Efficient pth Root Computations in Finite Fields of Characteristic p

D. Panario
† $\,\cdot\,$ D. Thomson

December 24, 2009

Abstract We present a method for computing *p*th roots using a polynomial basis over finite fields \mathbb{F}_q of odd characteristic $p, p \geq 5$, by taking advantage of a binomial reduction polynomial. For a finite field extension \mathbb{F}_{q^m} of \mathbb{F}_q our method requires p-1scalar multiplication of elements in \mathbb{F}_{q^m} by elements in \mathbb{F}_q . In addition, our method requires at most $(p-1)\lceil m/p \rceil$ additions in the extension field. In certain cases, these additions are not required. If z is a root of the irreducible reduction polynomial, then the number of terms in the polynomial basis expansion of $z^{1/p}$, defined as the *Hamming weight* of $z^{1/p}$ or wt $(z^{1/p})$, is directly related to the computational cost of the *p*th root computation. Using trinomials in characteristic 3, Ahmadi et al. [1] give wt $(z^{1/3})$ is greater than 1 in nearly all cases. Using a binomial reduction polynomial over odd characteristic $p, p \geq 5$, we find wt $(z^{1/p}) = 1$ always.

Keywords Finite field arithmetic \cdot irreducible binomials \cdot *p*th roots.

Mathematics Subject Classification (2000) 12E30

1 Introduction

The problem of efficient root extraction is motivated by the pairing computation problem in cryptography, see [3,4], for example. In addition, computing *p*th roots of elements expressed as polynomials is used in factorization algorithms, see [8, Algorithm 3.110] and [5], for example. Barreto [2] uses the so-called folklore algorithm for computing cube roots over finite fields of characteristic 3. He simplifies the computation using a trinomial reduction polynomial, and eliminates the use of multiplications in the extension field to compute the cube roots. Barreto's methods work for trinomials $x^m + ax^k + b$

School of Mathematics and Statistics, Carleton University

[†] The author is supported in part by NSERC of Canada.

¹¹²⁵ Colonel By Drive, Ottawa, ON, K1S 5B6 E-mail: {daniel,dthomson}@math.carleton.ca

where $m \equiv k \pmod{3}$. In particular, for a root z of the reduction trinomial, he shows

$$\operatorname{wt}\left(z^{1/3}\right) = \begin{cases} 3 & \text{if } m \equiv k \equiv 1 \pmod{3}, \\ 2 & \text{if } m \equiv k \equiv 2 \pmod{3}, \end{cases}$$

where wt $(z^{1/3})$ is the Hamming weight (the number of non-zero terms under the polynomial basis) of the expansion of $z^{1/3}$. The Hamming weight of $z^{1/3}$ is directly related to the computational cost of the root extraction problem. Barreto [2] presents a comparison of timings for the Duursma-Lee algorithm [4] for computing the Tate pairing and notes an approximate 10% decrease in the overall pairing time. Ahmadi et al. [1] generalize Barreto's results by giving wt $(z^{1/3})$ where z is a root of the irreducible trinomial over \mathbb{F}_3 used to define an extension field. Table 1 summarizes the results in [1].

Table 1 Hamming weight of $z^{1/3}$, where z is a root of $x^m + ax^k + b$; $l = \lceil (m-1)/3k \rceil + \lceil (m-1-k)/3k \rceil$ and $l' = \lceil (2m-1)/3k \rceil + \lceil (2m-1-k)/3k \rceil + \lceil (2m-1-2k)/3k \rceil$.

$\operatorname{wt}(z^{1/3})$	Condition			
$m \not\equiv -k \pmod{3}$				
3	$m \equiv k \equiv 1 \pmod{3}$			
2	$m \equiv k \equiv 2 \pmod{3}$			
3	$m \neq 3k, k \neq 1$			
1	m = 3k, a = 1			
2	m = 3k, a = -1			
2	k = 1			
≤ 5	$m \equiv 0 \pmod{3}, k \equiv 2 \pmod{3}$			
$\in \{l, l+1, l+2\}$	$m \equiv 1 \pmod{3}, k \equiv 0 \pmod{3}$			
$\in \{l', l'+1, l'+2, l'+3\}$	$m \equiv 2 \pmod{3}, k \equiv 0 \pmod{3}$			
$m \equiv -k \pmod{3}$				
$\in \{m/d-2, m/d-1, m/d\}$	$d = \gcd(m, k)$			

In this paper, we consider the *p*th root computation using a polynomial basis in finite fields of odd characteristic $p, p \ge 5$, by using a binomial reduction polynomial¹. There appears to be some recent interest in cryptographic applications using characteristic $p, p \ge 5$, see [6, 11]. Since we use binomials, we begin by providing a condition on the existence of irreducible binomials over \mathbb{F}_q , where q is a power of an odd prime $p, p \ge 5$. Then we explicitly compute the 5th root of an element in extensions of \mathbb{F}_5 formed by using an irreducible binomial. We generalize our results to compute *p*th roots in any finite field \mathbb{F}_q^m of odd characteristic p such that an irreducible binomial of degree m over \mathbb{F}_q exists. In every case we show that wt $(z^{1/p}) = 1$, where z is a root of the irreducible binomial.

2 Existence of Irreducible Binomials

For efficient finite field arithmetic using a polynomial representation it is desirable to use reduction polynomials with as few non-zero terms as possible. In characteristic two

¹ Without loss of generality, all binomials considered in this paper are monic.

there is only one irreducible binomial, x+1, and therefore the use of trinomials is desirable. Swan [10] showed that irreducible trinomials are permitted in characteristic two for approximately half of all degrees, see also [9]. In higher characteristic, in principle it is possible for irreducible binomials to exist. The following is a sufficient and necessary condition on the existence of irreducible binomials in finite fields of odd characteristic, see [7, Theorem 3.75].

Theorem 1 Let q be a prime power, let $f(x) = x^m - a$ be a binomial over \mathbb{F}_q , $m \ge 2$, and let e be the multiplicative order of a. Then f is irreducible if and only if

- (1) gcd((q-1)/e, m) = 1,
- (2) each prime factor of m divides e,
- (3) if $m \equiv 0 \pmod{4}$ then $q \equiv 1 \pmod{4}$.

We observe that irreducible binomials over \mathbb{F}_q may only exist for certain degrees m. Consider an irreducible binomial $f(x) = x^m - a$, $m \ge 2$, over \mathbb{F}_3 . Then, $a \ne 1$ since otherwise 1 is a root of f. We apply Theorem 1 with q = 3 and a = 2. Condition (1) is always satisfied and Condition (2) gives that m is a power of two. Combining this with Condition (3) gives that there is only one nonlinear irreducible binomial over \mathbb{F}_3 , namely $x^2 - 2$.

We now consider Theorem 1 for a general q to determine for which degrees m we find irreducible binomials over \mathbb{F}_q .

Theorem 2 Let \mathbb{F}_q be a finite field of odd characteristic $p, p \geq 5$. There exists an irreducible binomial over \mathbb{F}_q of degree $m, m \not\equiv 0 \pmod{4}$, if and only if every prime factor of m is also a prime factor of q - 1. For $m \equiv 0 \pmod{4}$ then there exists an irreducible binomial over \mathbb{F}_q of degree m if and only if $q \equiv 1 \pmod{4}$ and every prime factor of m is also a prime factor of q - 1.

Proof Let \mathbb{F}_q be a finite field of odd characteristic $p, p \geq 5$. We analyze the conditions of Theorem 1 to determine for which degrees m there exist an irreducible binomial. Condition (3) of Theorem 1 gives that irreducible binomials of degree $m \equiv 0 \pmod{4}$ exist only for $q \equiv 1 \pmod{4}$. Since \mathbb{F}_q^* is cyclic, for every divisor e of q-1 there is an element of multiplicative order e, namely $\alpha^{(q-1)/e}$ where α is a primitive element of \mathbb{F}_q^* . By Condition (2) each prime factor of m must divide the multiplicative order of the constant term $a \in \mathbb{F}_q, a \neq 0$, so we need only consider degrees m whose prime factors divide q-1. Let $q-1 = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$, then $m = p_{s_1}^{l_1} \cdots p_{s_t}^{l_t}$ where $t \leq r$ and $\{p_{s_1}, p_{s_2}, \ldots, p_{s_t}\} \subseteq \{p_1, p_2, \ldots, p_r\}$. We construct the element

$$a=\alpha^{\frac{q-1}{p_{s_1}^{e_{s_1}}\cdots p_{s_t}^{e_{s_t}}}}$$

where α is a primitive element of \mathbb{F}_q^* . Then *a* has order $e = p_{s_1}^{e_{s_1}} \cdots p_{s_t}^{e_{s_t}}$ so gcd(q - 1/e, m) = 1 and Condition (1) of Theorem 1 is satisfied.

Table 2 gives a list of degrees m for which irreducible binomials over \mathbb{F}_q exist, for q < 50. We observe that the proof of Theorem 2 not only provides the possible degrees m such that irreducible binomials exist but also gives the elements $a \in \mathbb{F}_q$ such that $x^m - a$ is an irreducible binomial. Using Theorem 2, it is trivial to find infinite families of irreducible binomials for finite fields \mathbb{F}_q with odd characteristic $p \geq 5$ and q > 50.

q	m	q	m
3	2	25	$2^{k_1}3^{k_2}$
5	2^k	27	$2^{k_1} 1 3^{k_2}, m \not\equiv 0 \pmod{4}$
7	$2^{k_1}3^{k_2}, m \not\equiv 0 \pmod{4}$	29	$2^{k_1}7^{k_2}$
9	2^k	31	$2^{k_1} 3^{k_2} 5^{k_3}, m \not\equiv 0 \pmod{4}$
11	$2^{k_1}5^{k_2}, m \not\equiv 0 \pmod{4}$	37	$2^{k_1}3^{k_2}$
13	$2^{k_1}3^{k_2}$	41	$2^{k_1}5^{k_2}$
17	2^{k_1}	43	$2^{k_1}3^{k_2}7^{k_3}, m \not\equiv 0 \pmod{4}$
19	$2^{k_1}3^{k_2}, \ m \not\equiv 0 \pmod{4}$	47	$2^{k_1}23^{k_2}, m \not\equiv 0 \pmod{4}$
23	$2^{k_1} 11^{k_2}, m \not\equiv 0 \pmod{4}$	49	$2^{k_1}3^{k_2}$

Table 2 Degrees *m* for which there exists an irreducible binomial over \mathbb{F}_q , q < 50.

However, we note that for any odd characteristic p there are many degrees m for which there are no irreducible binomial over \mathbb{F}_q . We return to this issue in the conclusions.

We use irreducible binomials as reduction polynomials to develop a method for efficient pth root computation in finite fields \mathbb{F}_q of odd characteristic $p, p \geq 5$, using a polynomial basis. Our method can be employed in any extension \mathbb{F}_{q^m} of \mathbb{F}_q such that an irreducible binomial of degree m over \mathbb{F}_q exists, as given by Theorem 2.

3 Using Binomials to Compute pth Roots in Finite Fields of Odd Characteristic p.

3.1 Computing 5th roots in \mathbb{F}_{5^m}

By Theorem 2 for q = p = 5, irreducible binomials over \mathbb{F}_5 only exist of the form $x^m - a$ for $m = 2^k$. To compute the fifth root of an element in finite fields of characteristic five we follow the folklore algorithm, as in [2]. Let $m = 2^k, k \ge 1$ and let $c \in \mathbb{F}_{5^m}$, then $c = c^{5^m} = (c^{5^{m-1}})^5$. We denote the fifth root of c by α , then $\alpha = c^{5^{m-1}}$, which requires at most $2(m-1)\log 5$ multiplications using repeated squaring.

Let $\{z_0, z_1, \ldots, z_{m-1}\}$ be a basis of \mathbb{F}_{5^m} over \mathbb{F}_5 and write $c = \sum_{i=0}^{m-1} c_i z_i, c_i \in \mathbb{F}_5$.

Then, we have

$$\alpha = \left(\sum_{i=0}^{m-1} c_i z_i\right)^{5^{m-1}} = \sum_{i=0}^{m-1} c_i z_i^{5^{m-1}}.$$

Using a polynomial basis we write $z_i = z^i$ and then

$$\alpha = \sum_{i=0}^{m-1} c_i \left(z^{5^{m-1}} \right)^i.$$

$$\begin{aligned} \alpha &= \sum_{i=0}^{(m-1)/5} c_{5i} \left(z^{5^{m-1}}\right)^{5i} + \sum_{i=0}^{(m-6)/5} c_{5i+1} \left(z^{5^{m-1}}\right)^{5i+1} \\ &+ \sum_{i=0}^{(m-6)/5} c_{5i+2} \left(z^{5^{m-1}}\right)^{5i+2} \sum_{i=0}^{(m-6)/5} c_{5i+3} \left(z^{5^{m-1}}\right)^{5i+3} \\ &+ \sum_{i=0}^{(m-6)/5} c_{5i+4} \left(z^{5^{m-1}}\right)^{5i+4} \\ &= \sum_{i=0}^{(m-1)/5} c_{5i}z^{i} + \sum_{i=0}^{(m-6)/5} c_{5i+1} \left(z^{5^{m-1}}\right) z^{i} + \sum_{i=0}^{(m-6)/5} c_{5i+2} \left(z^{5^{m-1}}\right)^{2} z^{i} \\ &+ \sum_{i=0}^{(m-6)/5} c_{5i+3} \left(z^{5^{m-1}}\right)^{3} z^{i} + \sum_{i=0}^{(m-6)/5} c_{5i+4} \left(z^{5^{m-1}}\right)^{4} z^{i} \\ &= \sum_{i\equiv 0 \bmod 5} c_{i}z^{i/5} + z^{1/5} \left(\sum_{i\equiv 1 \bmod 5} c_{i}z^{(i-1)/5}\right) + z^{2/5} \left(\sum_{i\equiv 2 \bmod 5} c_{i}z^{(i-2)/5}\right) \\ &+ z^{3/5} \left(\sum_{i\equiv 3 \bmod 5} c_{i}z^{(i-3)/5}\right) + z^{4/5} \left(\sum_{i\equiv 4 \bmod 5} c_{i}z^{(i-4)/5}\right). \end{aligned}$$

For $m \equiv 2, 3, 4 \pmod{5}$ the computation is similar, with the only change being over the range of the summation. We define the vectors d_0, d_1, d_2, d_3, d_4 to be each respective summation so that $\alpha = d_0 + z^{1/5}d_1 + \cdots + z^{4/5}d_4$. We show how to precompute $z^{1/5}, z^{2/5}, z^{3/5}, z^{4/5}$ exploiting the binomial reduction polynomial f.

Let $f(x) = x^m - b$ be an irreducible binomial reduction polynomial j. Let $f(x) = x^m - b$ be an irreducible binomial over \mathbb{F}_5 . Then b = 2, 3 by Theorem 2. If $m \equiv j \pmod{5}$ then m = 5u + j and $z^m - b = z^{5u+j} - b = 0$. Thus, $z^u z^{j/5} = b$, and $-bz^u = z^{-j/5}$ since for $b = 2, 3 \in \mathbb{F}_5$, $(b)^{-1} = -b$. Let e be the smallest positive integer such that $ej \equiv -1 \pmod{5}$, then $(-b)^e z^{eu} = z^{-ej/5}$, and

$$z^{1/5} = (-b)^e z^{eu + (ej+1)/5}$$

The Hamming weight of $z^{1/5}$ is 1 in all cases. We give all values of e and j and note, in particular, that eu + (ej + 1)/5 < m:

e	j	(ej + 1)/5
1	4	1
2	2	1
3	3	2
4	1	1

We follow the notation and language introduced by Ahmadi et al. [1]: we denote by $\gg s$ a cyclic right bit shift by s positions. Let $\gamma = eu + (ej + 1)/5$. Since $z^m = b$, the shift introduces a new scaling by b every time a bit cycles from the (m - 1)th to the 0th position. We express α by

$$\alpha = d_0 + (-b)^e d_1^{\gg \gamma} + (-b)^{2e} d_2^{\gg 2\gamma} + (-b)^{3e} d_3^{\gg 3\gamma} + (-b)^{4e} d_4^{\gg 4\gamma}.$$
 (1)

The computation of α is sped by the precomputation and storage of the coefficients introduced before each d_k term in Equation (1). The precise value of these coefficients is determined by the value of γ , that is, by the total number of shifts introduced.

Example 1 Let q = p = 5, then Theorem 2 gives that there exists an irreducible binomial for $m = 32 = 6 \cdot 5 + 2$. In this case $\gamma = 13$. Let $c \in \mathbb{F}_{5^{32}}$, and let $\alpha = c^{1/5}$. In the computation of α we need to perform shifts by $k\gamma$ elements, for k = 1, 2, 3, 4, as shown in Equation (1). For k = 1 the shift by γ elements introduces a scaling by b for the last γ elements of d_1 . For k = 2 the shift by 2γ requires a single scaling by b for the last 2γ elements of d_2 , since $2\gamma = 26 < m$. For k = 3, we need to scale each element of d_3 by b and the final $3\gamma - m$ elements of d_3 by an additional factor of b. The k = 4case is the same, where each element of d_4 needs to be scaled by a factor of b and the final $4\gamma - m$ elements need to be scaled by an additional b.

In total, we need to store $(-b)^e$, $(-b)^{e+1}$, $(-b)^{2e}$, $(-b)^{2e+1}$, $(-b)^{3e+1}$, $(-b)^{3e+2}$, $(-b)^{4e+1}$, $(-b)^{4e+2}$, or a total of 8 elements of \mathbb{F}_5 .

We always have a storage requirement associated with 8 computations of elements in \mathbb{F}_5 , though the precise values needed depend on the value of γ .

The fifth-root computation of $c, c \in \mathbb{F}_{5^m}$, requires in total, after a precomputation of 8 elements, at most $4\lceil m/5 \rceil$ additions in \mathbb{F}_{5^m} in the case where the shifts cause every vector to be aligned in the same position modulo 5, and 4 scalar multiplications of elements in \mathbb{F}_{5^m} by elements in \mathbb{F}_5 . If $\gamma \equiv 0 \pmod{5}$ no addition is required.

3.2 The General Case

The technique presented for the q = p = 5 case generalizes naturally to all $q \ge 5$.

Theorem 3 Let q be a power of an odd prime p and let m be a positive integer such that there exists an irreducible binomial $x^m - b$ over \mathbb{F}_q , as given by Theorem 2. Let e be the multiplicative order of $b \in \mathbb{F}_q$. After a precomputation of 2(p-1) elements in \mathbb{F}_q , the pth root of an element $c \in \mathbb{F}_{q^m}$ requires p-1 scalar multiplications of elements in \mathbb{F}_{q^m} by elements in \mathbb{F}_q . In addition, the computation requires at most $(p-1)\lceil m/p \rceil$ additions in \mathbb{F}_{q^m} .

Proof Let q be a power of an odd prime p and let m be a positive integer such that there exists an irreducible binomial of degree m over \mathbb{F}_q . Suppose we know the factorization of m; this is not a problem in practice since m is small in applications. Then using Theorem 2 we find an irreducible binomial over \mathbb{F}_q of degree m.

Suppose $f(x) = x^m - b$ is irreducible over \mathbb{F}_q . Let $c \in \mathbb{F}_{q^m}$, and let $\alpha = c^{1/p}$. Let z be a root of f; then $\{1, z, z^2, \ldots, z^{m-1}\}$ form a basis of \mathbb{F}_{q^m} over \mathbb{F}_q . We write

$$c = \sum_{i=0}^{m-1} c_i z^i$$

and follow the same process as above. If C_j is the *j*th coset of \mathbb{Z}_m modulo *p*, so that for $i \in C_j$, $i - j \equiv 0 \pmod{p}$, then

$$\alpha = \sum_{j=0}^{p-1} z^{j/p} \sum_{i \in C_j} c_i z^{(i-j)/p}.$$

Let $d_i = \sum_{i \in C_j} c_i z^{(i-j)/p}$ and hence we have

$$\alpha = d_0 + z^{1/p} d_1 + \dots + z^{(p-1)/p} d_{p-1}.$$

What remains is to precompute $z^{1/p}, z^{2/p}, \ldots, z^{(p-1)/p}$.

If $m \equiv j \pmod{p}$ then m = pu + j and $z^m - b = z^{pu+j} - b = 0$. Thus, $z^u z^{j/p} = b$. Then, $b^{-1}z^u = z^{-j/p}$. Let e be the smallest positive integer such that $ej \equiv -1 \pmod{p}$, then $b^{-e}z^{eu} = z^{-ej/p}$, and

$$z^{1/p} - b^{-e} z^{eu+(ej+1)/p}$$

The Hamming weight of $z^{1/p}$ is 1 in all cases.

As before, we denote $\gg\!\!s$ to be a right bit shift by s positions. Let $\gamma=eu+(ej+1)/p,$ then

$$\alpha = d_0 + b^{-e} d_1^{\gg \gamma} + \dots + b^{-(p-1)e} d_{p-1}^{\gg (p-1)\gamma}.$$

Since $z^m = b$, as before, the shift introduces a new scaling by b for each time a bit cycles from the (m-1)th to the 0th position. Since $\gamma = eu + (ej+1)/p$, we have that

$$p\gamma = peu + ej + 1 = e(pu + j) + 1 = em + 1,$$

and so $\gamma = (em + 1)/p < m$. For any positive integer $k \leq p - 1$, if $k\gamma = tm + i$, where $0 \leq i < m$, then the shift of d_k by $k\gamma$ elements introduces a scalar multiplication by b^t for the first m - i elements of d_k and a multiplication by b^{t+1} for the final *i* elements of d_k . The computation of α is sped by the precomputation of all the b^{-ke+t} and $b^{-ke+t+1}$, where $1 \leq k \leq p - 1$ and *t* is given by $k\gamma = tm + i$. Hence, this requires in total a precomputation of 2(p-1) elements in \mathbb{F}_q .

Each sum d_j has non-zero terms only on the $j \pmod{p}$ positions, so if $\gamma \equiv 0 \pmod{p}$, no additions are performed. Otherwise, in the worst case we can assume that each sum is shifted to align with the first position, creating p-1 additions of sums with at most $\lceil m/p \rceil$ terms. The ceiling function is used to cover every case regardless of the value of $m \pmod{p}$.

Thus, after precomputation, the *p*th root operation using a binomial reduction polynomial requires p-1 scalar multiplications of elements in \mathbb{F}_{q^m} by elements in \mathbb{F}_q . In addition, the computation requires at most $(p-1)\lceil m/p \rceil$ additions in the extension field. If $\gamma \equiv 0 \pmod{p}$ then there is no addition required.

4 Conclusions

We present a method for computing pth roots of elements in finite fields \mathbb{F}_{q^m} of odd characteristic $p, p \geq 5$, by taking advantage of the structure introduced by using an irreducible binomial of degree m as the reduction polynomial. The computational cost of our method requires p-1 scalar multiplications of elements in \mathbb{F}_{q^m} by elements in \mathbb{F}_q . In addition, the computation requires at most $p-1\lceil m/p\rceil$ additions in the extension field. Our method also requires a precomputation of 2(p-1) elements in \mathbb{F}_q .

We relate our result in higher characteristic to the work of Barreto [2] and Ahmadi et al. [1] using trinomials in characteristic 3. Ahmadi et al. show that the Hamming weight of $x^{1/3}$, where x is a root of an irreducible trinomial over \mathbb{F}_3 , is greater than 1 in almost all cases. In every case we show that the Hamming weight of $z^{1/p}$, where z is a root of an irreducible binomial over a finite field of odd characteristic $p \ge 5$, is always equal to 1.

Theorem 2 determines for which degrees m we have irreducible binomials over \mathbb{F}_q . Our method of root computation is applicable wherever such a binomial exists. In the absence of irreducible binomials over \mathbb{F}_q , what remains for further work is to find the lowest weight irreducible polynomial of a given degree m. In these cases, the pth roots may be computed using the so-called folklore algorithm, as above and in [1,2]. Then, explicit forms for $z^{1/p}$ can be found, where z is a root of the irreducible polynomial. When there are many irreducible polynomials with the smallest number of nonzero terms, the one the one which yields the lowest weight of $z^{1/p}$ is preferred to minimize the computational cost.

References

- O. Ahmadi, A. Menezes and D. Hankerson, Formulas for cube roots in F_{3^m}, Discrete Applied Mathematics, Vol. 155 (2007), pp. 260-270.
- P. S. L. M. Barreto, A note on efficient computation of cube roots in characteristic 3, Cryptology ePrint Archive, no. 2004/305 (2004).
- 3. P. S. L. M. Barreto, B. Lynn and M. Scott, Efficient implementation of pairing-based cryptosystems, Journal of Cryptology, Vol. 17 (2004), pp. 321-334.
- 4. I. M. Duursma and H.-S. Lee, Tate pairing implementation for Hyperelliptic Curves $y^2 = x^p x + d$, Asiacrypt 2003, LNCS 2894, Springer-Verlag (2003), pp 111-123.
- J. von zur Gathen and D. Panario, A survey on factoring polynomials over finite fields, Journal of Symbolic Computation, Vol. 31, (2001), pp 3-17.
- 6. R. Harasawa, Y. Sueyoshi and A. Kudo, Ate pairing for $y^2 = x^5 \alpha x$ in characteristic five, Cryptology ePrint archive, no. 2006/202 (2006).
- R. Lidl and H. Neiderreiter, Finite Fields (2nd ed.), Cambridge University Press, Cambridge UK. 1997.
- A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996.
- 9. G. Seroussi, Table of low-weight irreducible polynomials, HP Labs Technical Report, no. HPL-98-135 (1998).
- R. G. Swan, Factorization of polynomials over finite fields, Pacific Journal of Mathematics, Vol. 12, no. 3 (1962), pp 1099-1106.
- 11. K. Wang and B. Li, Computation of Tate pairing for supersingular curves over characteristic 5 and 7, Cryptology ePrint Archive, no. 2005/374 (2005).