MATH 1119B - Tutorial 1

0 . This is an augmented matrix of a system of linear equations that is already fully reduced:

$$
\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
0 & 1 & 4 & 5 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

i. What is the size of the augmented matrix? The coefficient matrix?
ii. How many equations does the system contain? How many unknowns/variables?
iii. Convince yourself, as a group, why the system has an infinite number of solutions.

Advanced: Can you tell me what all of the solutions look like?

1. Solve the system of equations

$$
\begin{aligned}
2 x-4 y+z & =4 \\
-x-2 z & =2 \\
-3 y+6 z & =6
\end{aligned}
$$

by
i. Writing both the coefficient matrix and the augmented matrix of the system.
ii. Row reduce the augmented matrix into the form

$$
\left[\begin{array}{llll}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & * & *
\end{array}\right] .
$$

This is called row-echelon form ($R E F$).
iii. Use back-substitution to give the solution to the system, if any.
iv. Further reduce the matrix into the form

$$
\left[\begin{array}{llll}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right] .
$$

This is called reduced row-echelon form (RREF). Compare your answer with that of [iii.].
2. Show the existence and uniqueness of the solutions to the systems represented by the following augmented matrices.

$$
\text { 1. }\left[\begin{array}{llll}
1 & 1 & 1 & 2 \\
2 & 2 & 2 & 3 \\
3 & 1 & 4 & 2 \\
4 & 1 & 2 & 3
\end{array}\right], \quad 2 .\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 4
\end{array}\right], \quad 3 .\left[\begin{array}{cccc}
2 & -4 & 1 & 4 \\
-1 & 0 & -2 & 2 \\
0 & -3 & 6 & 6
\end{array}\right]
$$

3. Determine for which h and k the following augmented matrices give
4. no solution,
5. infinite solutions,
6. unique solution.

$$
\left[\begin{array}{ccc}
1 & -2 & 4 \\
2 & h & k
\end{array}\right], \quad \text { Advanced: }\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 2 & 6 \\
0 & 2 h & 3 k
\end{array}\right]
$$

