomial.

Condition (3) of Theorem 1 gives that irreducible binomials of degree m ≡ 0 (mod 4)

exist only for q ≡ 1 (mod 4). Since F∗q is cyclic, for every divisor e of q − 1 there is

an element of multiplicative order e, namely α(q−1)/e where α is a primitive element

of F∗q . By Condition (2) each prime factor of m must divide the multiplicative order

of the constant term a ∈ Fq, a 6= 0, so we need only consider degrees m whose prime

factors divide q − 1. Let q − 1 = pe11 p
e2
2 · · · p

er
r , then m = pl1s1 · · · p

lt
st where t ≤ r and

{ps1 , ps2 , . . . , pst} ⊆ {p1, p2, . . . , pr}. We construct the element

a = α

q−1

p
es1
s1 ···p

est
st ,

where α is a primitive element of F∗q . Then a has order e = p
es1
s1 · · · p

est
st so gcd(q −

1/e,m) = 1 and Condition (1) of Theorem 1 is satisfied.

Table 2 gives a list of degrees m for which irreducible binomials over Fq exist, for

q < 50. We observe that the proof of Theorem 2 not only provides the possible degrees

m such that irreducible binomials exist but also gives the elements a ∈ Fq such that

xm−a is an irreducible binomial. Using Theorem 2, it is trivial to find infinite families

of irreducible binomials for finite fields Fq with odd characteristic p ≥ 5 and q > 50.
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Table 2 Degrees m for which there exists an irreducible binomial over Fq , q < 50.

q m
3 2
5 2k

7 2k13k2 , m 6≡ 0 (mod 4)
9 2k

11 2k15k2 , m 6≡ 0 (mod 4)
13 2k13k2

17 2k1

19 2k13k2 , m 6≡ 0 (mod 4)
23 2k111k2 , m 6≡ 0 (mod 4)

q m

25 2k13k2

27 2k113k2 , m 6≡ 0 (mod 4)
29 2k17k2

31 2k13k25k3 , m 6≡ 0 (mod 4)
37 2k13k2

41 2k15k2

43 2k13k27k3 , m 6≡ 0 (mod 4)
47 2k123k2 , m 6≡ 0 (mod 4)
49 2k13k2

However, we note that for any odd characteristic p there are many degrees m for which

there are no irreducible binomial over Fq. We return to this issue in the conclusions.

We use irreducible binomials as reduction polynomials to develop a method for

efficient pth root computation in finite fields Fq of odd characteristic p, p ≥ 5, using a

polynomial basis. Our method can be employed in any extension Fqm of Fq such that

an irreducible binomial of degree m over Fq exists, as given by Theorem 2.

3 Using Binomials to Compute pth Roots in Finite Fields of Odd

Characteristic p.

3.1 Computing 5th roots in F5m

By Theorem 2 for q = p = 5, irreducible binomials over F5 only exist of the form xm−a
for m = 2k. To compute the fifth root of an element in finite fields of characteristic

five we follow the folklore algorithm, as in [2]. Let m = 2k, k ≥ 1 and let c ∈ F5m ,

then c = c5
m

=
(
c5

m−1
)5

. We denote the fifth root of c by α, then α = c5
m−1

, which

requires at most 2(m− 1) log 5 multiplications using repeated squaring.

Let {z0, z1, . . . , zm−1} be a basis of F5m over F5 and write c =

m−1∑
i=0

cizi, ci ∈ F5.

Then, we have

α =

(
m−1∑
i=0

cizi

)5m−1

=

m−1∑
i=0

ciz
5m−1

i .

Using a polynomial basis we write zi = zi and then

α =

m−1∑
i=0

ci

(
z5

m−1)i
.
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We split the summation into five, where each summation is over one coset modulo 5.

First, let m ≡ 1 (mod 5), then

α =

(m−1)/5∑
i=0

c5i

(
z5

m−1)5i
+

(m−6)/5∑
i=0

c5i+1

(
z5

m−1)5i+1

+

(m−6)/5∑
i=0

c5i+2

(
z5

m−1)5i+2
(m−6)/5∑
i=0

c5i+3

(
z5

m−1)5i+3

+

(m−6)/5∑
i=0

c5i+4

(
z5

m−1)5i+4

=

(m−1)/5∑
i=0

c5iz
i +

(m−6)/5∑
i=0

c5i+1

(
z5

m−1)
zi +

(m−6)/5∑
i=0

c5i+2

(
z5

m−1)2
zi

+

(m−6)/5∑
i=0

c5i+3

(
z5

m−1)3
zi +

(m−6)/5∑
i=0

c5i+4

(
z5

m−1)4
zi

=
∑

i≡0 mod 5

ciz
i/5 + z1/5

( ∑
i≡1 mod 5

ciz
(i−1)/5

)
+ z2/5

( ∑
i≡2 mod 5

ciz
(i−2)/5

)

+z3/5
( ∑
i≡3 mod 5

ciz
(i−3)/5

)
+ z4/5

( ∑
i≡4 mod 5

ciz
(i−4)/5

)
.

For m ≡ 2, 3, 4 (mod 5) the computation is similar, with the only change being over

the range of the summation. We define the vectors d0, d1, d2, d3, d4 to be each respective

summation so that α = d0 + z1/5d1 + · · · + z4/5d4. We show how to precompute

z1/5, z2/5, z3/5, z4/5 exploiting the binomial reduction polynomial f .

Let f(x) = xm− b be an irreducible binomial over F5. Then b = 2, 3 by Theorem 2.

If m ≡ j (mod 5) then m = 5u + j and zm − b = z5u+j − b = 0. Thus, zuzj/5 = b,

and −bzu = z−j/5 since for b = 2, 3 ∈ F5, (b)
−1 = −b. Let e be the smallest positive

integer such that ej ≡ −1 (mod 5), then (−b)ezeu = z−ej/5, and

z1/5 = (−b)ezeu+(ej+1)/5.

The Hamming weight of z1/5 is 1 in all cases. We give all values of e and j and note,

in particular, that eu+ (ej + 1)/5 < m:

e j (ej + 1)/5

1 4 1

2 2 1

3 3 2

4 1 1

We follow the notation and language introduced by Ahmadi et al. [1]: we denote

by �s a cyclic right bit shift by s positions. Let γ = eu + (ej + 1)/5. Since zm = b,

the shift introduces a new scaling by b every time a bit cycles from the (m − 1)th to

the 0th position. We express α by

α = d0 + (−b)ed�γ1 + (−b)2ed�2γ
2 + (−b)3ed�3γ

3 + (−b)4ed�4γ
4 . (1)
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The computation of α is sped by the precomputation and storage of the coefficients

introduced before each dk term in Equation (1). The precise value of these coefficients

is determined by the value of γ, that is, by the total number of shifts introduced.

Example 1 Let q = p = 5, then Theorem 2 gives that there exists an irreducible

binomial for m = 32 = 6 · 5 + 2. In this case γ = 13. Let c ∈ F532 , and let α = c1/5.

In the computation of α we need to perform shifts by kγ elements, for k = 1, 2, 3, 4, as

shown in Equation (1). For k = 1 the shift by γ elements introduces a scaling by b for

the last γ elements of d1. For k = 2 the shift by 2γ requires a single scaling by b for the

last 2γ elements of d2, since 2γ = 26 < m. For k = 3, we need to scale each element

of d3 by b and the final 3γ −m elements of d3 by an additional factor of b. The k = 4

case is the same, where each element of d4 needs to be scaled by a factor of b and the

final 4γ −m elements need to be scaled by an additional b.

In total, we need to store (−b)e, (−b)e+1, (−b)2e, (−b)2e+1, (−b)3e+1, (−b)3e+2,

(−b)4e+1, (−b)4e+2, or a total of 8 elements of F5.

We always have a storage requirement associated with 8 computations of elements in

F5, though the precise values needed depend on the value of γ.

The fifth-root computation of c, c ∈ F5m , requires in total, after a precomputation

of 8 elements, at most 4dm/5e additions in F5m in the case where the shifts cause

every vector to be aligned in the same position modulo 5, and 4 scalar multiplications

of elements in F5m by elements in F5. If γ ≡ 0 (mod 5) no addition is required.

3.2 The General Case

The technique presented for the q = p = 5 case generalizes naturally to all q ≥ 5.

Theorem 3 Let q be a power of an odd prime p and let m be a positive integer such

that there exists an irreducible binomial xm − b over Fq, as given by Theorem 2. Let

e be the multiplicative order of b ∈ Fq. After a precomputation of 2(p− 1) elements in

Fq, the pth root of an element c ∈ Fqm requires p− 1 scalar multiplications of elements

in Fqm by elements in Fq. In addition, the computation requires at most (p− 1)dm/pe
additions in Fqm .

Proof Let q be a power of an odd prime p and let m be a positive integer such that there

exists an irreducible binomial of degree m over Fq. Suppose we know the factorization

of m; this is not a problem in practice since m is small in applications. Then using

Theorem 2 we find an irreducible binomial over Fq of degree m.

Suppose f(x) = xm − b is irreducible over Fq. Let c ∈ Fqm , and let α = c1/p. Let

z be a root of f ; then {1, z, z2, . . . , zm−1} form a basis of Fqm over Fq. We write

c =

m−1∑
i=0

ciz
i

and follow the same process as above. If Cj is the jth coset of Zm modulo p, so that

for i ∈ Cj , i− j ≡ 0 (mod p), then

α =

p−1∑
j=0

zj/p
∑
i∈Cj

ciz
(i−j)/p.
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Let di =
∑
i∈Cj

ciz
(i−j)/p and hence we have

α = d0 + z1/pd1 + · · ·+ z(p−1)/pdp−1.

What remains is to precompute z1/p, z2/p, . . . , z(p−1)/p.

If m ≡ j (mod p) then m = pu + j and zm − b = zpu+j − b = 0. Thus, zuzj/p =

b. Then, b−1zu = z−j/p. Let e be the smallest positive integer such that ej ≡ −1

(mod p), then b−ezeu = z−ej/p, and

z1/p = b−ezeu+(ej+1)/p.

The Hamming weight of z1/p is 1 in all cases.

As before, we denote�s to be a right bit shift by s positions. Let γ = eu+(ej+1)/p,

then

α = d0 + b−ed�γ1 + · · ·+ b−(p−1)ed
�(p−1)γ
p−1 .

Since zm = b, as before, the shift introduces a new scaling by b for each time a bit

cycles from the (m− 1)th to the 0th position. Since γ = eu+ (ej + 1)/p, we have that

pγ = peu+ ej + 1 = e(pu+ j) + 1 = em+ 1,

and so γ = (em+ 1)/p < m. For any positive integer k ≤ p− 1, if kγ = tm+ i, where

0 ≤ i < m, then the shift of dk by kγ elements introduces a scalar multiplication by bt

for the first m− i elements of dk and a multiplication by bt+1 for the final i elements

of dk. The computation of α is sped by the precomputation of all the b−ke+t and

b−ke+t+1, where 1 ≤ k ≤ p− 1 and t is given by kγ = tm+ i. Hence, this requires in

total a precomputation of 2(p− 1) elements in Fq.
Each sum dj has non-zero terms only on the j (mod p) positions, so if γ ≡ 0

(mod p), no additions are performed. Otherwise, in the worst case we can assume that

each sum is shifted to align with the first position, creating p − 1 additions of sums

with at most dm/pe terms. The ceiling function is used to cover every case regardless

of the value of m (mod p).

Thus, after precomputation, the pth root operation using a binomial reduction

polynomial requires p− 1 scalar multiplications of elements in Fqm by elements in Fq.
In addition, the computation requires at most (p− 1)dm/pe additions in the extension

field. If γ ≡ 0 (mod p) then there is no addition required.

4 Conclusions

We present a method for computing pth roots of elements in finite fields Fqm of odd

characteristic p, p ≥ 5, by taking advantage of the structure introduced by using an

irreducible binomial of degree m as the reduction polynomial. The computational cost

of our method requires p− 1 scalar multiplications of elements in Fqm by elements in

Fq. In addition, the computation requires at most p−1dm/pe additions in the extension

field. Our method also requires a precomputation of 2(p− 1) elements in Fq.
We relate our result in higher characteristic to the work of Barreto [2] and Ahmadi

et al. [1] using trinomials in characteristic 3. Ahmadi et al. show that the Hamming

weight of x1/3, where x is a root of an irreducible trinomial over F3, is greater than
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1 in almost all cases. In every case we show that the Hamming weight of z1/p, where

z is a root of an irreducible binomial over a finite field of odd characteristic p ≥ 5, is

always equal to 1.

Theorem 2 determines for which degrees m we have irreducible binomials over Fq.
Our method of root computation is applicable wherever such a binomial exists. In the

absence of irreducible binomials over Fq, what remains for further work is to find the

lowest weight irreducible polynomial of a given degree m. In these cases, the pth roots

may be computed using the so-called folklore algorithm, as above and in [1, 2]. Then,

explicit forms for z1/p can be found, where z is a root of the irreducible polynomial.

When there are many irreducible polynomials with the smallest number of nonzero

terms, the one the one which yields the lowest weight of z1/p is preferred to minimize

the computational cost.
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