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for Some Linear Advection Systems
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In this paper we present an extension of the reservoir technique (see,
[Alouges et al., Submitted; Alouges et al.(2002a), In: Finite volumes for complex
applications, III, pp. 247–254, Marseille; Alouges et al.(2002b), C. R. Math.
Acad. Sci. Paris, 335(7), 627–632.]) for two-dimensional advection equations with
non-constant velocities. The purpose of this work is to make decrease the
numerical diffusion of finite volume schemes, correcting the numerical direc-
tions of propagation, using a so-called corrector vector combined with the
reservoirs. We then introduce an object called velocities rose in order to minimize
the algorithmic complexity of this method.

KEY WORDS: Multidimensional convection; finite volume schemes; reservoirs;
numerical diffusion.

1. INTRODUCTION

Solving hyperbolic systems of conservation is crucial in many industrial
problems as in aeronautics, nuclear physics, hydrodynamics, and so on.
But discontinuous waves are very hard to capture accurately, especially in
multidimension. First-order finite volume schemes approaching this kind
of systems are known to be very diffusive (see [12] for example) so that
high-order schemes have been introduced to reduce the numerical diffu-
sion. Usually these schemes are based on gradients reconstruction and flux
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limiters as WAF [6], ENO [15], WENO [18], discontinuous Galerkin [7]
methods. However, if the gradient reconstruction improves the order on
regular parts of the numerical solution, a flux limiter has to be intro-
duced in order to stabilize the scheme near the discontinuities and to
make it TVD. Hence it remains at first-order, near the discontinuities [14].
Moreover, the introduction of gradient reconstruction and flux limiters are
very costly algorithmically, so that they are sometimes less effective than a
simple refinement. Furthermore, continuous systems self-properties (non-
linearity, entropy, conservation) are often more difficult to obtain for high-
order schemes compared to first-order ones. This is why, we propose a
complete different approach based on the reservoir technique [1–3]. This
technique allows us to make Godunov-type schemes very low-diffusive.

For approximations of multidimensional scalar linear equations the
numerical diffusion is of two types. The first type of diffusion is due to
what we could call the “one-dimensional diffusion”. This diffusion is com-
parable in each direction (x, y) to the numerical one we observe in one
dimension (see Fig. 1).

The second type of diffusion is due to the wrong numerical direction
of propagation. In general on multidimensional grids, the exact solution of
a discrete scheme approaching a convective equation is a diffused solution
even if, on structured grids this diffusion can often be controlled. Actually
the reason is because the numerical direction of propagation is not in gen-
eral parallel to the grid. A numerical diffusion cone is then created. The
goal of this paper is to avoid or at least to limit these two types of diffu-
sion. As in [1], the idea is to use first-order schemes at high-CFL numbers
for each cell and each time step. In [1,3,16], we showed that in the one-
dimensional case, the “good” properties of first-order schemes (entropy,
nonlinearity, conservation, etc) are conserved. Recently many authors have
treated the problem of nondiffusive finite volume and finite difference
schemes for linear or nonlinear hyperbolic systems. We can cite in par-
ticular, Després and Lagoutière who proposed in [9,10], an antidiffusive
scheme based on an Ultra Bee scheme with splitting in multiD. For a par-
ticular class of initial data they are able to prove the exact convection
for a constant velocity on regular grids. Bouchut [5] proposed an entro-
pic version of the Desprès–Lagoutière scheme for monotone scalar conser-
vation laws. Xu and Shu have proposed in [19] a WENO version of the
first-order Desprès–Lagoutière anti-diffusive flux corrections. We can also
cite a front-tracking method [11] where one can find some common ideas
with our technique. The method we present is also close to volume of fluid
(vof) methods, where the fluid interfaces are tracked during the time pro-
cess in order to solve nonmiscible multifluid flows for example. Note how-
ever that in our method the interfaces cells are not computed explicitely.
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Fig. 1. One-dimensional diffusion—numerical diffusion for the upwind scheme in 2D.
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This paper is organized as follows. In Sec. 2, we introduce the
notations and the precise mathematical problem. Section 3 is devoted to
the description of corrector–vectors for multi-dimensional equations and
their combination with the reservoir technique. Some numerical tests for
step-like initial data are presented in this section. In Sec. 4, we present
a general notion called velocities rose which goal is to limit the algorith-
mic complexity of the correction–vector method. Finally, a coupling of
velocities roses, corrector–vectors and reservoirs are shortly evoked. The
last section concludes on the method and gives some possible extensions
to nonlinear equations.

2. SETUP OF THE PROBLEM AND NOTATIONS

The linear advection equation problem on a open set Ω of R2 with a
nonconstant velocity, writes:

∂tu+a(x, y) ·∇u=0, [0, T ]×Ω, T >0,
u(x, y, t)=ψ(x, y), if (x, y)∈ ∂Ω and a(x, y) ·n∂Ω(x, y)<0,
u(x, y,0)=u0(x, y), (x, y)∈Ω.

(1)

We suppose for example that:

a = (ax, ay)T ∈W 1,1
loc(Ω),

a
1+‖(x, y)‖∈L

1(Ω)+L∞(Ω),
∇ ·a∈L∞(Ω), u0 ∈L∞(Ω), ψ ∈L∞(Ω).

In practice, Ω will be equal to R
2 as in this work we will not con-

sider interactions with the boundaries. It is proved in [8] that for Ω =
R

2, there exists a unique renormalized solution in L∞
(
0, T ;L∞(R2)

) ∩
C0

(
[0, T ];Lploc(R

2)
)
, for all p<∞.

Let us now denote by T (Ω) a conform grid, with cells K: T (Ω)=
∪j∈JKj ⊂Ω. The following notations will be used:

– the discrete velocities are defined by:

aK =
1

|K|
∫

K

adx dy, aKL=
1

|K ∩L|
∫

K∩L
adσ, and nKL

exterior normal of K on K ∩L
with σ a measure of R, |K|= ∫

K
dx dy and |K ∩L|= ∫

K∩L dσ .
– we denote by T0(Ω) the discrete support of the initial data.
– for all K ∈T (Ω)

u0
K ∼

1

|K|
∫

K

u0(x, y)dx dy, unK ∼
1

|K|
∫

K

u(x, y, tn)dx dy,
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– the set of the neighboring cells of K is defined by

U(K) :={L∈T (Ω)/L 
=K and L∩K 
=∅} ,
– two important sets will be useful in the following:

V(K;a) :=
{ {L∈U(K)/a ·nKL�0} , if a 
=0,
K, otherwise

and

W∞(K;a) :=
{{
L/maxJ∈U(K) a ·nKJ =a ·nKL

}
, if a 
=0,

K, if a=0.

For a nonzero velocity, this last set can contain one or two cells
in 2d (1, 2, or 3 cells in 3d). For example on a cartesian grid if
ax =ay , the set W∞(K;a) contains two cells.

– to define the scheme we need to select a unique cell in W∞(K;a).
In this goal let us denote by ε=o(1) a nonnegative real constant,
and by aε the vector (ax+ε, ay=ax)T . We then define, for ε suffi-
ciently small

V∞(K;a) :=
{

W∞(K;a), if #W∞(K;a)=1,
W∞(K;aε), if #W∞(K;a)=2.

For example in the case of a cartesian grid:

V∞(K;a)=
⎧
⎨

⎩

{
L/maxJ∈V(K) a ·nKJ =a ·nKL

}
, if a 
=0 and ax 
=ay,

{
L/maxJ∈V(K) aε ·nKJ =aε ·nKL

}
, if a 
=0 and ax =ay,

K, if a=0.

The convention proposed above allows us to select a unique cell,
corresponding to the velocity aε. If W∞(K;a) contains two cells,
W∞(K;aε) will then contain only one cell. Note that this pertur-
bation of the velocity only occurs for the “cell selection”.

– let us denote by hKL the space step associated to the cells K and
L of T (Ω). For “regular” grids, as cartesian or regular triangu-
lar grids, this length is given by the distance between the center
of mass of each cell.

hKL :=dist
(
GK −GL

)
, ∀ (K,L)∈T (Ω)×T (Ω),

where GK (resp. GL) denotes the center of mass of K (resp. L).1

In this paper, we only consider, uniform cartesian grids or more relevant
regular grids (Fig. 2) as regular triangular or nonuniform cartesian grids.
It would also be possible to consider meshes with cells of equal volume.

1For nonregular grids the choice of hKL will be discussed in a forthcoming paper.
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3. ONE-DIRECTIONAL UPWINDING FOR TWO-DIMENSIONAL
ADVECTION EQUATIONS

The first method we propose in order to solve numerically (1) con-
sists in upwinding in only one direction. Hence in a cell K the solution
unK at time t = tn, is upwinded in one and only one neighboring cell of K
equal to V∞(K;g(aK)) with g a linear function from R

2 to R
2 to deter-

mine. We will also search for a time step to update the solution in K and
V∞(K;g(aK)). Unlike upwind schemes defined for all n by:

un+1
K = unK −

Δt

|K|
∑

L∈V(K)
|K ∩L|fnKL ·nKL, with fnKL

=

⎧
⎪⎪⎨

⎪⎪⎩

aKLunK, if aKL ·nKL>0,
aKLunL, if aKL ·nKL<0,

aKL
|K|unK +|L|unL
|K|+ |L| , if aKL ·nKL=0,

(2)

where the information is upwinded at each time step in a priori more than
one direction (cells L such that aKL · nKL� 0). Using an upwind scheme,
we remark immediately that the exact direction of propagation is pertur-
bated by the grid. More precisely, the grid interfaces normals combined
with the direction of the exact velocity (“a ·n”) give us the numerical direc-
tions of propagation. We then propose to correct this lack of precision
by a process, based on a corrector–vector. Note that if an one-directional
upwinding can be viewed as unphysical and nonconsistent, we will justify
in the two next sections this choice, introducing new concepts.
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3.1. Correction-Technique

Suppose that we upwind the solution in only one direction as
described above. Applying such a process, and as we do not follow, a pri-
ori, the physical line of propagation, we need to correct this error using a
so-called corrector–vector. A corrector–vector will be defined in each cell
of the grid, as a difference vector between the exact vector of propagation
and the numerical one.

In order to understand the correction-process, we first suppose in this
subsection that the discrete support of the initial data T0(Ω), is reduced
to only one cell K. Later in the section we will consider initial data with
more general supports not reduced to one cell. Then:

u0
J =

{
0, if J 
=K,
u∈R, if J =K, , ∀J ∈T (Ω).

In order to choose a time step and the cell V∞(K;aK) we compute:

min
Δt∈R∗+,M∈U(K),aK 
=0

‖aKΔt−hKMnKM‖2 . (3)

This minimization consists in finding the time step Δt1K such that aKΔt1K
is the orthogonal projection on t �→ aKt , of hKK1 nKK1 , with K1 equal to
V∞(K;aK). The global time step Δt1 we choose is then equal to Δt1K : t1=
t0+Δt1. In the same time this minimization has provided a cell2 K1 such
that (with K1=V∞(K;aK)):

u1
J =

{
0, if J 
=K1,

u, if J =K1,
∀J ∈T (Ω).

During this first iteration, the numerical direction of propagation has been
given by hKK1 nKK1 , when the physical one was aKΔt1K . We then need to
take into account the error, aKΔt1K −hKK1 nKK1 , the next iteration. In this
goal we then define a corrector–vector Δx1

K , associated to K:

Δx1
K :=aKΔt1K −hKK1 nKK1 . (4)

In (4) aKΔt1K corresponds to the exact propagation and hKK1 nKK1 to the
numerical one. This corrector–vector is then stored and used to upwind

2If the minimization (3) provides two cells (that is the case if ax = ay ) we add to ax a non-
negative constant equal to a o(1) in order to select one of the two cells, as proposed in the
previous section.
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the next iteration (see Figs. 3 and 4). To this aim we consider the follow-
ing minimization:

min
Δt∈R∗+,M∈U(K1)

∥
∥∥aK1Δt+Δx1

K −hK1MnK1M

∥∥∥
2
.

This gives us a time step Δt2 = Δt2K . It corresponds to the neces-
sary time for the solution to be convected from the cell K1 to the cell
V∞(K1;aKΔt2K+Δx1

K1
) also denoted by K2. Once more a numerical prop-

agation error can subsist:

Δx2
K :=aK1Δt

2
K +Δx1

K −hK1K2 nK1K2 .

Using the above notations we then define recursively some sequences of
time steps (ΔtnK)n called the local time steps associated to K, of cells (Kn)n,
and of corrector–vectors (ΔxnK)n such that:

min
Δt∈R∗+,M∈U(Kn−1)

∥∥∥aKn−1Δt+Δxn−1
K −hKn−1MnKn−1M

∥∥∥
2

(5)

with

Kn :=
{
K, if n=0,
V∞(Kn−1;aKn−1Δt

n
K +Δxn−1

K ), n�1

and the corresponding correctors vectors are

ΔxnK :=
{

0, if n=0,
aKn−1Δt

n
K +Δxn−1

K −hKn−1KnnKn−1Kn, n�1.

Fig. 3. Corrector–vector obtained by minimization of the norm of all vectors aKΔt−nKM ,
with M neighboring cell of K and Δt >0.
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The cell Kn represents the support of the solution after n iterations.
At time tn, the solution is then given by:

unJ =
{

0, if J 
=K,
u, if J =Kn.

Let us now discuss the minimizations (3) and (5) introduced above in
order to determine the time step and the direction of the upwinding.
Consider for instance that axK > a

y
K � 0. The minimization (3) gives us a

cell K1 and a time step Δt1K such that axKΔt
1/hKK1 � 1, with obviously,

a
y
KΔt

1
K/hKK1 < 1. This time step guarantees the stability for our numer-

ical scheme (the information cannot propagate in more than one cell by
iteration).

The presented technique consists then in upwinding the information
using a combination of the velocity a and the corrector–vector Δx.
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Formally, for N ∈N-{0,1}, to solve the equation:

ut +a ·∇u=0, t ∈ [tn, tn+N [,

u(tn, .)=un,
we solve for 1���N −1, the equations

ut +a� ·∇u=0, t ∈ [tn+�−1, tn+�[,
u(tn+�−1, .)=un+�−1.

with (a�)1���N−1 some numerical velocities orthogonal to the grid inter-
faces. And finally we solve

ut + (a−
∑N−1
�=1 a�) ·∇u=0, t ∈ [tn+N−1, tn+N [,

u(tn+N−1, .)=un+N−1.

This process is summed-up in Fig. 5. With this method, we can avoid the
second type of diffusion described in the introduction. We prove now a
proposition concerning the accuracy of the method.

Proposition 3.1. Consider the Eq. (1), with a constant nonzero veloc-
ity field such that ax/ay =p∈Z. Suppose also that the grid is a uniform
cartesian grid with a space step equal to h and such that the discrete ini-
tial data is defined, for all J in T (Ω) by:

u0
J =

{
0, if J 
=K,
u∈R, if J =K.

Then using the process presented above, the numerical solution is exact
every |p|+1 iterations.

In fact we conjecture that the result remains true if a=α(p, q)T with
p and q relatively prime integers and α a real constant. The proof is arith-
metically much more complicated and we then prefer giving some intuitive
arguments. Note however, that this result has been numerically confirmed.

Conjecture 3.1. Consider the Eq. (1), with a constant nonzero veloc-
ity field such that ax/ay = p/q ∈Q (p, q relatively prime). Suppose also
that the grid is a uniform cartesian grid with a space step equal to h and
such that the discrete initial data is defined, for all J in T (Ω) by:

u0
J =

{
0, if J 
=K,
u∈R, if J =K.
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Fig. 5. Propagation in time.

Then using the process presented above, the numerical solution is
exact every |p|+ |q| iterations.

Proof of prop. 3.1. Note first that the case ax=0 or ay=0 is trivial.
Let us detail the case where ax = ay , that is p+q=2.

Case 1. If ax =ay the minimization

min
Δt∈R∗+,M∈U(K)

‖aKΔt−hnKM‖2 ,

provides a local time step equal to Δt1K = h/2ax (minimization in Δt of
(Δt −h)2+Δt2), and the solution after the first iteration is equal, for all
J in T (Ω) to:

u1
J =

{
0, if J 
=K1,

u, if J =K1 :=V∞(K;aK) with nKK1 = (1,0)T .

Note that in this case, it has been necessary to introduce a small nonneg-
ative ε as proposed in the previous section in order to select the cell K1.
The first corrector–vector, that is the difference between the exact propa-
gation and the numerical one, is then equal to

Δx1
K =aKΔt1K −hnKK1 =

(−h/2, h/2)T
.

The second iteration, consists then in minimizing

min
Δt∈R∗+,M∈U(K1)

∥∥∥aK1Δt+Δx1
K −hnK1M

∥∥∥
2
.

But as aK1Δt +Δx1
K =

(
axΔt − h/2, ayΔt + h/2)T , this gives Δt2K = h/2ax

and then

aK1Δt
2
K +Δx1

K −hnK1K2 =0
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with K2 such that nK1K2= (0,1)T . That is after two time steps the solution
is given, for all J in T (Ω) by:

u2
J =

{
0, if J 
=K2,

u, if J =K2 with nK1K2 = (0,1)T .
(6)

The corresponding global time is then t2=Δt1K +Δt2K =h/ax and the cor-
rector–vector Δx2

K =0. We now can easily check that the exact solution at
time h/ax is effectively given by (6), as ‖a‖2× h/ax =

√
2h. By induction

we prove that every two time steps the numerical solution is exact.
Case 2. In order to simplify the proof notations, let us suppose that

a is equal to a= α(p,1)T with α ∈R and p ∈N
∗/{1}. The first iteration

gives

Δt1K =ph/α(p2+1)

and the corrector–vector is

Δx1
K =

(−h/(p2+1),ph/(p2+1)
)T
,

with K1 such that nKK1 = (1,0)T . That is the solution is:

u1
J =

{
0, if J 
=K1,

u, if J =K1 with nKK1 = (1,0)T .
The second iteration leads to minimize (after simplifications) in Δt the
expression

α2(1+p2)(Δt)2−2αphΔt+ (p2h2+ (2h+p2h)2)/(p2+1)2

and gives K2 such that nK1K2 = (1,0)T with

Δt2K =ph/α(p2+1).

The solution is given by:

u2
J =

{
0, if J 
=K2,

u, if J =K2 with nK1K2 = (1,0)T

and the corrector–vector is given by

Δx2
K =

(−2h/(p2+1),2ph/(p2+1)
)T
.

By induction we easily prove that for k�p, we have:

ukJ =
{

0, if J 
=Kk,
u, if J =Kk, with nKk−1Kk = (1,0)T
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and

ΔxkK =
(−kh/(p2+1), kph/(p2+1)

)T
,

ΔtkK = ph/α(p2+1), nKk−1Kk = (1,0)T .

In particular for k=p,

Δx
p
K =

(−ph/(p2+1),p2h/(p2+1)
)T
,

Δt
p
K = ph/α(p2+1), nKp−1Kp = (1,0)T .

Now the (p+1)th iteration consists in minimizing

min
Δt∈R∗+,M∈U(Kp)

∥∥aΔt+Δx
p
K −hnKp−1Kp

∥∥
2
.

This gives Kp+1 such that nKpKp+1 = (0,1)T and Δt
p+1
K minimizing in Δt :

α2(p2+1)(Δt)2−2αhΔt+h2/(p2+1)

gives

Δt
p+1
K =h/(p2+1).

With such a time step

α2(p2+1)(Δtp+1
K )2−2αhΔtp+1

K +h2/(p2+1)=0

so that

Δx
p+1
K =0

and the numerical solution

u
p+1
J =

{
0, if J 
=Kp+1,

u, if J =Kp+1 with nKpKp+1 = (0,1)T

is exact. Note that the global time steps (Δtn)n have been chosen equal to
(ΔtnK)n. By induction we can easily prove that every p+ 1 iterations the
numerical solution is exact, as the corrector–vector is zero. We can also
observe that

tp+1=
p+1∑

k=1

ΔtkK =h/α,
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and the numerical solution initially located in K, is translated by the vec-
tor (pα,α)T ×h/α= (ph,p)T , which corresponds to the exact solution. ��

On the Proof of Conjecture 3.1. When a=α(p, q)T , the method typi-
cally consists in translating the solution, |p| times in the x-direction and
|q| times in the y-direction in order to obtain the exact solution. More
precisely for |p|> |q|, let us consider the two first iterations of the process.
We can easily prove that:

Δt1K =
|p|h

α(p2+q2)
, Δx1

K =
(−hq2/(p2+q2),pqh/(p2+q2)

)T
.

And

u1
J =

{
0, if J 
=K,
u, if J =K1 with nKK1 = sgn(p)(1,0)T .

The second iteration leads again to a minimization problem (the calculus
are skipped) that gives two possible time steps:

Δta=
|q|h

α(p2+q2)
or Δtb=

|p|h
α(p2+q2)

and two possible directions nK1K2 for the numerical velocities: sgn(p)(1,0)T

or sgn(q)(0,1)T .
In practice these choices will depend on the ratio |p/q|. More gener-

ally the reservoir plus correction process consists in choosing some time
steps and numerical directions of propagation such that the local numer-
ical error in �2 norm is minimized at each iteration. We can then expect
(by induction on |p| and |q| for instance) that after |p|+ |q| iterations, we
will have:

GK +
|p|+|q|∑

i=1

ΔtiKa=GK|p|+|q| , Δx
|p|+|q|
K =0, with

|p|+|q|∑

i=1

ΔtiK =
h

α
.

During these |p|+ |q| iterations, the numerical velocity direction will hav-
ing been |p| times sgn(p)(1,0)T and |q| times sgn(q)(0,1)T .

Suppose now that the initial data support contains more than one cell
(#T0(Ω)�1). The above proposition and conjecture are still valid.

Proposition 3.2. Consider the Eq. (1), with a constant velocity field
such that ax/ay=p (with p∈Z). Suppose also that the grid is a cartesian
and uniform grid with a space step equal to h. Consider a discrete initial
data with a support not reduced to one cell. Then using the process pre-
sented above, the numerical solution is exact every |p|+1 iterations.
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Again we conjecture that the result can be extended to more general
velocities.

Conjecture 3.2. Consider the Eq. (1), with a constant velocity field
such that ax/ay =p/q ∈Q (p, q relatively prime). Suppose also that the
grid is a cartesian and uniform grid with a space step equal to h. Consider
a discrete initial data with a support not reduced to one cell. Then using
the process presented above, the numerical solution is exact every |p|+ |q|
iterations.

Proof of Proposition 3.2. It is sufficient to remark that at all time
tn, and for all K and L belonging to T0(Ω) the local time steps and
the corrector–vectors are equal: ΔtnK =ΔtnL, ΔxnK =ΔxnL. The global time-
steps (Δtn)n, are then equal to (ΔtnK)n for all K in T0(Ω). So that,
at each |p| + 1 iterations, and for each cell the numerical convection
is exact. �

The method presented above allows us to have a very accurate numer-
ical convection when T0(Ω) is reduced to one cell, or if the velocity field
is constant. The global time steps are indeed equal to the local time steps
associated to a cell K in T0(Ω). For an initial data with a support con-
taining more than one cell and considering non-constant velocity fields,
the choice of the global time steps Δtn is problematic: indeed a priori for
K, L in T0(Ω) such that aK 
= aL, ΔtnK 
=ΔtnL. In order to answer to this
question, we introduce the reservoir technique.

3.2. Reservoir Technique for One-Directional Upwinding
for Two-Dimensional Advection Equations

In this section, we consider the general case3 described in (1). The
two main difficulties compared with the previous section are first the
determination of the global time steps (Δtn)n and then the way to upwind
the numerical solution.

The reservoir technique, in the framework defined above, consists in
updating the solution in a cell if and only if the corresponding local time
step is reached by the global time step or a sum of global time steps.
To this end we introduce a local time counter denoted by cn(K) for all
K in T0(Ω), with n denoting the time index. This counter is very close
to the one introduced in the one-dimensional framework [2,3]. When the
counter reaches the value ΔtnK , we update the solution in “emptying-up”

3Extension to some linear hyperbolic systems can be found in appendix.
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the value u0
K located for instance in L at time tn, in a neighboring

cell of L.
To be more precise, we need to define iteratively, for K ∈ T0(Ω), the

counters

cn(K) :=
⎧
⎨

⎩

0, if n=0,
cn−1(K)+Δtn, if cn−1(K)+Δtn <ΔtnK and n�1,
0, if cn−1(K)+Δtn=ΔtnK and n�1

and the sequence of cells

Zn
∞(K) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

K, if n=0,
Zn−1∞ (K), if cn−1(K)+Δtn<ΔtnK

and n�1,
V∞

(
Zn−1∞ (K);aZn−1∞ (K)

ΔtnK+Δxn−1
K

)
, if cn−1(K)+Δtn=ΔtnK

and n�1.

This means that we update the solution in Zn−1∞ (K) if and only if the local
time counter associated to K has reached its maximum value, that is ΔtnK .
That is Zn∞(K) is the location at time t= tn of the quantity u0

K . Then for
all L in U(K) and by application of the numerical scheme, the solution
can be written at time tn

unL=
∑

M∈{J/Zn∞(J )=L}
u0
M.

We now present the numerical scheme combining the reservoir and correc-
tion techniques.

3.2.1. Numerical Scheme

We detail here the information’s propagation in term of counters and
reservoirs. Suppose that the solution (unK)K is known at time tn.

unK =
∑

L∈{J/Zn∞(J )=K}
u0
L.

We search for the solution in the cell K, at time tn+1. We decompose the
process in three steps.

Step 1. The first step of the numerical method consists in minimiz-
ing, for all J in T0(Ω), the expression

min
Δt∈R∗+,L∈U(J )

∥
∥aZn∞(J )Δt+ΔxnJ −hZn∞(J )LnZn∞(J )L

∥
∥

2 , (7)
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using the corrector–vector defined by:

ΔxnJ :=aZn−1∞ (J )
ΔtnJ +Δxn−1

J −hZn−1∞ (J )Zn∞(J )nZn−1∞ (J )Zn∞(J ). (8)

This minimization gives us Δtn+1
J called the local time step and a cell

Zn+1∞ (J ). The global time step Δtn+1 is then defined by

Δtn+1 := min
J∈T0(Ω)

(
Δtn+1
J − cn(J )

)
. (9)

Step 2. Now we have to consider the outcoming quantity of the cell
K, at time tn+1.

• For M in {J/Zn∞(J )=K}, if cn(M)+Δtn+1<Δtn+1
M the quantity

u0
M is added to the solution in the cell K.

• In opposite if cn(M) + Δtn+1 = Δtn+1
M , the quantity u0

M will be
added to the solution in the neighboring cell V∞(K;aKΔtn+1

K +
ΔxnM).

Step 3. Consider now the neighboring cells of K in order to study
the incoming quantity in the cell K at time tn+1. For all L in U(K), con-
sider the set {J/Zn∞(J )=L}.
• For all N in {J/Zn∞(J )=L}, if cn(N)+Δtn+1<Δtn+1

N the quantity
u0
N located in the cell L is added to the solution in the cell L.

• Otherwise, if Zn+1∞ (N)=K, u0
N will be added to the solution in the

cell K.

We can finally sum-up the scheme by:

un+1
K =

∑

M∈{J/Zn∞(J )=K}
u0
M1

cn(M)+Δtn+1<Δtn+1
M

+
∑

M∈{J/Zn∞(J )=L and Zn+1∞ (J )=K} u
0
M1

cn(M)+Δtn+1=Δtn+1
M
.

Also written

un+1
K =∑

M∈{J/Zn+1∞ (J )=K} u
0
M.

This process allows us to avoid the numerical diffusion for two rea-
sons: first, we take into account the numerical spurious directions of prop-
agation using a corrector–vector. Second, the reservoir technique allows
us to locally update the solution only when the counters reach the values
(ΔtnK)n.

An important point to discuss is the wellposedness of the scheme.
Can the global time be equal to zero ? We first prove the following results:
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Lemma 3.1. Consider the Eq. (1) with a nonzero velocity. Using the
combined reservoir and correction techniques on a uniform cartesian grid,
the local time steps (ΔtnK){K∈T0(Ω)}, are nonzero for all n in N

∗.

Proof. Consider a cell L ∈ T (Ω) such that Zn∞(K) = L with K ∈
T0(Ω). We want to prove that Δtn+1

K cannot be zero. We consider two
situations.

The first one occurs when the corrector–vector is zero. In this case the
local time step is calculated in minimizing

min
Δt∈R∗+,M∈U(L),aL 
=0

‖aLΔt−hLMnLM‖2 .

If the minimum was reached for Δtn+1
K = 0 that would involve that

‖hLMnLM‖2=0 for a M ∈U(K), which is absurd.

The second situation appears for a nonzero corrector–vector. That is
the minimization of:

min
Δt∈R∗+,J∈U(L)

∥∥aLΔt+ΔxnK −hLJ nLJ
∥∥

2 ,

provides Δtn+1
K = 0 and a particular cell M ∈ U(L). This involves that

Δxn+1
K =hLMnLM .

Let us now introduce the cell N such that Zn−1∞ (K)=N . By definition
of the corrector–vector

ΔxnK =aNΔtnK +Δxn−1
K −hNLnNL. (10)

However the local time step ΔtnK is chosen such that aNΔtnK +Δxn−1
K is

the orthogonal projection of the numerical convection vector hNLnNL. So
that using (10):

∥∥∥aNΔtnK +Δxn−1
K

∥∥∥
2

2
+∥∥ΔxnK

∥∥2
2=h2

NL.

As the grid is uniform
∥∥ΔxnK

∥
∥2

2=h2
NL=h2

LM so that

aNΔtnK +Δxn−1
K =0.

This is a contradiction with the definition of ΔtnK . Indeed:
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– if Δxn−1
K 
=0 then there would exist a Δ̃t >0 such that for a P in

U(N)
∥
∥∥aNΔ̃t+Δxn−1

K −hNP nNP
∥
∥∥

2
<

∥
∥∥aNΔtnK +Δxn−1

K −hNP nNP
∥
∥∥

2
.

– if now Δxn−1
K = 0 then, or aN = 0 and no process is supposed to

occur in the cell N , either aN 
=0 that has been treated in the first
case.

This concludes the proof. ��
Proposition 3.3. Consider the Eq. (1) with a nonzero velocity. Using

the combined reservoir and correction techniques on a uniform cartesian
grid, the global time step Δtn is nonzero for all n in N

∗.

Proof. By definition the time step Δtn is given by

min
K∈T0(Ω)

(
ΔtnK − cn(K)

)
.

First remark (see Lemma 3.1) that for all K in T0(Ω) the local time steps
are never zero. Now by definition of the counters, for all K ∈T0(Ω), cn(K)
is always less or equal to ΔtnK . When the counters values are strictly less
than ΔtnK for all K, the time step is trivially nonzero. When a counter
cn(K) reaches its maximum, that is ΔtnK , the cell is emptied-up and the
counter is set to zero. Thus the time step can never be equal to zero. ��

Although in the previous case, the global time step is never equal
to zero, the main drawback subsisting comes from the fact that if the
velocity field possesses very high spatial gradients, the method can become
very slow as the global time step is smaller than the smallest local time
step (corresponding to the highest speed). We can then not prove that
for all variable velocities (in particular for time dependent velocities, not
considered here) any finite time T > 0 can be reached in a finite number
of iterations; the time process can indeed become infinitely slow. This fea-
ture consistutes one of the main drawback of the method and has to be
improved.

We now give some results on the reservoir scheme with correction-
technique.

Proposition 3.4. For all time tn,
∑

K∈T (Ω)
unK =

∑

K∈T (Ω)
un+1
K .
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Moreover, the scheme is �2-stable: there exists a positive constant C such
that

‖un‖�2 �C‖u0‖�2 , ∀n�0.

Proof. For all n�0, and by definition of Zn∞(.), we easily check that:
⋃

K∈T (Ω)

{
L/Zn

∞(L)=K
}=T0(Ω). (11)

Thus we deduce trivially that
∑
K∈T u

n
K =

∑
K∈T u

n+1
K .

Concerning the �2-stability it is sufficient to note that because of (11),
for all time tn

‖un‖2
�2 =h2 ∑

K∈T |unK |2=h2 ∑
K∈T

∣∣∑
L∈{J∈T /Zn∞(J )=K} u

0
L

∣∣2

�h2
(∑

K∈T
∑
L∈{J∈T /Zn∞(J )=K} |u0

L|
)2=h2

(∑
L∈T0(Ω)

|u0
L|

)2
<∞.

So that by Cauchy–Schwarz ‖un‖2
�2 �C‖u0‖2

�2 for all time, where C2 is the
number of cells in T0(Ω). ��

As said above the numerical solution is given by:

unK =
∑

M∈{J/Zn∞(J )=K}
u0
M.

So that a spurious “concentration” in some cells is possible, corresponding
to a local non-respect of the maximum principle.

Example. Consider the following initial data (see Fig. 6):

u0
J =

{
0, if J 
=K,L
1, if J =K,L, ∀J ∈T (Ω).

And suppose that aK = (1 + ε,1)T and aL = (1,1 + ε)T with a positive
ε<< 1. Then, after the first iteration the solution is given by:

u1
J =

{
0, if J 
=K,L
2, if J =M , ∀J ∈T (Ω).

Because of the corrector–vectors, the solution after the second time step is
given by:

u2
J =

{
0, if J 
=K,L
1, if J =N,O , ∀J ∈T (Ω).

A nonphysical concentration of the solution in the cell M, has occured at
time t1.
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Fig. 6. Initial data.

In theory, if all the corrector–vectors are zero, nonphysical concen-
trations do not occur. If some of them are nonzeros this drawback can
be circumvented, at each time step, taking into account the fact that the
location of a quantity u0

J in a cell K at time tn, with J =Zn∞(K), can be
corrected by its the corrector–vector. Indeed a quantity located in K, is in
fact supposed to be located in K+ΔxnJ (translated cell by the corrector–
vector). We denote by TK(Ω) the set

TK(Ω)={L∈T (Ω)/L∩ (K+ΔxK) 
=∅} .

This set contains pK elements, and each L ∩ (K +ΔxK) has a volume
VK,L. We can add to each (uL)L∈TK(Ω) the value VK,Lu0

J /|K| (that is the
ratio of u0

J located in L).4 This process allows to re-localize exactly the
numerical solution in the grid at a given time (but is not applied at each
iteration). Note that it has not been taken into account in the previous
propositions proofs. We have observed numerically that it has allowed us
to globally improve the numerical results.

3.3. Two-Dimensional Numerical Tests

Our scheme can be seen as complex but is in fact, easy to implement.
We propose here, to compare the numerical solution obtained with the res-
ervoir technique and a classical upwind scheme (2). Note that many finite
volume schemes are reduced to (2) when approaching (1) like, for example,
Roe scheme [17], VFFC [13], and so on. Moreover, the above technique
can appear as an improvement of (2), that is why we compare it to the
reservoir scheme. The domain we consider is a square [0,1]× [0,1] and is

4∑
L∈TK VK,L/|K|=1.
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composed of 1,600 squares. No interaction with the boundaries occur in
the following benchmarks.

The CFL taken in the two-dimensional computation of (2) is equal
to 1/2.

• Constant velocity - I
Consider a linear advection equation with a constant velocity
a(x, y)= (1,0.5)T . The initial data is given by:

u0(x, y)=
{

1, if (x, y)∈ [0.4,0.6]× [0.4,0.6],
0, elsewhere.

Figures 7 show the initial data and the numerical solution at time
t = 0.3 with the reservoirs and upwind schemes. Figures 8 give,
respectively, the error, in norm �1, between the exact solution and
the reservoir one and between the exact solution and the upwind
one. As proved in Proposition 3.2, the numerical solution is at
the discrete level, exact every 3 (= 1/0.5+ 1) iterations. Note that
this feature is independent of the number of cells in the mesh.
Obviously, for the time steps 3n+1 and 3n+2, the error decreases
when the space step decreases.

• Constant velocity - II
Consider the following benchmark with a(x, y)= (1,0.5)T .

u0(x, y)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3, if (x, y)∈ [0.45,0.55]× [0.45,0.55],

2, if (x, y)∈ [0.35,0.65]× [0.35,0.65]− [0.45,0.55]× [0.45,0.55],

1, if (x, y)∈ [0.25,0.75]× [0.25,0.75]− [0.35,0.65]× [0.35,0.65],

0, elsewhere.

Figures 9 show the initial data and the upwind and reservoir
solutions at time t=0.3. Again the convection is exact every three
iterations as in the previous case.

• Circular motion - I
Consider now a velocity a(x, y) equal to (y−0.4,−x+0.4)T that
corresponds to a circular motion around the point (0.4,0.4). The
initial data is:

u0(x, y)=
{

1, on a unique triangle,
0, elsewhere.

We observe on Fig. 10 that at every time step the reservoir solu-
tion is equal to 1 in a unique cell (support of the solution reduced
to one cell) and 0 elsewhere. The �∞-norm of the reservoir and
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Fig. 7. Constant motion a= (1,0.5)T —upwind and reservoirs at time t=0.3.
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Fig. 8. �1-norm error between exact and reservoir solution and between exact and upwind
solution.

upwind solutions is computed in fig. 11. In the left graph of Fig.
12, we have computed the distance after ∼ 20 iterations between
the support center of the exact solution and the support center of
the reservoir solution (recall that its support is at each time step
reduced to one cell). Observe that the distance is less or equal to
the size of a mesh space step (equal here to 0.025). This oberva-
tion can also be made in the right graph of 12, where the mesh
is drawn. However, we observe that after a sufficiently large time
a shift between the exact and the numerical trajectory occurs [see
Fig. 13 (left)]. This shift decreases when the space-step decreases,
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Fig. 9. Initial data and constant motion—upwind and reservoirs at time t=0.3.
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Fig. 10. Circular motion—five different times—upwind and reservoirs.
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Fig. 11. Maximum of the solution for the reservoir and upwind schemes: the circular
motion.

as observed in Fig. 13 (right), what shows on this benchmark the
convergence of the scheme.

• Circular motion - II
As above, the velocity is given by a(x, y)= (y − 0.4,−x + 0.4)T .
The initial data is now:

u0(x, y)=
{

1, if (x, y)∈ [0.15,0.35]× [0.15,0.35],
0, elsewhere.

For all (x0, y0) in R
2, the characteristic curves are given by:

x(t)=0.4+ (x0−0.4) cos(t)+ (y0−0.4) sin(t),
y(t)=0.4+ (y0−0.4) cos(t)− (x0−0.4) sin(t).
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The Fig. 14 shows us the characteristic curves for (x0, y0) =
(0.15,0.15) and (x0, y0) = (0.35,0.35). The support of the
numerical solution is contained inside the crown defined by
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Fig. 13. Distance between exact and numerical support.

the two circles. The exact solution of this equation is given by:

u(x, y, t)= u0

(
(x−0.4) cos(t)− (y−0.4) sin(t)+0.4,

(x−0.4) sin(t)+ (y−0.4) cos(t)+0.4
)
, ∀(x, y)∈Ω, ∀t�0.
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Fig. 14. Characteristics at time t=2π , and exact solution at times t=0 to t=7.

Figures 16 and 17 show the solution for, respectively, 100 and 150
iterations. As excepted the numerical solution is far more accurate
than the upwind one. In order to compare the numerical diffu-
sion of the reservoir and upwind techniques we propose again in
Fig. 15 to compare their support. The graph represents, the num-
ber of cells composing the discrete support of the solution at each
iteration. More precisely, if the solution is greater or equal to 10−3

(by convention) in a given cell, this cell is supposed to belong
to the numerical support. Note that the reservoir support is com-
puted at each time step using the process proposed in the previous
section in order to avoid spurious concentrations.
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Fig. 15. Number of cells in the support of the numerical solution—upwind and reservoirs.

3.4. Comments

The numerical results show how efficiently this method limits the
numerical diffusion. It is easy to note that for the scalar convection, the
reservoir technique is an order M method, where M is the number of cells
in T0(Ω), when the upwind scheme is of order N , where N is the number
of cells in T (Ω). In order to illustrate this, we present a numerical cpu-
benchmark. The Fig. 18 represents the cpu-time necessary for a personal-
laptop (celeron 1.8 Gh) to reach a physical time equal to t = 1.00 s, for
both reservoir and upwind methods on the circular motion II benchmark.
Note here that M ∼ N/25. In theory the reservoir and correction tech-
niques would be applicable on nonuniform meshes but then some techni-
cal difficulties not discussed here, would arise.

4. TWO-DIMENSIONAL VELOCITIES ROSES
AND COMBINATION WITH RESERVOIRS

4.1. Two-Dimensional Velocities Roses and Correction Technique

We consider in section the extension of the correction-technique when
one upwinds in more than one direction (as classical finite volume schemes
do). In this case a direct use of the technique presented above would pro-
vide an important increasing of the algorithmic complexity at each tempo-
ral iteration. Indeed, consider a constant convection problem with velocity
a, and a support T0(Ω) containing M cells. The complexity of the previ-
ous technique (without reservoirs) was of order O(M), at each time step.
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Fig. 16. Circular motion—initial data solution at t=2.34—upwind and reservoirs.
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Fig. 17. Circular motion—solution at t=4.04—upwind and reservoirs.
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Fig. 18. CPU-time comparisons in seconds, for a physical time equal to 1.00 s and
M∼N/25.
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Now if we apply the same process upwinding in two directions, the
algorithmic complexity is doubled at each iteration. So that after P itera-
tions it would be of order O(2PM); that is obviously not numerically com-
putable. In order to avoid this drawback, we introduce the velocities roses.

Definition 4.1. Let K be a cell of the grid T (Ω) and D a nonnega-
tive integer. For all time tn, we define the D−velocities rose, Rn

K as the
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following set:

Rn
K :=

⎧
⎪⎪⎨

⎪⎪⎩

{(
rj ,0,0

)
, j ∈{1, . . . ,D}, with D∈N

∗
}
, if n=0,

(
r0,0, u0

K

)
, if n=0,{(

rj , αnK;j , u
n
K;j

)
, j ∈{0, . . . ,D}, with D∈N

∗
}
, if n�1

with, for j ∈{0, . . . ,D}:
–

(
rj , αnK;j , u

n
K;j

)
is called the j th petal,

– If j =0, the corresponding petal is called the center of the rose,
– rj ∈R

2 such that ‖rj‖2 = 1 if j 
= 0, and r0 = 0 ∈R
2. This corre-

sponds to the so-called “direction” of the j th petal,
– αnK;j ∈R+, with αn

K;0=0 for all K and n� 0, that corresponds to

the so-called “length” of the j th petal,
– unK;j ∈R, that corresponds to the so-called “value associated” to

the j th petal.

A rose is said regular, if (rj )j is equi-distributed.

We define the projection on a D−velocities rose.

Definition 4.2. For k and D nonnegative integer, let us denote by
Πrk (Δx) the projection of a nonzero vector Δx on the kth petal of a
D−velocities rose R such that:

Πrk (Δx) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Projection on (0,rk) parallely to rk+1, if k�D−1
and Δx∈(0,rk,rk+1),

Projection on (0,rD) parallely to r1, if k=D
and Δx∈(0,rD,r1),

Projection on (0,rk) parallely to rk−1, if k�2
and Δx∈(0,rk−1,rk),

Projection on (0,r1) parallely to rD, if k=1
and Δx∈(0,rD,r1),

0, otherwise.

The idea is to distribute the solution on the roses petals and to apply the
correction-technique as seen above. To simplify the notations, we describ
the numerical scheme for a velocity field that does not vanish.

We now define for (K; j)∈T (Ω)×{0, . . . ,D} the sets:

Vn+1(K; j) :={
L∈U(K)/(aKΔtn+1+αnK;j rj ) ·nKL>0

}
, n�0

and

Wn+1(L) :={
(J ; l)∈T (Ω)×{0, . . . ,D}/L∈Vn+1(J ; l)}, n�0.
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4.1.1. Numerical scheme

The numerical solution is defined at time tn, for all L, in T (Ω) by:

unL=
∑

j∈{0,... ,D}
unL;j ,

where unL;j denotes the value associated to the petal j of the cell L at time
t= tn. The updating of the solution unL is done in four steps. First, for all
(K; j)∈Wn+1(L) we compute what is added to the solution in the cell L
(Steps 1–3.) then what is substracted to it in the cell L (Step 4.).

Step 1. To find the propagation’s directions for all (K; j) of Wn+1(L)

and the associated local time step, we minimize by generalization of (5)
the following expression:

min
Δt∈R∗+

∥
∥∥aKΔt+αnK;j rj −hKMnKM

∥
∥∥

2
, ∀M ∈U(K), ∀j ∈{0, . . . ,D}.

This minimization provides in particular, a local time step Δt
n+1,L
K;j

(L refers to the neighboring cell and K to the current cell). As we do not
introduce reservoirs here, the global time step is chosen equal to the min-
imum of all the local time steps:

Δtn+1= min
K;j,L

Δt
n+1,L
K;j .

Thus the flux

ũ
n+1,L
K;j := 1

hKL

(
aKΔtn+1+αnK;j

)
·nKLunK;j

is added to the solution in the cell L. Note this time, that the corrector–
vector has been replaced by its projection on the j th petal of the veloci-
ties-rose associated to K. The corrector–vector for the cell L associated to
(K; j) is defined by:

Δx
n+1,L
K;j :=aKΔtn+1+αnK;j rj −hKLnKL.

And the projection of Δx
n+1,L
K;j on the kth petal of the velocities rose asso-

ciated to L, with k∈{1, . . . ,D} gives us a new quantity:

β
n+1,K;j
L;k :=∥

∥Πrk (Δx
n+1,L
K;j )

∥
∥

2.

It is now necessary to distribute the quantity ũn+1,L
K;j between the center of

Rn+1
L (Step 2.) and its petals (Step 3.).
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Step 2. In order to distribute ũ
n+1,L
K;j , let us introduce (recall that

aK 
=0) the coefficient:

ε
n+1,K;j
L = ‖Δxn+1,L

K;J ‖2
‖aKΔtn+1+αnK;j rj‖2

∈ [0,1]

that represents the ratio of ũn+1,L
K;j that is added to the solution in the cell

L, and that is not propagated in the correct direction.5 Thus, the quantity
(1− εn+1,K;j

L )ũ
n+1,L
K;j is added to the center of Rn+1

L (corresponds of the

information correctly propagated). We can then update the solution un+1
L;0

with (1− εn,K;jL )ũ
n+1,L
K;j , that is:6

un+1
L;0 ← (1− εn+1,K;j

L )ũ
n+1,L
K;j .

Step 3. Now, it remains to distribute the quantity ε
n+1,K;j
L ũ

n+1,L
K;j

between the petals of Rn+1
L . To do this we use the projection introduced

above. We define:7

Bn+1,K;j
L =

{
m∈{1, . . . ,D}/βn+1,K;j

L;m 
=0
}
.

If Bn+1,K;j
L is not empty, the ratio of εn+1,L

K;j ũ
n+1,L
K;j added to the kth petal

of L, is given by:

δ
n+1,K;j
L;k := β

n+1,K;j
L;k

∑
m∈Bn+1,K;j

L

β
n+1,K;j
L;m

with
∑

k∈Bn+1,K;j
L

δ
n+1,K;j
L;k =1.

Then (L; k), for k 
=0, receives from (K; j) the quantity

w
n+1,K;j
L;k := δn+1,K;j

L;k ε
n+1,L
K;j ũ

n+1,L
K;j .

So that for k∈{1, . . . ,D} we update un+1
L;k with w

n+1,K;j
L;k :

un+1
L;k ←w

n+1,K;j
L;k .

5Indeed, Δx=0, corresponds to an exact direction of propagation.
6The notation “A←B” means that the value B is added to A.
7Recall that β

n+1,K;j
L;k = ∥

∥Πrk

(
Δx

n+1,L
K;j

)∥
∥

2 is nonzero if Δx
n+1,L
K;J ∈ (0, rk, rk+1) or

∈ (0, rk−1, rk), and is zero otherwise
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The updating of αn+1
K;j , for k∈{1, . . . ,D} is given by an averaging process.

Finally the cell L has received the quantity
∑
(K;j)∈Wn+1(L) ũ

n
K;j :

∑

k∈{0,··· ,D}
un+1
L;k ←

∑

(K;j)∈Wn+1(L)

ũnK;j .

Now it remains to compute the quantity that is subtracted to the cell L.

Step 4. For all k in {0, . . . ,D} the quantity that is added to the solu-
tion in a neighboring cell of L, denoted by M in Vn+1(L; k) is defined as

ũ
n+1,M
L;k := 1

hLM

(
aLΔtn+1+αnL;k

)
·nLMunL;k.

So that

un+1
L ←−

∑

k∈{0,... ,D}

∑

M∈Vn+1(L;k)
ũ
n+1,M
L;k .

4.1.2. Update of the solution

Finally the global balance can be written:

un+1
L =unL+

∑

(K;j)∈Wn+1(L)

ũnK;j −
∑

k∈{0,··· ,D}

∑

M∈Vn+1(L;k)
ũn+1
L;k .

The scheme is by construction globally conservative as∑
k∈Bn+1,K;j

L

δ
n+1,K;j
L;k =1 and ε

n+1,K;j
L ũ

n+1,L
K;j +1− εn+1,K;j

L ũ
n+1,L
K;j =1.

In this paragraph, we have introduced the velocities roses in order to
reduce the complexity of the multi-directional upwinding with corrector–
vectors. Indeed such a process allows us to reduce it to an order O(M),
where M is the number of cells in T0(Ω). However compare to the “one-
directional method” the prefactor is here multiplied by (D+ 1), where D
is the number of the rose petals.

4.1.3. Reservoir technique combined with velocities roses
for two-dimensional advection equations with
non-constant velocities

In this section, we briefly present a way to combine the reservoir
technique and the velocities roses, for the resolution of two-dimensional
advection equations with nonconstant velocities. In order to do this, it
is necessary to introduce a counter, for each cell and each petal and to
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update the solution when the counters reach their maximum. More pre-
cisely at time tn, for each cell K of the grid, the value associated to each
petal j for which the associated counter has reached its maximum, is dis-
tributed on the rose’s petals of the neighboring cells of K.

5. CONCLUSION

In this paper we have presented an extension of the reservoir technique [2,
3] in order to limit the numerical diffusion of finite volume schemes approach-
ing advection equations, in the two-dimensional framework. The main idea,
compared to the one-dimensional case is the combination of the correction
and reservoir techniques. Hence we are able to limit and even in some cases
to avoid the numerical diffusion due to the uncorrect numerical directions of
propagation. The reservoir technique allowed us also to manage rigorously the
time processes. With this method, we have obtained very interesting numerical
results and especially an important improvement compared to classical order
one finite volume approaches.

The extension to nonlinear equations and in particular to fluid
mechanics systems, will be proposed, in a forthcoming paper; the method
to numerically solve this problem is done in two steps. The first one, con-
sists in a referential changing, in order to treat separately the sonic and
entropy and vorticity waves. In the fluid motion referential (Lagrangian
coordinates) the pressure waves are treated precisely, as there are isotropic
(wave equation). In a second step, we convect (fluid motion) accurately the
solution, using the corrector–vectors and reservoirs.

APPENDIX: PARTICULAR MULTIDIMENSIONAL LINEAR
HYPERBOLIC SYSTEMS

We extend the section (3) method for some simple linear hyperbolic
systems. Consider the following system:

∂tU+
2∑

i=1

Ai∂xiU=0 (12)

with constant matrices (Ai)i∈{1,2} from Ω openset of R
2 into Mm(R). We

assum that these matrices are diagonalizable in a same basis, denoted by
P . Introducing W= (w1, . . . ,wm)

T =P−1U the system (12) can be written:

∂tW+
2∑

i=1

Λi∂xiW=0 (13)
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with Λ(k)=diag(λ(k)1 , . . . , λ
(k)
m ), such that

λ
(k)

1 <λ
(k)

2 < · · ·<λ(k)m , ∀k∈{1, . . . ,m}.
For each k∈{1, . . . ,m}:

∂twk+
2∑

i=1

λ
(k)
i ∂xiwk=0. (14)

Hence, for each component, wk of W, the following velocity is defined by:

a(k)= (λ(k)1 , λ
(k)

2 )T .

Equations (14) can be written:

∂twk+a(k) ·∇wk=0, ∀k∈{1, . . . ,m}. (15)

Then, for each wk of W, at time tn, a local time step Δt
n,k
K , a corrector–

vector Δx
n,k
K and a counter cn,k(K) can be defined similarly than in the

scalar case. For instance the counter is defined as:

cn+1,k(K)=
{
cn,k(K)+Δtn, if cn,k(K)+Δtn+1<Δt

n+1,k
K ,

0, if cn,k(K)+Δtn+1=Δtn+1,k
K .

And the global time step is given by:

Δtn+1= min
k∈{1,... ,m},K∈T

(
Δt

n+1,k
K − cn+1,k(K)

)
.

Details can be found in [4].
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