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Abstract

Let Fq be a finite field and consider an extension Fqn where an optimal normal
element exists. Using the trace of an optimal normal element in Fqn , we provide
low complexity normal elements in Fqm , with m = n/k. We give theorems for
Type I and Type II optimal normal elements. When Type I normal elements are
used with m = n/2, m odd and q even, our construction gives Type II optimal nor-
mal elements in Fqm ; otherwise we give low complexity normal elements. Since
optimal normal elements do not exist for every extension degree m of every fi-
nite field Fq, our results could have a practical impact in expanding the available
extension degrees for fast arithmetic using normal bases.

1 Introduction
Let Fq be a finite field of any characteristic. Let us consider an extension Fqn of Fq and
an element α ∈ Fqn . A normal basis of Fqn over Fq is a basis of the form

N = {α,αq, . . . ,αqn−1}.

In this case, we say that α is a normal element of Fqn , or that α generates the normal
basis N. It is well-known that normal bases exist in any finite extension of a finite
field [5].

Let αi = αqi
for 0≤ i≤ n−1, and let T = (ti j) be the n×n matrix given by

ααi =
n−1

∑
j=0

ti jα j, 0≤ i≤ n−1, ti j ∈ Fq. (1)

The complexity of the normal basis N, denoted by cN , is the number of non-zero entries
in T . Mullin et al. [13] proved that cN ≥ 2n−1. The normal basis N is optimal when
cN = 2n−1.

Optimal normal elements do not exist for all finite fields and all extensions (see [6],
Chapter 3, for example). Optimal normal bases over finite fields were completely char-
acterized in a fundamental paper due to Gao and Lenstra [4]; see also [3]. Suppose
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n + 1 is a prime and q a primitive element of Zn+1, where q is a prime or a prime
power. Then the n non-unit (n + 1)th roots of unity are linearly independent and they
form an optimal normal basis of Fqn over Fq. Bases of this type are called Type I op-
timal normal bases. Next, suppose 2n+1 is prime, and either 2 is a primitive element
of Z2n+1, or 2n+1≡ 3 mod 4 and 2 generates the quadratic residues in Z2n+1. Then
α = γ + γ−1 generates a Type II optimal normal basis of F2n over F2, where γ is a
primitive (2n+1)th root of unity [3]. These constructions were first given in [13]. Gao
and Lenstra [4] proved that any optimal normal basis must be equivalent to a Type I or
Type II optimal normal basis.

Normal bases are widely used in applications of finite fields in areas such as coding
theory, cryptography, signal processing, and so on; see for instance [9]. In particular,
optimal normal bases are desirable. When no optimal normal basis exists, it is use-
ful to have normal elements of low complexity, say of complexity bounded by cn for
some small constant c. However, when no optimal normal basis exists, the problem of
classifying all low complexity normal bases is still open. Young and Panario [16] gave
experimental results that strongly imply that low complexity normal elements over fi-
nite fields of characteristic 2 with complexity up to 3n only occur in finite fields with
an optimal normal element. They also provide some characterizations of low com-
plexity normal elements in F2n . Wan and Zhou [15] extended parts of their results for
finite fields of odd characteristic. Interesting constructions of low complexity normal
elements are in [1, 2]

In this paper we study the complexity of the trace of an optimal normal element in
Fqn . We provide low complexity normal elements in Fqm , with m = n/k and k≥ 2. We
give theorems for Type I optimal normal elements when q is odd and when q = 2. In
the case of even characteristic, only the case q = 2 is considered, as this stands out from
a practical point of view. An immediate consequence of our main theorems for Type I
elements is that when m = n/2, m odd and q even, our construction provides optimal
normal elements in Fqm . Otherwise we give low complexity normal elements with
worse and worse complexities as k grows. We also give the equivalent results for Type
II optimal normal elements. We then give complexities for the dual bases generated by
the traces of Type I and Type II normal elements. We compare our constructions with
the NIST-recommended normal bases [14] for elliptic curve cryptography. Our results
may have a practical impact since they provide good normal elements for extensions
where no optimal normal element exist.

2 Main results

2.1 Type I optimal normal bases: q odd
Theorem 2.1 Let α ∈ Fqn generate an optimal normal basis of Type I of Fqn over Fq,
q odd, and let β = Trqn/qm(α) ∈ Fqm with m = n/k and k ≤ m. Then, the complexity of
the normal basis of Fqm over Fq generated by β is bounded by (k +2)m−3k +1, if m
is even and k is odd and by (k +1)m− k in all other cases.

Furthermore, for 1 ≤ j ≤ m− 1, row j of the multiplication table of β is a cyclic
permutation of j positions of row (m− j).
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PROOF. Let n + 1 be a prime, q a primitive root modulo n + 1 where q is a prime
or a prime power, q is odd and α ∈ Fqn an optimal normal element of Fqn over Fq.
Let N = {α,αq,αq2

, . . . ,αqn−1} be the optimal normal basis of Fqn over Fq which is
generated by α .

The multiplication table C[n×n] of the linear map

Cα : Fqn → Fqn , Cα(x) = α · x

has exactly 2n−1 non-zero terms with the following properties:

α ·αqi
= α

q j
, i = 0,1, . . . ,

n
2
−1,

n
2

+1, . . . ,n−1, j = 0,1, . . . ,n−1, (2)

α ·αqn/2
=

n−1

∑
s=0
−α

qs
. (3)

The above equations imply that there is exactly one 1 in each row except for the row
n/2, when n is even, where all the n entries are -1.

Suppose that β = Trqn/qm(α) ∈ Fqm with m = n/k. Then,

β = Trqn/qm(α) =
k−1

∑
i=0

α
qmi

= α +α
qm

+α
q2m

+ · · ·+α
q(k−1)m

,

generates a normal basis M of Fqm over Fq of the form

M = {β ,β q,β q2
, . . . ,β qm−1}.

We observe that, for j = 0, . . . ,m−1, we have

β
q j

=
k−1

∑
i=0

α
qmi+ j

= α
q j

+α
q j+m

+ · · ·+α
q j+(k−1)m

.

Let D = D[m×m] be the multiplication table of the linear map

Dβ : Fqm → Fqm , Dβ (x) = β · x.

The first row of the table D is given by

β ·β =

(
k−1

∑
i=0

α
qmi

)
·

(
k−1

∑
i=0

α
qmi

)

=
k−1

∑
i=0

(α ·α)qmi
+

k−1

∑
i=0

(
α ·αqm

)qmi

+ · · ·+
k−1

∑
i=0

(
α ·αq(km)/2

)qmi

+ · · ·+
k−1

∑
i=0

(
α ·αq(k−1)m

)qmi

.

Using (2) and (3), there are µ0,µ1, . . . ,µk−2 ∈ Zn such that

α ·α = α
qµ0

, α ·αqm
= α

qµ1 , . . . ,α ·αq(k−1)m
= α

qµk−2
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and

k−1

∑
i=0

(
α ·αqn/2

)qmi

=
k−1

∑
i=0

(
−

n−1

∑
s=0

α
qs

)qmi

=
k−1

∑
i=0

(
−

m−1

∑
s=0

β
qs

)qmi

=−k
m−1

∑
s=0

β
qs

.

Thus, we get

β ·β =
k−1

∑
i=0

(
α

qµ0
)qmi

+
k−1

∑
i=0

(
α

qµ1
)qmi

+ · · ·+
k−1

∑
i=0

(
α

qµk−2
)qmi

− k
m−1

∑
s=0

β
qs

= β
qµ0 +β

qµ1 + · · ·+β
qµk−2 − k(β +β

q + · · ·+β
qm−1

)

= −kβ − kβ
q + · · ·+(1− k)β qµ0 +(1− k)β qµ1 + · · ·+(1− k)β qµk−2

+ · · ·+(−k)β qm−1
.

The coefficients of β q j
are computed modulo q, so the first row of the table has at most

m non-zero terms.
Then, we calculate the remaining rows j = 1, . . . ,m−1 of the table by computing

β ·β q j
=

(
k−1

∑
i=0

α
qmi

)
·

(
k−1

∑
u=0

α
qmu+ j

)
= ∑

0≤u,i≤k−1

(
α

qmi
)(

α
qmu+ j

)
=

k−1

∑
i=0

(
α ·αq j

)qim

+
k−1

∑
i=0

(
α ·αq j+m

)qim

+ · · ·+
k−1

∑
i=0

(
α ·αq j+(k−1)m

)qim

.

By (2) there are λ0,λ1, . . . ,λk−1 ∈ Zn such that

α ·αq j
= α

qλ0
, α ·αq j+m

= α
qλ1 , . . . , α ·αq j+(k−1)m

= α
qλk−1

, (4)

which implies,

β ·β q j
=

k−1

∑
i=0

(
α

qλ0
)qim

+
k−1

∑
i=0

(
α

qλ1
)qim

+ · · ·+
k−1

∑
i=0

(
α

qλk−1
)qim

= β
qλ0 +β

qλ1 + · · ·+β
qλk−1

.

Finally, for the row (m− j) of the table D, we have

β ·β qm− j
=

k−1

∑
i=0

(
α ·αqm− j

)qim

+
k−1

∑
i=0

(
α ·αq2m− j

)qim

+ · · ·+
k−1

∑
i=0

(
α ·αq− j

)qim

.

Using the identities (4) it follows that

β ·β qm− j
= β

qλk−1+m− j
+β

qλk−2+2m− j
+ · · ·+β

qλ0− j
,
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and since β qm
= β we get

β ·β qm− j
= β

qλk−1− j
+β

qλk−2− j
+ · · ·+β

qλ0− j
.

Thus, the row j of the multiplication table of β is a cyclic permutation of j positions
of row (m− j).

If m = n/k is an even number, to calculate the row m/2 of the table D we must
consider both the cases where k is even and where k is odd. For the odd case we have

β ·β qm/2
=

(
k−1

∑
i=0

α
qmi

)
·

(
k−1

∑
u=0

α
qmu+m/2

)
= ∑

0≤u,i≤k−1

(
α

qmi
)(

α
qmu+m/2

)
=

k−1

∑
i=0

(
α ·αqm/2

)qim

+
k−1

∑
i=0

(
α ·αqm/2+m

)qim

+ · · ·

+
k−1

∑
i=0

(
α ·αqm/2+m(k−1)/2

)qim

+ · · ·+
k−1

∑
i=0

(
α ·αqm/2+(k−1)m

)qim

=
k−1

∑
i=0

(
α ·αqm/2

)qim

+
k−1

∑
i=0

(
α ·αqm/2+m

)qim

+ · · ·

+
k−1

∑
i=0

(
α ·αqn/2

)qim

+ · · ·+
k−1

∑
i=0

(
α ·αqm/2+(k−1)m

)qim

. (5)

By (2) and (3), there are δ0,δ1, · · · ,δk−2 ∈ Zn such that

β ·β qm/2
= β

qδ0 +β
qδ1 + · · ·+(−β −β

q−β
q2 −·· ·−β

qm−1
)+ · · ·+β

qδk−2
.

Thus, the row m/2 in this case has at most m− k + 1 non-zero terms. For the case
where k is even, the computations of (5) are similar to the calculations involving the
identities (4) above, and yield at most k non-zero terms.

In conclusion, we observe that an upper bound for the complexity of the normal
basis of Fqm over Fq generated by β , when m is even and k is odd, is k(m−2)+2m−
k + 1 = (k + 2)m− 3k + 1 since the first row of the table gives at most m non-zero
entries, the m/2 row gives at most m− k + 1 entries and all other rows give at most k
entries. In all other cases, the upper bound for the complexity of the normal basis is
k(m−1)+m = (k+1)m−k, since the first row gives at most m non-zero terms and all
other rows give at most k non-zero terms.

2.2 Type I optimal normal basis: q even
Theorem 2.2 Let α ∈ F2n generate an optimal normal basis of Type I of F2n over F2,
n > 2, and let β = Tr2n/2m(α)∈F2m with m = n/k and k≤m. Then, an upper bound for
the complexity of the normal basis of F2m over F2 generated by β is (k +1)m−3k +2
if m is even and k is odd, or km− k +1 otherwise.
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Furthermore, for 1 ≤ j ≤ m− 1 row j of the multiplication table of β is a cyclic
permutation of j positions of row (m− j).

PROOF. We observe that the proof of this claim is nearly identical to the case where q
is odd except for the following changes.

Let n+1 be a prime, 2 a primitive root modulo n+1, and let α ∈ F2n be an optimal
normal element of F2n over F2. Let N = {α,α2,α22

, . . . ,α2n−1} be the optimal normal
basis of F2n over F2 which is generated by α .

The multiplication table C[n×n] of the linear map

Cα : F2n → F2n , Cα(x) = α · x

has exactly 2n−1 non-zero terms with the following properties:

α ·α2i
= α

2 j
, i = 0,1, . . . ,

n
2
−1,

n
2

+1, . . . ,n−1, j = 0,1, . . . ,n−1, (6)

α ·α2n/2
=

n−1

∑
s=0
−α

2s
=

n−1

∑
s=0

α
2s

. (7)

The above equations imply that there is exactly one 1 in each row except for the row
n/2 where all the n entries are 1.

Suppose that β = Tr2n/2m(α) ∈ F2m with m = n/k. Then,

β = Tr2n/2m(α) =
k−1

∑
i=0

α
2mi

= α +α
2m

+α
22m

+ · · ·+α
2(k−1)m

,

generates a normal basis M of F2m over F2 of the form

M = {β ,β 2,β 22
, . . . ,β 2m−1}.

We have that, for j = 0, . . . ,m−1,

β
2 j

=
k−1

∑
i=0

α
2mi+ j

= α
2 j

+α
2 j+m

+ · · ·+α
2 j+(k−1)m

.

Let D = D[m×m] be the multiplication table of the linear map

Dβ : F2m → F2m , Dβ (x) = β · x.

The first row of the table D is given by β ·β = β 2. Thus, the first row of the table D
has a 1 in the second position.

If m = n/k is an even number then for the row m/2 of the table, by (5), we have
that this row contributes at most m− k +1 ones to D if k is odd, and at most k ones to
D if k is even.

For the remaining rows the proof is identical to the q odd case. We recall that each
of the remaining rows contributes to the complexity with at most k non-zero entries.
The proof that row j of the multiplication of β is a cyclic permutation of j positions of
row (m− j) is also identical to the q odd case.
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In conclusion, we observe that an upper bound for the complexity of the normal
basis of F2m over F2 generated by β , when m is odd or if both m and k are even, is
k(m− 1)+ 1 = km− k + 1. Otherwise, if m is even and k is odd, the complexity is at
most k(m−2)+m− k +2 = (k +1)m−3k +2.

Corollary 2.3 Let α ∈ F2n generate an optimal normal basis of Type I of F2n over F2,
n > 2, and let β = Tr2n/2m(α) ∈ F2m with m = n/2, m odd. Then β generates a Type II
optimal normal basis of F2m over F2.

PROOF. The complexity comes as a direct application of Theorem 2.2 when k = 2 and
m odd. To see that the basis forms a Type II normal basis, we observe that each row
has exactly two ones. For every j = 1, . . . ,m−1, we compute

β ·β 2 j
=

(
α +α

2m
)
·
(

α
2 j

+α
2m+ j

)
=

(
α ·α2 j

+
(

α ·α2 j
)2m)

+α ·α2m+ j
+α

2m ·α2 j

=
(

α ·α2 j
+
(

α ·α2 j
)2m)

+α ·α2m+ j
+
(

α ·α2m+ j−2m
)2m

=
(

α ·α2 j
+
(

α ·α2 j
)2m)

+α ·α2m+ j
+
(

α ·α2m+ j2−n
)2m

=
(

α ·α2 j
+
(

α ·α2 j
)2m)

+
(

α ·α2m+ j
+
(

α ·α2m+ j
)2m)

. (8)

Similar to Theorem 2.1, there exist µ,λ with 0≤ µ,λ ≤ m−1, such that

α ·α2 j
= α

2µ

and α ·α2 j+m
= α

2λ

.

This in turn implies

β ·β 2 j
= β

2µ

+β
2λ

, j = 1, . . . ,m−1.

This is precisely the form of a Type II optimal normal basis.

We observe that another proof of this corollary is possible by using the respective
conditions for existence of Type I and Type II optimal normal bases. Indeed, we recall
that if F2n contains a Type I optimal normal basis over F2, then n+1 is a prime and 2
generates the group Zn+1. There are two conditions for F2m to contain a Type II optimal
normal basis over F2. In particular, one of these conditions is that 2m+1 is prime and
2 generates the group Z2m+1. If we consider n = 2m, then the Type II condition for F2m

over F2 is precisely the Type I condition for F2n over F2.

2.3 Type II optimal normal bases
Theorem 2.4 Let α generate a Type II optimal normal basis of F2n over F2 and let
β = Tr2n/2m(α) ∈ F2m with m = n/k and k ≤ m. Then the complexity of the normal
basis of F2m over F2 generated by β is 2km−2k +1.
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PROOF. Let 2n+1 be prime, and suppose that either

1. 2 is a primitive element of Z2n+1, or

2. 2n+1≡ 3 mod 4 and 2 generates the quadratic residues in Z2n+1.

Let α = γ +γ−1, where γ is a primitive (2n+1)th root of unity. Let N = {α,α2,α22
, . . . ,

α2n−1} be the optimal normal basis of F2n over F2 which is generated by α .
The multiplication table C[n×n] of the linear map

Cα : F2n → F2n , Cα(x) = α · x

has exactly 2n−1 non-zero terms with the following property:

α ·α2i
= α

2 j
+α

2k
, i = 1, . . . ,n−1, j,k = 0,1, . . . ,n−1 , j 6= k. (9)

Therefore, there are exactly two ones in each row of C except for the first row, where
there is one 1 in the second position.

Suppose that β = Tr2n/2m(α) ∈ F2m with m = n/k. Then,

β = Tr2n/2m(α) =
k−1

∑
i=0

α
2mi

= α +α
2m

+α
22m

+ · · ·+α
2(k−1)m

generates a normal basis M of F2m over F2 of the form

M = {β ,β 2,β 22
, . . . ,β 2m−1}.

We observe that, for j = 0, . . . ,m−1, we have

β
2 j

=
k−1

∑
i=0

α
2 j+mi

= α
2 j

+α
2 j+m

+ · · ·+α
2 j+(k−1)m

.

Let D = D[m×m] be the multiplication table of the linear map

Dβ : F2m → F2m , Dβ (x) = β · x.

The first row of the table D is given by β ·β = β 2. Thus, it has 1 non-zero term in the
second position.

As in Theorem 2.2, computing the jth row of D gives

β ·β 2 j
=

k−1

∑
i=0

(
α ·α2 j

)2mi

+
k−1

∑
i=0

(
α ·α2 j+m

)2mi

+ · · ·+
k−1

∑
i=0

(
α ·α2 j+(k−1)m

)2mi

.

By (9), there exist λi,µi ∈ Zn such that α ·α2 j+mi = α2λi +α2µi , i = 0, . . . ,k−1. So,

β ·β 2 j
=

k−1

∑
i=0

(
α

2λ0 +α
2µ0
)2mi

+ · · ·+
k−1

∑
i=0

(
α

2λk−1 +α
2µk−1

)2mi

= β
2λ0 +β

2µ0 + · · ·+β
2λk−1 +β

2µk−1
.
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Thus, there are 2k ones appearing in each remaining row of D.
In conclusion, we observe that the complexity of the basis generated by β ∈ F2m

over F2 is 2k(m−1)+1.

The following corollary shows that, in contrast with the case Type I normal basis
and q even, we do not obtain optimal normal elements for Type II normal basis. Hence,
this corollary gives new low complexity normal elements for q even.

Corollary 2.5 Let α generate a Type II optimal normal basis of F2n over F2 and let
β = Tr2n/2m(α) ∈ F2m with m = n/2. Then the complexity of the normal basis of F2m

over F2 generated by β is 4m−3.

3 The dual of the trace of an optimal element
Let N = {α,α1, . . . ,αn−1} be a normal basis of Fqn over Fq and M = {γ,γ1, . . . ,γn−1}
be another basis. Then M is the dual basis of N if Tr(αiγ j) = δi j for 1 ≤ i, j ≤ n− 1
where δi j is the Kronecker delta function. It is known that the dual basis of a normal
basis is again normal [3], so let γi = γqi

. A basis is self-dual if it is its own dual basis.
If α generates a normal basis N of Fqn over Fq and γ generates the dual basis of N then
γ is a dual element of α .

Theorem 3.1 gives the statement and proof of an upper bound of the complexity of
the dual basis of the trace of a Type I optimal normal basis when q is odd. Following
the proof we present a statement of the theorem using Type II optimal normal bases
and a summary table outlining upper bounds for any q and for both Type I and Type II
optimal normal bases.

Theorem 3.1 Let α ∈ Fqn generate an optimal normal basis of Type I of Fqn over
Fq and let β = Trqn/qm(α) ∈ Fqm with m = n/k, k ≤ m and (k,q) = 1 or (k, p) = 1,
when q is a prime power of p. Then the complexity of the normal basis of Fqm over Fq
generated by γ, which is the dual element of β , is (k+2)m−2 when m is odd. Further,
for 1 ≤ j ≤ m− 1 row j of the multiplication table of γ is a cyclic permutation of j
positions of row (m− j).

PROOF. As in Theorem 2.1, let α ∈Fqn generate an optimal normal basis of Type I and
β = Trqn/qm(α) ∈ Fqm with m = n/k. Let γ ∈ Fqm be a dual element of β . According
to [15], γ is of the form

γ = d0β +d1β
q + · · ·+dm−1β

qm−1
,

where d0,d1, . . . ,dm−1 ∈Fq are the coefficients of the unique polynomial g(x) of degree
≤ m−1 satisfying

g(x)h(x)≡ 1 mod xm−1

and h(x) is of degree ≤ m−1 with coefficients t0, t1, . . . , tm−1 where

ti = Trqm/q(β ·β qi
), i = 0,1, . . . ,m−1.
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Since, Trqn/q(α) =−1 and (k,q) = 1 we get

Trqm/q(β ) =
m
n

Trqn/q(β ) =
m
n

Trqn/q(α +α
q + . . .+α

qn−1) =

=
m
n
· k ·Trqn/q(α) =

1
k
· k · (−1) =−1.

Observing that γ = d0β + d1β q + · · ·+ dm−1β qm−1
is the dual element of β ∈ Fqm it

follows that

Trqm/q(β
qi · γq j

) =
{

1, if i = j,
0, otherwise.

The above equation for i = 0 and j = 0, . . . ,m−1 implies the following system:

d0Trqm/q(β ·β ) + d1Trqm/q(β ·β qi
) + . . . + dm−1Trqm/q(β ·β qm−1

) = 1
dm−1Trqm/q(β ·β ) + d0Trqm/q(β ·β qi

) + . . . + dm−2Trqm/q(β ·β qm−1
) = 0

...
...

...
...

d1Trqm/q(β ·β ) + d2Trqm/q(β ·β qi
) + . . . + d0Trqm/q(β ·β qm−1

) = 0

Summing the equations of the system we get,

(d0 +d1 + . . .+dm−1)
(

Trqm/q

(
β ·
(

β +β
q + . . .+β

qm−1
)))

= 1.

Therefore, we have

(d0 +d1 + . . .+dm−1)

(
Trqm/q

(
β ·

(
m−1

∑
i=0

β
qi

)))
= 1,

(d0 +d1 + . . .+dm−1)
(
Trqm/q (β )

)2 = 1,

(d0 +d1 + . . .+dm−1)(−1)2 = 1.

Thus, we get the following relation for the coefficients of γ ∈ Fqm

d0 +d1 + · · ·+dm−1 = 1.

We compute t0 = Trqm/q(β ·β ) separately from ti = Trqm/q(β ·β qi
), i = 1, . . . ,m−1,

t0 = Trqn/k/q(β ·β ) =
1
k

Trqn/q(β ·β ) =
1
k

Trqn/q

((k−1

∑
i=0

α
qmi
)(k−1

∑
i=0

α
qmi
))

=
1
k

Trqn/q

(
k−1

∑
i=0

(α ·α)qmi
+

k−1

∑
i=0

(
α ·αqm

)qmi

+ · · ·+
k−1

∑
i=0

(
α ·αq(km)/2

)qmi

+

+ · · ·+
k−1

∑
i=0

(
α ·αq(k−1)m

)qmi
)

.
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Using (2),(3) there are µ0,µ1, . . . ,µk−2 ∈ Zm such that

α ·α = α
qµ0

,α ·αqm
= α

qµ1 , . . . ,α ·αq(k−1)m
= α

qµk−2
.

Thus

t0 =
1
k

Trqn/q

(
k−1

∑
i=0

(
α

qµ0
)qmi

+
k−1

∑
i=0

(
α

qµ1
)qmi

+ · · ·+ k + · · ·+
k−1

∑
i=0

(
α

qµk−2
)qmi

)

=
1
k

(
k−1

∑
i=0

Trqn/q

(
α

qµ0
)qmi

+
k−1

∑
i=0

Trqn/q

(
α

qµ1
)qmi

+ · · ·+Trqn/q(k)+ · · ·+

+ · · ·+
k−1

∑
i=0

Trqn/q

(
α

qµk−2
)qmi

)

=
1
k

((−k)+(−k)+ · · ·+ kn+ · · ·+(−k))

=
1
k

((−k)(k−1)+ kn)) = n− k +1.

Now, we calculate ti = Trqm/q

(
β ·β qi

)
, i = 1, . . . ,m− 1. By Theorem 2.1, there are

λ0,λ1, ...,λk−1 ∈ Zm such that

β ·β qi
= β

qλ0 +β
qλ1 + · · ·+β

qλk−1
.

We have

ti = Trqm/q

(
β ·β qi

)
= Trqm/q

(
β

qλ0 +β
qλ1 + · · ·+β

qλk−1
)

= Trqm/q

(
β

qλ0
)

+Trqm/q

(
β

qλ1
)

+ · · ·+Trqm/q

(
β

qλk−1
)

= (−1)+(−1)+ · · ·+(−1) =−k.

This implies
h(x) =−k

(
xm−1 + xm−2 + · · ·+ x

)
+n− k +1.

We may compute di, i = 1, . . . ,m−1, by rephrasing the condition

g(x)h(x)≡ 1 mod xm−1

as
m−1

∑
k=0

dkti−k =
{

1, if i = 0,
0, otherwise,

which is equivalent to the following system:

d0t0 + d1t−1 + · · · + dm−1t−(m−1) = 1
d0t1 + d1t0 + · · · + dm−1t−(m−2) = 0

...
...

...
...

d0tm−2 + d1tm−1 + · · · + dm−1t−1 = 0
d0tm−1 + d1tm−2 + · · · + dm−1t0 = 0.
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The indices of the ti’s are computed modulo m, and the di ∈ Fq are found by solving
the system

(n− k +1) −k . . . −k −k
−k n− k +1 . . . −k −k
... . . . . . .

...
...

−k −k . . . (n− k +1) −k
−k −k . . . −k (n− k +1)




d0
d1
...

dm−2
dm−1

=


1
0
...
0
0

 ,

which implies that

d0 =
k +1
n+1

, di =
k

n+1
, i = 1, . . . ,m−1.

Note that n+1 is a prime different from zero in Fq, and therefore has an inverse. Then
using that Trqm/q(β ) =−1 the dual element γ ∈ Fqm is:

γ =
k +1
n+1

β +
k

n+1

(
β

q +β
q2

+ · · ·+β
qm−1

)
=

1
n+1

β +
k

n+1

(
β +β

q +β
q2

+ · · ·+β
qm−1

)
=

1
n+1

β +
k

n+1
Trqm/q(β )

=
1

n+1
β − k

n+1
,

and γqi
= 1

n+1 β qi − k
n+1 , i = 0, . . . ,m−1.

Let C = C[m×m] be the multiplication table of the linear map

Cγ : Fqm → Fqm , Cγ(x) = γ · x.

By Theorem 2.1, there exist µ0,µ1, . . . ,µk−2 ∈ Zm such that

β ·β = β
qµ0 +β

qµ1 + · · ·+β
qµk−2 − k

(
β +β

q + · · ·+β
qm−1

)
.

The first row of the table C is given by:

γ · γ =
(

1
n+1

β − k
n+1

)
·
(

1
n+1

β − k
n+1

)
=

1
(n+1)2 β ·β − 2k

(n+1)2 β +
k2

(n+1)2

=
1

(n+1)

((
1

n+1
β

qµ0 − k
n+1

)
+ · · ·+

(
1

n+1
β

qµk−2 − k
n+1

)
− kTrqm/q(β )

)
+

k(k−1)
(n+1)2 −

2k
(n+1)2 β +

k2

(n+1)2

=
1

(n+1)

(
γ

qµ0 + γ
qµ1 + · · ·+ γ

qµk−2
)
− 2k

n+1
γ
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Thus, the first row of the table C has at most k non-zero terms. Next we prove that each
one of the remaining rows has at most k +2 non-zero terms. For every i = 1, ...,m−1
we compute

γ · γqi
=

(
1

n+1
β − k

n+1

)
·
(

1
n+1

β
qi − k

n+1

)
=

1
(n+1)2 β ·β qi − k

(n+1)2 β − k
(n+1)2 β

qi
+

k2

(n+1)2

=
1

(n+1)2

(
β

qλ0 +β
qλ1 + · · ·+β

qλk−1
)
− k

(n+1)2 β − k
(n+1)2 β

qi

+
k2

(n+1)2

=
1

(n+1)

(( 1
n+1

β
qλ0 − k

n+1

)
+ · · ·+

( 1
n+1

β
qλk−1 − k

n+1

))
+

+
2k2

(n+1)2 −
k

(n+1)2 β − k
(n+1)2 β

qi

=
1

(n+1)

(
γ

qλ0 + γ
qλ1 + · · ·+ γ

qλk−1
)
− k

n+1
γ− k

n+1
γ

qi
.

Hence, the multiplication table has at most (k+2) ·(m−1)+k = (k+2)m−2 non-zero
terms, so the complexity is at most (k +2)m−2.

Finally, for the row (m− i) of the table C, using Theorem 2.1 we get,

γ · γqm−i
=

(
1

n+1
β − k

n+1

)
·
(

1
n+1

β
qm−i − k

n+1

)
=

1
(n+1)2 β ·β qm−i − k

(n+1)2 β − k
(n+1)2 β

qm−i
+

k2

(n+1)2

=
1

(n+1)2

(
β

qλk−1−i + · · ·+β
qλ0−i

)
− k

(n+1)2 β − k
(n+1)2 β

qm−i

+
k2

(n+1)2

=
1

(n+1)

(( 1
n+1

β
qλk−1−i − k

n+1

)
+ · · ·+

( 1
n+1

β
qλ0−i − k

n+1

))
+

2k2

(n+1)2 −
k

(n+1)2 β − k
(n+1)2 β

qm−i

=
1

(n+1)

(
γ

qλk−1−i + · · ·+ γ
qλ0−i

)
− k

n+1
γ− k

n+1
γ

q−i
.

Thus, the row j of the multiplication table of γ is a cyclic permutation of j positions of
row (m− j).

We note that the above proof is analogous in the case where q is even with the
exception that the first row contributes only 1 to the complexity as γ · γ = γ2 is an
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element of the normal basis generated by γ . Also, when m is even, we must use the
bound that the m/2 row of the multiplication table C has at most m non-zero entries.
The resulting complexity for q odd is bounded above by (m− 2) · (k + 2) + m + k =
m(k +3)− k−4, and for q even is bounded above by (k +3)m−2k−3.

Recall that the coefficients, ti, of the polynomial h(x) defined in Theorem 3.1 are
given by

ti = Trqm/q

(
β ·β qi

)
, i = 0,1, . . . ,m−1.

If β generates a Type II optimal normal basis, by Theorem 2.4 there exist λi,µi ∈ Zn
such that

β ·β 2 j
= β

2λ0 +β
2µ0 + · · ·+β

2λk−1 +β
2µk−1

.

Thus, t0 = 1 and ti = 0 for 1≤ i≤ m−1. This provides the analogous result for Type
II optimal normal bases.

Theorem 3.2 Let α ∈ Fqn generate an optimal normal basis of Type II of Fqn over Fq
and let β = Trqn/qm(α) ∈ Fqm with m = n/k, k ≤ m. Then β is self-dual and conse-
quently the complexity of the dual basis of β is 2k(m−1)+1.

We summarize the results in this section in the following table.

Table 1: Upper bounds on complexities for Fqm obtained by the dual of the trace of
ONBs, where m = n/k.

Type I (q odd) Type I (q even) Type II (q even)
m odd (k +2)m−2 (k +2)(m−1)+1 2k(m−1)+1
m even (k +3)m− k−4 (k +3)m−2k−3 2k(m−1)+1

4 Existence of optimal extensions
A question that naturally arises is whether, given a prime power q and a natural number
m, there exists an extension Fqn of Fqm , such that Fqn has an optimal normal basis
over Fq. This is a hard question, and certainly it is not the subject of this work. We
give a brief discussion of known results that provide partial answers to this and related
questions. For simplicity, we restrict the discussion to powers of odd primes, that is to
fields of odd characteristic.

The extension Fqn contains a Type I optimal normal basis over Fq, which implies
that n = `−1 for a prime ` and q is primitive modulo `. The requirement that Fqn is an
extension of Fqm implies that `≡ 1 mod m. One would be interested to know if such a
prime always exists and what is its order of magnitude in terms of m. We observe that
this is already a refinement of Artin’s conjecture on primitive roots. We note further,
that if q is a square it cannot be primitive modulo any odd prime. Suppose that q is
an odd nonsquare prime power. Then the work of Moree [12] and Lenstra [7] implies
that under the GRH there exist infinitely many primes ` such that ` ≡ 1 mod m and
q is primitive modulo `. Thus, under the GRH, one is assured that optimal extensions
such as those used in this work exist. The ratio k = n/m is clearly of importance for
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the bounds that we have given. In the terminology of this section one would like to
know the smallest prime ` in the arithmetic progression of 1 modulo m such that q is
primitive modulo `. This however is a much harder question, and a good bound seems
to be out of reach even under the GRH.

5 Conclusions
In this paper we give low complexity normal elements for Fqm over Fq, when m = n/k
and there is an optimal normal element in Fqn . Table 2 gives a summary of the best
complexities obtained in this paper.

Table 2: Summary of best-case low complexities for Fqm obtained by traces, where
m = n/k.

Type I (q odd): Type I (q even): Type II (q even):
m odd (k +1)m− k km− k +1 2km−2k +1 (for all m)
m even, k odd (k +2)m−3k +1 (k +1)m−3k +2
m even, k even (k +1)m− k km− k +1

In practice, we are mainly interested in fields with q even where we have low com-
plexity normal bases. As a result of our constructions, we are able to find low complex-
ity normal elements in intermediate fields using tables from [3]. The optimal normal
bases in finite fields were completely characterized in [4], but there is still a need to
find low complexity normal bases in extensions for which there is no optimal normal
basis. Table 3 gives n-degree extensions of F2, 278 ≤ n ≤ 1026, in which there exists
a Type II optimal normal basis in F2n but no such basis exists in F2n/2 . Table 4 is a
similar table where there exists a Type I optimal normal basis in F2n but no such basis
exists in F2n/4 . We also provide the resulting complexities of the found bases.

The National Institute of Standards and Technology (NIST) recommends a series
of five elliptic curves over binary fields for United States federal government use in
cryptography [14]. The complexities of the normal basis representatives were found
by [10], and Table 5 compares our best-found constructions with the NIST standard
curves.

The complexities of the extensions where m = 163 and m = 409 given by NIST
satisfy the relation cN = 4m− 7, which is a specific construction given in [3]. This
construction requires finding primitive roots of unity in large composite extensions of
Fqn , which is certainly computationally more difficult than finding the trace of a known
optimal normal element. The basis used for m = 233 is a Type II ONB, and for the
m = 283 and m = 571 existing tables in [3] only give extensions for which ONBs
exist up to m = 2000, and so we could not apply our construction. We have provided
complexities using our construction for extensions m = 307 and m = 577 which have
the properties that their degrees are prime, close to an extension given by NIST, and
2m− 1, the order of the multiplicative group, is not divisible by small prime factors.
This could be indicative that elliptic curve cryptography is computationally desirable
over these and similar fields.
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Table 3: Complexities (Cm) of intermediate F2m over F2, m = n/2 where F2n has a Type
II optimal normal basis.

n m = n/2 Cm = 4m−3
278 139 553
306 153 609
326 163 649
330 165 657
338 169 673
350 175 697
354 177 705
386 193 769
398 199 793
410 205 817
414 207 825
426 213 849
438 219 873
470 235 937
530 265 1057
554 277 1105
558 279 1113
614 307 1225
638 319 1273

n m = n/2 Cm = 4m−3
650 325 1297
686 343 1369
690 345 1377
726 363 1449
746 373 1489
774 387 1545
810 405 1617
818 409 1633
834 417 1665
846 423 1689
866 433 1729
870 435 1737
930 465 1857
938 469 1873
950 475 1897
974 487 1945
986 493 1969
998 499 1993

1026 513 2049
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[5] K. Hensel, Über die Darstellung der Zahlen eines Gattungsbereiches für einen
beliebigen Primdivisor, Journal für die reine und angewandte Mathematik, Vol.
103, (1888) pp. 230-237.

[6] D. Jungnickel, Finite Fields: Structure and Arithmetics, B.I. Wissenschaftsverlag,
Mannheim, Germany, 1993.

[7] H. W. Lenstra, On Artin’s Conjecture and Euclid’s algorithm in global fields,
Inventiones Mathematicae, Vol. 42, (1977) pp. 202-224.

[8] Q. Liao and Q. Sun, Normal Bases and Their Dual-Bases over Finite Fields, Acta
Mathematica Sinica, Vol. 22, (2006) pp. 845-848.

[9] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications
(2nd ed.), Cambridge University Press, Cambridge (1994).

[10] A. Reyhani-Masoleh and A. Hasan, Low Complexity Word-Level Sequential
Normal-Basis Multipliers, IEEE Transactions on Computers, Vol. 54, (2005) pp.
98-110.

[11] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography.
CRC Press (1996).

[12] P. Moree, On primes in arithmetic progression having a prescribed primitive root,
Journal of Number Theory, 78, (1999) pp. 85 - 98.

17



Table 5: Comparison of NIST-standard normal basis representatives of F2m over F2
with our construction.

m NIST-cN Our cN
163 645 649
233 465* 465*
283 1677 -
307 - 1225
409 1629 1633
571 5637 -
577 - 2305

[13] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone and R.M. Wilson, Optimal normal
bases in GF(pn), Discrete Applied Mathematics, Vol. 22, (1988/1989) pp. 149-
161.

[14] Recommended Elliptic Curves for Federal Government Use, NIST, Available on-
line at http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf, (1999).

[15] Z. Wan and K. Zhou, On the complexity of the dual basis of a type I optimal
normal basis, Finite Fields and Their Applications, Vol. 13, (2007) pp. 411-417.

[16] B. Young and D. Panario, Low complexity normal bases, Finite Fields and Their
Applications, Vol. 10, (2004) pp. 53-64.

18


