Math 1119B, Tutorial 5

Monday, November 7, 2011

1. Over time, my accounts department has noticed that proportions of accounts migrate at a constant rate. In a given year, 10% of my accounts which are typically paid on time become overdue by 30 days, and 5% of my accounts which are typically paid on time become overdue by 60 days or more. Similarly, 50% of accounts which are typically 30 days overdue are paid on time and 20% of accounts typically 30 days overdue become 60 or more days overdue. Finally, 10% of accounts which are typically 60 days overdue are paid on time, and 20% of these accounts become only 30 days overdue.
(a) Give a migration matrix which models this as a difference equation.
(b) My accounts vector in 2009 was

$$
\left[\begin{array}{c}
\text { on time } \\
30 \text { days overdue } \\
60 \text { or more }
\end{array}\right]=\left[\begin{array}{c}
1,000,000 \\
600,000 \\
300,000
\end{array}\right]
$$

Determine what my accounts will be in 2011.
2. Let $A=\left[\begin{array}{ccc}1 & 3 & 5 \\ 2 & 12 & 15 \\ -1 & 3 & -5\end{array}\right]$.
(a) Determine if A is invertible and, if so, find A^{-1}.
(b) If $b=\left[\begin{array}{c}30 \\ -30 \\ 30\end{array}\right]$, find a solution to $A x=b$.
3. Determine if the following transformations are linear. If they are linear, construct the associated matrix A such that $T(x)=A x$.

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}+x_{2}+2 \\
x_{2} \\
x_{3}-2 x_{4} \\
0
\end{array}\right], \quad(b) S\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-2 x_{3} \\
x_{1}-x_{2} \\
x_{1}-x_{2}
\end{array}\right], \quad R\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-x-2 \\
x_{1}^{2}-2 x_{2}+1
\end{array}\right] .
$$

4. Let

$$
A=\left[\begin{array}{ll}
1 & -1 \\
2 & -2
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & -1 \\
2 & -3
\end{array}\right], \quad C=\left[\begin{array}{cc}
5 & -2 \\
2 & 3
\end{array}\right]
$$

(a) Find $\operatorname{det}(A), \operatorname{det}(B), \operatorname{det}(C)$.
(b) Find $\left(C B^{T}\right)^{-1}-A^{2}$.

