Cycle types of complete mappings
 Talk at the Carleton Finite Fields eSeminar

Alexander Bors (j/w Qiang Wang)

Carleton University, Ottawa

29th of September, 2021

Overview

(1) Introduction: Complete mappings and cycle types
(2) Our main results
(3) Proof sketch of Theorem 4
(4) References

Current section

(1) Introduction: Complete mappings and cycle types

(2) Our main results

(3) Proof sketch of Theorem 4

4) References

Complete mappings: Background 1

[^0]
Complete mappings: Background 1

- group-theoretic concept

[^1]
Complete mappings: Background 1

- group-theoretic concept
- introduced by H.B. Mann in 1942^{1}

[^2]
Complete mappings: Background 1

- group-theoretic concept
- introduced by H.B. Mann in 1942^{1}
- applications in
- combinatorics (Latin squares ${ }^{1}$),

[^3]
Complete mappings: Background 1

- group-theoretic concept
- introduced by H.B. Mann in 1942^{1}
- applications in
- combinatorics (Latin squares ${ }^{1}$),
- check-digit systems ${ }^{2}$,

[^4]
Complete mappings: Background 1

- group-theoretic concept
- introduced by H.B. Mann in 1942^{1}
- applications in
- combinatorics (Latin squares ${ }^{1}$),
- check-digit systems ${ }^{2}$,
- cryptography ${ }^{3}$, etc.

[^5]
Complete mappings: Background 1

- group-theoretic concept
- introduced by H.B. Mann in 1942^{1}
- applications in
- combinatorics (Latin squares ${ }^{1}$),
- check-digit systems ${ }^{2}$,
- cryptography ${ }^{3}$, etc.
- also studied by pure group theorists (Hall-Paige Conjecture ${ }^{4}$)

[^6]
Complete mappings: Definition

Definition

$\underline{(G,+): \text { group, n.n. abelian. }}$

Complete mappings: Definition

Definition

$(G,+)$: group, n.n. abelian.
(1) $f: G \rightarrow$ is a complete mapping of G if
(1) f is bijective, and
(2) $f+$ id : $x \mapsto f(x)+x$ is bijective.

Complete mappings: Definition

Definition

$(G,+)$: group, n.n. abelian.
(1) $f: G \rightarrow$ is a complete mapping of G if
(1) f is bijective, and
(2) $f+$ id : $x \mapsto f(x)+x$ is bijective.
(2) Orthomorphism of G : analogous def., replacing $f+$ id by $f-i d$.

Complete mappings: Definition

Definition

$(G,+)$: group, n.n. abelian.
(1) $f: G \rightarrow$ is a complete mapping of G if
(1) f is bijective, and
(2) $f+$ id : $x \mapsto f(x)+x$ is bijective.
(2) Orthomorphism of G : analogous def., replacing $f+$ id by $f-i d$.
(3) Strong complete mapping of G : both properties at once.

Complete mappings: Definition

Definition

$(G,+)$: group, n.n. abelian.
(1) $f: G \rightarrow$ is a complete mapping of G if
(1) f is bijective, and
(2) $f+\mathrm{id}: x \mapsto f(x)+x$ is bijective.
(2) Orthomorphism of G : analogous def., replacing $f+$ id by $f-$ id.
(0) Strong complete mapping of G : both properties at once.
f is complete mapping $\Leftrightarrow f+$ id is orthomorphism.

Complete mappings: Background 2

[^7]
Complete mappings: Background 2

- Orthomorphisms also have applications, see Evans' paper ${ }^{5}$.

[^8]
Complete mappings: Background 2

- Orthomorphisms also have applications, see Evans' paper ${ }^{5}$.
- K: field. A (strong) complete mapping/orthomorphism of K is one of $(K,+)$.

[^9]
Complete mappings: Background 2

- Orthomorphisms also have applications, see Evans' paper ${ }^{5}$.
- K: field. A (strong) complete mapping/orthomorphism of K is one of $(K,+)$.
- Complete mappings of finite fields: First studied by Niederreiter and Robinson ${ }^{6}$.

[^10]
Complete mappings: Background 2

- Orthomorphisms also have applications, see Evans' paper ${ }^{5}$.
- K: field. A (strong) complete mapping/orthomorphism of K is one of $(K,+)$.
- Complete mappings of finite fields: First studied by Niederreiter and Robinson ${ }^{6}$.
- Studied by many authors since, especially w.r.t. polynomial representations. See e.g. [15], [29], [33], [34], [36] and [37] at the end of these slides.

[^11]
Cycle types: Background

[^12]
Cycle types: Background

- Ω : finite set, $\sigma \in \operatorname{Sym}(\Omega) . \sigma$ has decomposition into disjoint cycles.

[^13]
Cycle types: Background

- Ω : finite set, $\sigma \in \operatorname{Sym}(\Omega) . \sigma$ has decomposition into disjoint cycles.
- Cycle type of $\sigma, \mathrm{CT}(\sigma)$: info how many cycles of each length σ has.

[^14]
Cycle types: Background

- Ω : finite set, $\sigma \in \operatorname{Sym}(\Omega) . \sigma$ has decomposition into disjoint cycles.
- Cycle type of $\sigma, \mathrm{CT}(\sigma)$: info how many cycles of each length σ has.
- Popular research topic: Study $\operatorname{CT}(\sigma)$ with $\sigma \in \operatorname{Sym}(K), K$ finite field, σ given by polynomial. See e.g. [6], [13], [26] and [27].

[^15]
Cycle types: Background

- Ω : finite set, $\sigma \in \operatorname{Sym}(\Omega) . \sigma$ has decomposition into disjoint cycles.
- Cycle type of $\sigma, \mathrm{CT}(\sigma)$: info how many cycles of each length σ has.
- Popular research topic: Study $\operatorname{CT}(\sigma)$ with $\sigma \in \operatorname{Sym}(K), K$ finite field, σ given by polynomial. See e.g. [6], [13], [26] and [27].
- Some applications require particular cycle types. For example:

[^16]
Cycle types: Background

- Ω : finite set, $\sigma \in \operatorname{Sym}(\Omega) . \sigma$ has decomposition into disjoint cycles.
- Cycle type of $\sigma, \mathrm{CT}(\sigma)$: info how many cycles of each length σ has.
- Popular research topic: Study $\operatorname{CT}(\sigma)$ with $\sigma \in \operatorname{Sym}(K), K$ finite field, σ given by polynomial. See e.g. [6], [13], [26] and [27].
- Some applications require particular cycle types. For example:
- Pseudorandom number generation: long cycles ${ }^{7}$.

[^17]
Cycle types: Background

- Ω : finite set, $\sigma \in \operatorname{Sym}(\Omega) . \sigma$ has decomposition into disjoint cycles.
- Cycle type of $\sigma, \mathrm{CT}(\sigma)$: info how many cycles of each length σ has.
- Popular research topic: Study $\operatorname{CT}(\sigma)$ with $\sigma \in \operatorname{Sym}(K), K$ finite field, σ given by polynomial. See e.g. [6], [13], [26] and [27].
- Some applications require particular cycle types. For example:
- Pseudorandom number generation: long cycles ${ }^{7}$.
- Cryptography \& Coding theory: involutions ${ }^{8}$.

[^18]
Cycle types of complete mappings: Research question

Question

What can be said about the cycle types of complete mappings of a finite group (field)?

Cycle types of complete mappings: Research question

Question

What can be said about the cycle types of complete mappings of a finite group (field)?

Two ways of "saying something":

Cycle types of complete mappings: Research question

Question

What can be said about the cycle types of complete mappings of a finite group (field)?

Two ways of "saying something":
(1) negative results: necessary conditions, allowing to refute cycle types;

Cycle types of complete mappings: Research question

Question

What can be said about the cycle types of complete mappings of a finite group (field)?

Two ways of "saying something":
(1) negative results: necessary conditions, allowing to refute cycle types;
(2) positive results: give examples of possible cycle types (and corr. complete mappings).

Cycle types of complete mappings: Known negative results

- Only these elementary results are known:

Cycle types of complete mappings: Known negative results

- Only these elementary results are known:
(1) G: abelian group, f : compl. map. of G. Then f has no 2 -cycle $(x, f(x))$.

Cycle types of complete mappings: Known negative results

- Only these elementary results are known:
(1) G : abelian group, f : compl. map. of G. Then f has no 2-cycle $(x, f(x))$. Otherwise,

$$
(f+\mathrm{id})(x)=f(x)+x=f(x)+f(f(x))=f(f(x))+f(x)=(f+\mathrm{id})(f(x)),
$$

Cycle types of complete mappings: Known negative results

- Only these elementary results are known:
(1) G : abelian group, f : compl. map. of G. Then f has no 2-cycle $(x, f(x))$. Otherwise,

$$
(f+\mathrm{id})(x)=f(x)+x=f(x)+f(f(x))=f(f(x))+f(x)=(f+\mathrm{id})(f(x)),
$$

contradiction as $f+$ id is injective.

Cycle types of complete mappings: Known negative results

- Only these elementary results are known:
(1) G : abelian group, f : compl. map. of G. Then f has no 2 -cycle $(x, f(x))$. Otherwise,

$$
(f+\mathrm{id})(x)=f(x)+x=f(x)+f(f(x))=f(f(x))+f(x)=(f+\mathrm{id})(f(x)),
$$

contradiction as $f+$ id is injective.
(2) G: group, f : orthomor. of G. Then f has exactly 1 fixed point,

Cycle types of complete mappings: Known negative results

- Only these elementary results are known:
(1) G : abelian group, f : compl. map. of G. Then f has no 2-cycle $(x, f(x))$. Otherwise, $(f+\mathrm{id})(x)=f(x)+x=f(x)+f(f(x))=f(f(x))+f(x)=(f+\mathrm{id})(f(x))$,
contradiction as $f+$ id is injective.
(2) G: group, f : orthomor of G. Then f has exactly 1 fixed point, because $f(x)=x$ is equ. to $x=(f-\mathrm{id})^{-1}\left(0_{G}\right)$.

Cycle types of complete mappings: Known negative results

- Only these elementary results are known:
(1) G : abelian group, f : compl. map. of G. Then f has no 2-cycle $(x, f(x))$. Otherwise,

$$
(f+\mathrm{id})(x)=f(x)+x=f(x)+f(f(x))=f(f(x))+f(x)=(f+\mathrm{id})(f(x)),
$$

contradiction as $f+$ id is injective.
(2) G: group, f : orthomor. of G. Then f has exactly 1 fixed point, because $f(x)=x$ is equ. to $x=(f-\mathrm{id})^{-1}\left(0_{G}\right)$.

- If $x+x=0_{G}$ for all $x \in G$, then f is compl. map. of $G \Leftrightarrow f$ is orthomor. of G.

Cycle types of complete mappings: Known positive results

[^19]
Cycle types of complete mappings: Known positive results

- Regular complete mappings:

[^20]
Cycle types of complete mappings: Known positive results

- Regular complete mappings:
- K: fin. field, $a \in K, a \neq 0,-1$. Then $x \mapsto a x$ is a compl. map. of K.

[^21]
Cycle types of complete mappings: Known positive results

- Regular complete mappings:
- K: fin. field, $a \in K, a \neq 0,-1$. Then $x \mapsto a x$ is a compl. map. of K.
- It has 1 fixed point $\left(0_{K}\right)$ and $\frac{|K|-1}{\ell}$ cycles of length $\ell=\operatorname{ord}_{K^{*}}(a)$.

[^22]
Cycle types of complete mappings: Known positive results

- Regular complete mappings:
- K: fin. field, $a \in K, a \neq 0,-1$. Then $x \mapsto a x$ is a compl. map. of K.
- It has 1 fixed point $\left(0_{K}\right)$ and $\frac{|K|-1}{\ell}$ cycles of length $\ell=\operatorname{ord}_{K^{*}}(a)$.
- Permutations with such a cycle type are called ℓ-regular.

[^23]
Cycle types of complete mappings: Known positive results

- Regular complete mappings:
- K: fin. field, $a \in K, a \neq 0,-1$. Then $x \mapsto a x$ is a compl. map. of K.
- It has 1 fixed point $\left(0_{K}\right)$ and $\frac{|K|-1}{\ell}$ cycles of length $\ell=\operatorname{ord}_{K^{*}}(a)$.
- Permutations with such a cycle type are called ℓ-regular.
- Focus so far mostly on constructing other examples of ℓ-regular complete mappings, see e.g. [17], [18], [23] and [35].

[^24]
Cycle types of complete mappings: Known positive results

- Regular complete mappings:
- K: fin. field, $a \in K, a \neq 0,-1$. Then $x \mapsto a x$ is a compl. map. of K.
- It has 1 fixed point $\left(0_{K}\right)$ and $\frac{|K|-1}{\ell}$ cycles of length $\ell=\operatorname{ord}_{K^{*}}(a)$.
- Permutations with such a cycle type are called ℓ-regular.
- Focus so far mostly on constructing other examples of ℓ-regular complete mappings, see e.g. [17], [18], [23] and [35].
- Fixed-point-free complete mappings: If $\operatorname{char}(K)>2$, then K has compl. map. without fixed points (e.g., $x \mapsto x+1$).

[^25]
Cycle types of complete mappings: Known positive results

- Regular complete mappings:
- K: fin. field, $a \in K, a \neq 0,-1$. Then $x \mapsto a x$ is a compl. map. of K.
- It has 1 fixed point $\left(0_{K}\right)$ and $\frac{|K|-1}{\ell}$ cycles of length $\ell=\operatorname{ord}_{K^{*}}(a)$.
- Permutations with such a cycle type are called ℓ-regular.
- Focus so far mostly on constructing other examples of ℓ-regular complete mappings, see e.g. [17], [18], [23] and [35].
- Fixed-point-free complete mappings: If $\operatorname{char}(K)>2$, then K has compl. map. without fixed points (e.g., $\bar{x} \mapsto x+1$). For other examples, see ${ }^{9}$.

[^26]
Current section

(1) Introduction: Complete mappings and cycle types
(2) Our main results

(3) Proof sketch of Theorem 4

4) References

Overview of our main results

[^27]
Overview of our main results

- positive results

[^28]
Overview of our main results

- positive results
- two classes of functions $K \rightarrow K$, each with "piecewise" definitions:
${ }^{10}$ A. Bors and Q. Wang, Cycle types of complete mappings of finite fields, to appear in J. Algebra, preprint available under https://arxiv.org/abs/2105.00140.
${ }^{11} \mathrm{~A}$. Bors and Q. Wang, Coset-wise affine functions and cycle types of complete mappings, preprint (2021), https://arxiv.org/abs/2109.03922.
${ }^{12}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Eheorem 1.

Overview of our main results

- positive results
- two classes of functions $K \rightarrow K$, each with "piecewise" definitions:
- first-order cyclotomic mappings, defined via multiplicative cosets of K. Results from ${ }^{10}$.

[^29]
Overview of our main results

- positive results
- two classes of functions $K \rightarrow K$, each with "piecewise" definitions:
- first-order cyclotomic mappings, defined via multiplicative cosets of K. Results from ${ }^{10}$.
- coset-wise affine functions, defined via additive cosets of K. Results from ${ }^{11}$.

[^30]
Overview of our main results

- positive results
- two classes of functions $K \rightarrow K$, each with "piecewise" definitions:
- first-order cyclotomic mappings, defined via multiplicative cosets of K. Results from ${ }^{10}$.
- coset-wise affine functions, defined via additive cosets of K. Results from ${ }^{11}$.
- proved with methods from different areas:
${ }^{10} \mathrm{~A}$. Bors and Q. Wang, Cycle types of complete mappings of finite fields, to appear in J. Algebra, preprint available under https://arxiv.org/abs/2105.00140.
${ }^{11}$ A. Bors and Q. Wang, Coset-wise affine functions and cycle types of complete mappings, preprint (2021), https://arxiv.org/abs/2109.03922.
${ }^{12}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Theorem 1.

Overview of our main results

- positive results
- two classes of functions $K \rightarrow K$, each with "piecewise" definitions:
- first-order cyclotomic mappings, defined via multiplicative cosets of K. Results from ${ }^{10}$.
- coset-wise affine functions, defined via additive cosets of K. Results from ${ }^{11}$.
- proved with methods from different areas:
- wreath products from permutation group theory;

[^31]
Overview of our main results

- positive results
- two classes of functions $K \rightarrow K$, each with "piecewise" definitions:
- first-order cyclotomic mappings, defined via multiplicative cosets of K. Results from ${ }^{10}$.
- coset-wise affine functions, defined via additive cosets of K. Results from ${ }^{11}$.
- proved with methods from different areas:
- wreath products from permutation group theory;
- combinatorial observations on cycle indices;

[^32]
Overview of our main results

- positive results
- two classes of functions $K \rightarrow K$, each with "piecewise" definitions:
- first-order cyclotomic mappings, defined via multiplicative cosets of K. Results from ${ }^{10}$.
- coset-wise affine functions, defined via additive cosets of K. Results from ${ }^{11}$.
- proved with methods from different areas:
- wreath products from permutation group theory;
- combinatorial observations on cycle indices;
- character sums (following \& extending a method of Carlitz ${ }^{12}$) for the results on cycl. map.

[^33]
First-order cyclotomic mappings

First-order cyclotomic mappings

- $\underline{K=\mathbb{F}_{q}}, \underline{d \mid q-1}, \underline{C \ldots \text { index } d \text { subgroup of } \mathbb{F}_{q}^{*}=\langle\omega\rangle}$.

First-order cyclotomic mappings

- $K=\mathbb{F}_{q}, \underline{d \mid q-1}, \underline{C \ldots \text { index } d \text { subgroup of } \mathbb{F}_{q}^{*}=\langle\omega\rangle}$.
- $C_{i}:=\omega^{i} C$ for $i=0,1, \ldots, d-1$ are the cosets of C.

First-order cyclotomic mappings

- $C_{i}:=\omega^{i} C$ for $i=0,1, \ldots, d-1$ are the cosets of C.
- $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a first-order cyclotomic mapping (FOCM) of index d of \mathbb{F}_{q} if

First-order cyclotomic mappings

- $K=\mathbb{F}_{q}, \underline{d \mid q-1}, \underline{C \ldots \text { index } d \text { subgroup of } \mathbb{F}_{q}^{*}=\langle\omega\rangle}$.
- $C_{i}:=\omega^{i} C$ for $i=0,1, \ldots, d-1$ are the cosets of C.
- $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a first-order cyclotomic mapping (FOCM) of index d of \mathbb{F}_{q} if

$$
f(x)= \begin{cases}0, & \text { if } x=0 \\ a_{i} x, & \text { if } x \in C_{i}, i \in\{0, \ldots, d-1\}\end{cases}
$$

for some $a_{i} \in \mathbb{F}_{q}$.

First-order cyclotomic mappings

- $K=\mathbb{F}_{q}, \underline{d \mid q-1}, \underline{C \ldots \text { index } d \text { subgroup of } \mathbb{F}_{q}^{*}=\langle\omega\rangle}$.
- $C_{i}:=\omega^{i} C$ for $i=0,1, \ldots, d-1$ are the cosets of C.
- $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a first-order cyclotomic mapping (FOCM) of index d of \mathbb{F}_{q} if

$$
f(x)= \begin{cases}0, & \text { if } x=0 \\ a_{i} x, & \text { if } x \in C_{i}, i \in\{0, \ldots, d-1\}\end{cases}
$$

for some $a_{i} \in \mathbb{F}_{q}$.

- Remark (generalizations):

First-order cyclotomic mappings

- $K=\mathbb{F}_{q}, \underline{d \mid q-1}, \underline{C \ldots \text { index } d \text { subgroup of } \mathbb{F}_{q}^{*}=\langle\omega\rangle}$.
- $C_{i}:=\omega^{i} C$ for $i=0,1, \ldots, d-1$ are the cosets of C.
- $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a first-order cyclotomic mapping (FOCM) of index d of \mathbb{F}_{q} if

$$
f(x)= \begin{cases}0, & \text { if } x=0 \\ a_{i} x, & \text { if } x \in C_{i}, i \in\{0, \ldots, d-1\}\end{cases}
$$

for some $a_{i} \in \mathbb{F}_{q}$.

- Remark (generalizations):
- " $a_{i} x^{\prime \prime} \rightarrow$ " $a_{i} x^{r "}$: r-th order cyclotomic mapping of index d.

First-order cyclotomic mappings

- $K=\mathbb{F}_{q}, \underline{d \mid q-1}, \underline{C \ldots \text { index } d \text { subgroup of } \mathbb{F}_{q}^{*}=\langle\omega\rangle}$.
- $C_{i}:=\omega^{i} C$ for $i=0,1, \ldots, d-1$ are the cosets of C.
- $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a first-order cyclotomic mapping (FOCM) of index d of \mathbb{F}_{q} if

$$
f(x)= \begin{cases}0, & \text { if } x=0 \\ a_{i} x, & \text { if } x \in C_{i}, i \in\{0, \ldots, d-1\}\end{cases}
$$

for some $a_{i} \in \mathbb{F}_{q}$.

- Remark (generalizations):
- " $a_{i} x^{\prime \prime} \rightarrow$ " $a_{i} x^{r "}$: r-th order cyclotomic mapping of index d.
- " $a_{i} x$ " \rightarrow " $a_{i} x^{r i}$ ": generalized cyclotomic mapping of index d

First-order cyclotomic mappings

- $K=\mathbb{F}_{q}, \underline{d \mid q-1}, \underline{C \ldots \text { index } d \text { subgroup of } \mathbb{F}_{q}^{*}=\langle\omega\rangle}$.
- $C_{i}:=\omega^{i} C$ for $i=0,1, \ldots, d-1$ are the cosets of C.
- $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is a first-order cyclotomic mapping (FOCM) of index d of \mathbb{F}_{q} if

$$
f(x)= \begin{cases}0, & \text { if } x=0 \\ a_{i} x, & \text { if } x \in C_{i}, i \in\{0, \ldots, d-1\}\end{cases}
$$

for some $a_{i} \in \mathbb{F}_{q}$.

- Remark (generalizations):
- " $a_{i} x^{\prime \prime} \rightarrow$ " $a_{i} x^{r \prime \prime}$: r-th order cyclotomic mapping of index d.
- " $a_{i} x$ " \rightarrow " $a_{i} x^{r}{ }^{r}$ ": generalized cyclotomic mapping of index d
- Many authors have studied these kinds of functions, see e.g. [1], [2], [22], [30], [31] and [38].

First main result (Long cycles)

First main result (Long cycles)

- f : first-order cyclotomic permutation (FOCP) of \mathbb{F}_{q}.

First main result (Long cycles)

- f : first-order cyclotomic permutation (FOCP) of \mathbb{F}_{q}.
- Ass.: All cycles $\neq(0)$ of f are long and q is large enough.

First main result (Long cycles)

- f : first-order cyclotomic permutation (FOCP) of \mathbb{F}_{q}.
- Ass.: All cycles $\neq(0)$ of f are long and q is large enough.
- Then there ex. FOCP g of \mathbb{F}_{q} s.t.:

First main result (Long cycles)

- f : first-order cyclotomic permutation (FOCP) of \mathbb{F}_{q}.
- Ass.: All cycles $\neq(0)$ of f are long and q is large enough.
- Then there ex. FOCP g of \mathbb{F}_{q} s.t.:
- $\mathrm{CT}(g)=\mathrm{CT}(f)$, and

First main result (Long cycles)

- f : first-order cyclotomic permutation (FOCP) of \mathbb{F}_{q}.
- Ass.: All cycles $\neq(0)$ of f are long and q is large enough.
- Then there ex. FOCP g of \mathbb{F}_{q} s.t.:
- $\mathrm{CT}(g)=\mathrm{CT}(f)$, and
- g is a strong complete mapping.

First main result (Long cycles)

- f : first-order cyclotomic permutation (FOCP) of \mathbb{F}_{q}.
- Ass.: All cycles $\neq(0)$ of f are long and q is large enough.
- Then there ex. FOCP g of \mathbb{F}_{q} s.t.:
- $\mathrm{CT}(g)=\mathrm{CT}(f)$, and
- g is a strong complete mapping.

Theorem 1
Let $\underline{d, n \in \mathbb{N}^{+}}$and $\underline{1>\epsilon>0}$.

First main result (Long cycles)

- f : first-order cyclotomic permutation (FOCP) of \mathbb{F}_{q}.
- Ass.: All cycles $\neq(0)$ of f are long and q is large enough.
- Then there ex. FOCP g of \mathbb{F}_{q} s.t.:
- $\mathrm{CT}(g)=\mathrm{CT}(f)$, and
- g is a strong complete mapping.

Theorem 1
Let $\underline{d, n \in \mathbb{N}^{+}}$and $1>\epsilon>0$. For all prime powers $q \geq q_{1}(d, n, \epsilon)$ with $q \equiv 1(\bmod d)$ and all $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{F}_{q}$:

First main result (Long cycles)

- f : first-order cyclotomic permutation (FOCP) of \mathbb{F}_{q}.
- Ass.: All cycles $\neq(0)$ of f are long and q is large enough.
- Then there ex. FOCP g of \mathbb{F}_{q} s.t.:
- $\mathrm{CT}(g)=\mathrm{CT}(f)$, and
- g is a strong complete mapping.

Theorem 1
Let $\underline{d, n \in \mathbb{N}^{+}}$and $1>\epsilon>0$. For all prime powers $q \geq q_{1}(d, n, \epsilon)$ with $q \equiv 1(\bmod d)$ and all $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{F}_{q}$: If f is an FOCP of index d of \mathbb{F}_{q} s.t. all cycles $\neq(0)$ of f have length $\geq \epsilon q$, then there ex. index d FOCP g of \mathbb{F}_{q} s.t.

First main result (Long cycles)

- f : first-order cyclotomic permutation (FOCP) of \mathbb{F}_{q}.
- Ass.: All cycles $\neq(0)$ of f are long and q is large enough.
- Then there ex. FOCP g of \mathbb{F}_{q} s.t.:
- $\mathrm{CT}(g)=\mathrm{CT}(f)$, and
- g is a strong complete mapping.

Theorem 1
Let $\underline{d, n \in \mathbb{N}^{+}}$and $\underline{1>\epsilon>0}$. For all prime powers $q \geq q_{1}(d, n, \epsilon)$ with $q \equiv 1(\bmod d)$ and all $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{F}_{q}$: If f is an FOCP of index d of \mathbb{F}_{q} s.t. all cycles $\neq(0)$ of f have length $\geq \epsilon q$, then there ex. index d FOCP g of \mathbb{F}_{q} s.t.
(1) $\mathrm{CT}(g)=\mathrm{CT}(f)$.

First main result (Long cycles)

- f : first-order cyclotomic permutation (FOCP) of \mathbb{F}_{q}.
- Ass.: All cycles $\neq(0)$ of f are long and q is large enough.
- Then there ex. FOCP g of \mathbb{F}_{q} s.t.:
- $\mathrm{CT}(g)=\mathrm{CT}(f)$, and
- g is a strong complete mapping.

Theorem 1

Let $\underline{d, n \in \mathbb{N}^{+}}$and $1>\epsilon>0$. For all prime powers $q \geq q_{1}(d, n, \epsilon)$ with $q \equiv 1(\bmod d)$ and all $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{F}_{q}$: If f is an FOCP of index d of \mathbb{F}_{q} s.t. all cycles $\neq(0)$ of f have length $\geq \epsilon q$, then there ex. index d FOCP g of \mathbb{F}_{q} s.t.
(1) $\mathrm{CT}(g)=\mathrm{CT}(f)$.
(2) $g+c_{i}$ id is a permutation of \mathbb{F}_{q} for $i=1,2, \ldots, n$.

First main result (Long cycles)

- f : first-order cyclotomic permutation (FOCP) of \mathbb{F}_{q}.
- Ass.: All cycles $\neq(0)$ of f are long and q is large enough.
- Then there ex. FOCP g of \mathbb{F}_{q} s.t.:
- $\mathrm{CT}(g)=\mathrm{CT}(f)$, and
- g is a strong complete mapping.

Theorem 1

Let $\underline{d, n \in \mathbb{N}^{+}}$and $1>\epsilon>0$. For all prime powers $q \geq q_{1}(d, n, \epsilon)$ with $q \equiv 1(\bmod d)$ and all $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{F}_{q}$: If f is an FOCP of index d of \mathbb{F}_{q} s.t. all cycles $\neq(0)$ of f have length $\geq \epsilon q$, then there ex. index d FOCP g of \mathbb{F}_{q} s.t.
(1) $\mathrm{CT}(g)=\mathrm{CT}(f)$.
(2) $g+c_{i}$ id is a permutation of \mathbb{F}_{q} for $i=1,2, \ldots, n$.

For $d=1$: Theorem of Carlitz (see loc. cit.).

Second main result (Cosets)

Second main result (Cosets)

- $\underline{f \text { : index } d \text { FOCM of } \mathbb{F}_{q}, f(x)=a_{i} x \text { for } x \in C_{i}=\omega^{i} C ~}$

Second main result (Cosets)

- $\underline{f \text { : index } d \text { FOCM of } \mathbb{F}_{q}, f(x)=a_{i} x \text { for } x \in C_{i}=\omega^{i} C ~ . ~}$
- If $a_{i} \neq 0$, then $f\left(C_{i}\right)$ is a coset.

Second main result (Cosets)

- If $a_{i} \neq 0$, then $f\left(C_{i}\right)$ is a coset.
- If q is large enough: complete control over how $f+c_{j}$ id for $j=1, \ldots, n$ map cosets, where f is suitable index d FOCM of \mathbb{F}_{q}.

Second main result (Cosets)

- If $a_{i} \neq 0$, then $f\left(C_{i}\right)$ is a coset.
- If q is large enough: complete control over how $f+c_{j}$ id for $j=1, \ldots, n$ map cosets, where f is suitable index d FOCM of \mathbb{F}_{q}.

Theorem 2
Let $\underline{d, n \in \mathbb{N}^{+}}$. For all prime powers $q \geq q_{2}(d, n)$ with $q \equiv 1(\bmod d)$:

Second main result (Cosets)

- $\underline{f \text { : index } d \text { FOCM of } \mathbb{F}_{q}, f(x)=a_{i} x \text { for } x \in C_{i}=\omega^{i} C ~ . ~}$
- If $a_{i} \neq 0$, then $f\left(C_{i}\right)$ is a coset.
 $j=1, \ldots, n$ map cosets, where f is suitable index d FOCM of \mathbb{F}_{q}.

Theorem 2
Let $\underline{d, n \in \mathbb{N}^{+}}$. For all prime powers $q \geq q_{2}(d, n)$ with $q \equiv 1(\bmod d)$: Let $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{F}_{q}$, pairwise distinct, and choose functions

$$
s_{1}, s_{2}, \ldots, s_{n}:\{0,1, \ldots, d-1\} \rightarrow\{0,1, \ldots, d-1\}
$$

Second main result (Cosets)

- $\underline{f \text { : index } d \text { FOCM of } \mathbb{F}_{q}, f(x)=a_{i} x \text { for } x \in C_{i}=\omega^{i} C ~ . ~}$
- If $a_{i} \neq 0$, then $f\left(C_{i}\right)$ is a coset.
 $j=1, \ldots, n$ map cosets, where f is suitable index d FOCM of \mathbb{F}_{q}.

Theorem 2
Let $\underline{d, n \in \mathbb{N}^{+}}$. For all prime powers $q \geq q_{2}(d, n)$ with $q \equiv 1(\bmod d)$: Let $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{F}_{q}$, pairwise distinct, and choose functions

$$
s_{1}, s_{2}, \ldots, s_{n}:\{0,1, \ldots, d-1\} \rightarrow\{0,1, \ldots, d-1\}
$$

There ex. index d FOCM f of \mathbb{F}_{q} such that

$$
\left(f+c_{j} \mathrm{id}\right)\left(C_{i}\right)=C_{s_{j}(i)}
$$

for $0 \leq i \leq d-1$ and $1 \leq j \leq n$.

Third main result (Simultaneous long cycles)

[^34]
Third main result (Simultaneous long cycles)

- Controlling the $\mathrm{CT}\left(f+c_{j} \mathrm{id}\right)$ is much harder.

[^35]
Third main result (Simultaneous long cycles)

- Controlling the $\mathrm{CT}\left(f+c_{j}\right.$ id $)$ is much harder.
- By a theorem of Carlitz, ${ }^{13}$, if q is large enough, there ex. prim. root ω of \mathbb{F}_{q} s.t. $\omega+1$ is also prim. root.

[^36]
Third main result (Simultaneous long cycles)

- Controlling the $\mathrm{CT}\left(f+c_{j}\right.$ id $)$ is much harder.
- By a theorem of Carlitz, ${ }^{13}$, if q is large enough, there ex. prim. root ω of \mathbb{F}_{q} s.t. $\omega+1$ is also prim. root.
- Then $f: x \mapsto \omega x$, and $f+$ id $: x \mapsto(\omega+1) x$ are both $(q-1)$-regular, and FOCMs of index $d=1$.

Third main result (Simultaneous long cycles)

- Controlling the $\mathrm{CT}\left(f+c_{j}\right.$ id $)$ is much harder.
- By a theorem of Carlitz, ${ }^{13}$, if q is large enough, there ex. prim. root ω of \mathbb{F}_{q} s.t. $\omega+1$ is also prim. root.
- Then $f: x \mapsto \omega x$, and $f+$ id $: x \mapsto(\omega+1) x$ are both $(q-1)$-regular, and FOCMs of index $d=1$.
- Theorem 3 extends this to $d>1$.

Third main result (Simultaneous long cycles)

- Controlling the $\mathrm{CT}\left(f+c_{j}\right.$ id $)$ is much harder.
- By a theorem of Carlitz, ${ }^{13}$, if q is large enough, there ex. prim. root ω of \mathbb{F}_{q} s.t. $\omega+1$ is also prim. root.
- Then $f: x \mapsto \omega x$, and $f+$ id $: x \mapsto(\omega+1) x$ are both $(q-1)$-regular, and FOCMs of index $d=1$.
- Theorem 3 extends this to $d>1$.

Theorem 3

Let $\underline{d \in \mathbb{N}^{+}}$. For all prime powers $q \geq q_{3}(d)$ with $q \equiv 1(\bmod d)$, there ex. $\mathrm{FOCM} f$ of \mathbb{F}_{q} of smallest index d s.t.:
${ }^{13}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Eheorem 1.

Third main result (Simultaneous long cycles)

- Controlling the $\mathrm{CT}\left(f+c_{j}\right.$ id $)$ is much harder.
- By a theorem of Carlitz, ${ }^{13}$, if q is large enough, there ex. prim. root ω of \mathbb{F}_{q} s.t. $\omega+1$ is also prim. root.
- Then $f: x \mapsto \omega x$, and $f+$ id $: x \mapsto(\omega+1) x$ are both $(q-1)$-regular, and FOCMs of index $d=1$.
- Theorem 3 extends this to $d>1$.

Theorem 3

Let $\underline{d \in \mathbb{N}^{+}}$. For all prime powers $q \geq q_{3}(d)$ with $q \equiv 1(\bmod d)$, there ex. $\mathrm{FOCM} f$ of \mathbb{F}_{q} of smallest index d s.t.:
(1) f is compl. map. of \mathbb{F}_{q}.
${ }^{13}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Eheorem 1.

Third main result (Simultaneous long cycles)

- Controlling the CT($f+c_{j}$ id) is much harder.
- By a theorem of Carlitz, ${ }^{13}$, if q is large enough, there ex. prim. root ω of \mathbb{F}_{q} s.t. $\omega+1$ is also prim. root.
- Then $f: x \mapsto \omega x$, and $f+$ id : $x \mapsto(\omega+1) x$ are both $(q-1)$-regular, and FOCMs of index $d=1$.
- Theorem 3 extends this to $d>1$.

Theorem 3

Let $d \in \mathbb{N}^{+}$. For all prime powers $q \geq q_{3}(d)$ with $q \equiv 1(\bmod d)$, there ex. $\mathrm{FOCM} f$ of \mathbb{F}_{q} of smallest index d s.t.:
(1) f is compl. map. of \mathbb{F}_{q}.
(2) f and $f+$ id are $(q-1)$-regular.
${ }^{13}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Eheorem 1.

Cycle types: Formal definition and background

[^37]
Cycle types: Formal definition and background

- Ω : fin. set, $\sigma \in \operatorname{Sym}(\Omega)$. For $\ell=1,2, \ldots,|\Omega|$: k_{ℓ} : number of length ℓ cycles of σ.

[^38]
Cycle types: Formal definition and background

- Ω : fin. set, $\sigma \in \operatorname{Sym}(\Omega)$. For $\ell=1,2, \ldots,|\Omega|$: k_{ℓ} : number of length ℓ cycles of σ. Set

$$
\mathrm{CT}(\sigma):=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{|\Omega|}^{k_{|\Omega|}} \in \mathbb{Q}\left[x_{n}: n \in \mathbb{N}^{+}\right] .
$$

[^39]
Cycle types: Formal definition and background

- Ω : fin. set, $\sigma \in \operatorname{Sym}(\Omega)$. For $\ell=1,2, \ldots,|\Omega|$: k_{ℓ} : number of length ℓ cycles of σ. Set

$$
\mathrm{CT}(\sigma):=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{|\Omega|}^{k_{|\Omega|}} \in \mathbb{Q}\left[x_{n}: n \in \mathbb{N}^{+}\right] .
$$

- Pólya ${ }^{14}$: original def.; also def. cycle index ("average CT") of perm. gp.

[^40]
Cycle types: Formal definition and background

- Ω : fin. set, $\sigma \in \operatorname{Sym}(\Omega)$. For $\ell=1,2, \ldots,|\Omega|$: k_{ℓ} : number of length ℓ cycles of σ. Set

$$
\mathrm{CT}(\sigma):=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{|\Omega|}^{k_{|\Omega|}} \in \mathbb{Q}\left[x_{n}: n \in \mathbb{N}^{+}\right] .
$$

- Pólya ${ }^{14}$: original def.; also def. cycle index ("average CT") of perm. gp.
- Cycle indices studied by many authors, e.g. [2], [11], [12] and [32].

[^41]
Cycle types: Formal definition and background

- Ω : fin. set, $\sigma \in \operatorname{Sym}(\Omega)$. For $\ell=1,2, \ldots,|\Omega|$: k_{ℓ} : number of length ℓ cycles of σ. Set

$$
\mathrm{CT}(\sigma):=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{|\Omega|}^{k_{|\Omega|}} \in \mathbb{Q}\left[x_{n}: n \in \mathbb{N}^{+}\right] .
$$

- Pólya ${ }^{14}$: original def.; also def. cycle index ("average CT") of perm. gp.
- Cycle indices studied by many authors, e.g. [2], [11], [12] and [32].
- $\ell \in \mathbb{N}^{+}: \mathrm{BU}_{\ell}$ (ℓ-th blow-up function) is the \mathbb{Q}-algebra end. of $\mathbb{Q}\left[x_{n}: n \in \mathbb{N}^{+}\right]$with $B U_{\ell}\left(x_{n}\right)=x_{\ell n}$ for all $n \in \mathbb{N}^{+}$.

[^42]
Fourth main result (Recursive construction): Notation 1

${ }^{15}$ L. Reis and Q. Wang, The additive index of polynomials over finite fields, preprint (2021), https://arxiv.org/abs/2105.02374.

Fourth main result (Recursive construction): Notation 1

- \underline{K} : field, $V: K$-vector space, $W: K$-subspace of V.
${ }^{15}$ L. Reis and Q. Wang, The additive index of polynomials over finite fields, preprint (2021), https://arxiv.org/abs/2105.02374.

Fourth main result (Recursive construction): Notation 1

- K: field, $V: K$-vector space, $W: K$-subspace of V.
- $f: V \rightarrow V$ is W-coset-wise K-affine if $f(x)=\varphi_{C}(x)+v_{C}$ for all $x \in C($ coset of $W)$, and
${ }^{15}$ L. Reis and Q. Wang, The additive index of polynomials over finite fields, preprint (2021), https://arxiv.org/abs/2105.02374.

Fourth main result (Recursive construction): Notation 1

- K: field, $V: K$-vector space, $W: K$-subspace of V.
- $f: V \rightarrow V$ is W-coset-wise K-affine if $f(x)=\varphi_{C}(x)+v_{C}$ for all $x \in C($ coset of $W)$, and
(1) $\varphi_{C} \ldots K$-end. of V with $\varphi_{C}(W) \subseteq W$;
${ }^{15}$ L. Reis and Q. Wang, The additive index of polynomials over finite fields, preprint (2021), https://arxiv.org/abs/2105.02374.

Fourth main result (Recursive construction): Notation 1

- K: field, V : K-vector space, W : K-subspace of V.
- $f: V \rightarrow V$ is W-coset-wise K-affine if $f(x)=\varphi_{C}(x)+v_{C}$ for all $x \in C($ coset of $W)$, and
(1) $\varphi_{C} \ldots K$-end. of V with $\varphi_{C}(W) \subseteq W$;
(2) $v_{C} \in V$.
${ }^{15}$ L. Reis and Q. Wang, The additive index of polynomials over finite fields, preprint (2021), https://arxiv.org/abs/2105.02374.

Fourth main result (Recursive construction): Notation 1

- K: field, V : K-vector space, W : K-subspace of V.
- $f: V \rightarrow V$ is W-coset-wise K-affine if $f(x)=\varphi_{C}(x)+v_{C}$ for all $x \in C($ coset of $W)$, and
(1) $\varphi_{C} \ldots K$-end. of V with $\varphi_{C}(W) \subseteq W$;
(2) $v_{C} \in V$.
- Case $\varphi_{C}=\varphi$ for all C recently studied by Reis and Wang ${ }^{15}$.
${ }^{15}$ L. Reis and Q. Wang, The additive index of polynomials over finite fields, preprint (2021), https://arxiv.org/abs/2105.02374.

Fourth main result (Recursive construction): Notation 1

- K: field, $V: K$-vector space, $W: K$-subspace of V.
- $f: V \rightarrow V$ is W-coset-wise K-affine if $f(x)=\varphi_{C}(x)+v_{C}$ for all $x \in C(\underline{\text { coset of } W)}$, and
(1) $\varphi_{C} \ldots K$-end. of V with $\varphi_{C}(W) \subseteq W$;
(2) $v_{C} \in V$.
- Case $\varphi_{C}=\varphi$ for all C recently studied by Reis and Wang ${ }^{15}$.
- $\mathrm{GL}_{d}(p)$: group of invertible $(d \times d)$-mat. over \mathbb{F}_{p}.
${ }^{15}$ L. Reis and Q. Wang, The additive index of polynomials over finite fields, preprint (2021), https://arxiv.org/abs/2105.02374.

Fourth main result (Recursive construction): Notation 1

- K: field, V : K-vector space, W : K-subspace of V.
- $f: V \rightarrow V$ is W-coset-wise K-affine if $f(x)=\varphi_{C}(x)+v_{C}$ for all $x \in C(\underline{\text { coset of } W)}$, and
(1) $\varphi_{C} \ldots K$-end. of V with $\varphi_{C}(W) \subseteq W$;
(2) $v_{C} \in V$.
- Case $\varphi_{C}=\varphi$ for all C recently studied by Reis and Wang ${ }^{15}$.
- $\mathrm{GL}_{d}(p)$: group of invertible $(d \times d)$-mat. over \mathbb{F}_{p}.
- $\mathrm{CGL}_{d}(p)$: subset of $M \in \mathrm{GL}_{d}(p)$ with $\operatorname{det}(M+1) \neq 0$ (complete linear mappings).

[^43]
Fourth main result (Recursive construction): Notation 1

- K: field, $V: K$-vector space, $W: K$-subspace of V.
- $f: V \rightarrow V$ is W-coset-wise K-affine if $f(x)=\varphi_{C}(x)+v_{C}$ for all $x \in C($ coset of $W)$, and
(1) $\varphi_{C} \ldots K$-end. of V with $\varphi_{C}(W) \subseteq W$;
(2) $v_{C} \in V$.
- Case $\varphi_{C}=\varphi$ for all C recently studied by Reis and Wang ${ }^{15}$.
- $\mathrm{GL}_{d}(p)$: group of invertible $(d \times d)$-mat. over \mathbb{F}_{p}.
- $\mathrm{CGL}_{d}(p)$: subset of $M \in \mathrm{GL}_{d}(p)$ with $\operatorname{det}(M+1) \neq 0$ (complete linear mappings).
- $M \in \mathrm{GL}_{d}(p), \underline{v \in \mathbb{F}_{p}^{d}}: x \mapsto x M+v$ is denot. by $\lambda(M, v)$ (aff. perm.).

[^44]
Fourth main result (Recursive construction): Notation 1

- K: field, $V: K$-vector space, $W: K$-subspace of V.
- $f: V \rightarrow V$ is W-coset-wise K-affine if $f(x)=\varphi_{C}(x)+v_{C}$ for all $x \in C(\underline{\text { coset of } W)}$, and
(1) $\varphi_{C} \ldots K$-end. of V with $\varphi_{C}(W) \subseteq W$;
(2) $v_{C} \in V$.
- Case $\varphi_{C}=\varphi$ for all C recently studied by Reis and Wang ${ }^{15}$.
- $\mathrm{GL}_{d}(p)$: group of invertible $(d \times d)$-mat. over \mathbb{F}_{p}.
- $\mathrm{CGL}_{d}(p)$: subset of $M \in \mathrm{GL}_{d}(p)$ with $\operatorname{det}(M+1) \neq 0$ (complete linear mappings).
- $M \in \mathrm{GL}_{d}(p), v \in \mathbb{F}_{p}^{d}: x \mapsto x M+v$ is denot. by $\lambda(M, v)$ (aff. perm.).
- On next slide, we give a technical def. of a set $\Gamma(d, p, \ell)$ of CTs of aff. permutations.

[^45]
Fourth main result (Recursive construction): Notation 2

- If $\ell=1$, set

$$
\Gamma(d, p, \ell):=\left\{\mathrm{CT}(\lambda(M, v)): M \in \mathrm{CGL}_{d}(p), v \in \mathbb{F}_{p}^{d}\right\}
$$

Fourth main result (Recursive construction): Notation 2

- If $\ell=1$, set

$$
\Gamma(d, p, \ell):=\left\{\operatorname{CT}(\lambda(M, v)): M \in \mathrm{CGL}_{d}(p), v \in \mathbb{F}_{p}^{d}\right\}
$$

- If $\ell \geq 2$ and $(d, p) \neq(1,2),(1,3),(2,2)$, set

$$
\Gamma(d, p, \ell):=\left\{\mathrm{CT}(\lambda(M, v)): M \in \mathrm{GL}_{d}(p), v \in \mathbb{F}_{p}^{d}\right\} .
$$

Fourth main result (Recursive construction): Notation 2

- If $\ell=1$, set

$$
\Gamma(d, p, \ell):=\left\{\mathrm{CT}(\lambda(M, v)): M \in \mathrm{CGL}_{d}(p), v \in \mathbb{F}_{p}^{d}\right\} .
$$

- If $\ell \geq 2$ and $(d, p) \neq(1,2),(1,3),(2,2)$, set

$$
\Gamma(d, p, \ell):=\left\{\mathrm{CT}(\lambda(M, v)): M \in \mathrm{GL}_{d}(p), v \in \mathbb{F}_{p}^{d}\right\} .
$$

- If $\ell \geq 2$ and $(d, p)=(1,2)$, set $\Gamma(d, p, \ell):=\emptyset$.
- If $\ell \geq 2$ and $(d, p)=(1,3)$, set $\Gamma(d, p, \ell):=\left\{x_{1}^{3}, x_{3}\right\}$.
- If $\ell \geq 2$ and $(d, p)=(2,2)$, set $\Gamma(d, p, \ell):=\left\{x_{1}^{4}, x_{2}^{2}, x_{1} x_{3}\right\}$.

Fourth main result (Recursive construction)

Theorem 4
Let $\underline{d, t \in \mathbb{N}^{+}}, \underline{p \text { a prime }}$.

Fourth main result (Recursive construction)

Theorem 4
Let $\underline{d, t \in \mathbb{N}^{+}}, \underline{p \text { a prime }}$.

- Assume that $x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{p^{t}}^{k_{p t}}=\mathrm{CT}(f)$ for some compl. map. f of \mathbb{F}_{p}^{t}.

Fourth main result (Recursive construction)

Theorem 4

Let $\underline{d, t \in \mathbb{N}^{+}}, \underline{p \text { a prime }}$.

- Assume that $x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{p^{t}}^{k_{p t}}=\mathrm{CT}(f)$ for some compl. map. f of \mathbb{F}_{p}^{t}.
- For $\ell=1,2, \ldots, p^{t}$ and $i=1,2, \ldots, k_{\ell}$, fix $\gamma_{\ell, i} \in \Gamma(d, p, \ell)$.

Fourth main result (Recursive construction)

Theorem 4

Let $\underline{d, t \in \mathbb{N}^{+}}, \underline{p \text { a prime }}$.

- Assume that $x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{p^{t}}^{k_{p t}}=\mathrm{CT}(f)$ for some compl. map. f of \mathbb{F}_{p}^{t}.
- For $\ell=1,2, \ldots, p^{t}$ and $i=1,2, \ldots, k_{\ell}$, fix $\underline{\gamma_{\ell, i} \in \Gamma(d, p, \ell)}$.

Then for each d-dim. \mathbb{F}_{p}-subsp. W of \mathbb{F}_{p}^{d+t}, there ex. W-coset-wise $\mathbb{F}_{p^{-}}$-affine compl. map. of \mathbb{F}_{p}^{d+t} of cycle type

$$
\prod_{\ell=1}^{p^{t}} \prod_{i=1}^{k_{\ell}} \mathrm{BU}_{\ell}\left(\gamma_{\ell, i}\right)
$$

Fourth main result (Recursive construction)

Theorem 4

Let $\underline{d, t \in \mathbb{N}^{+}}, \underline{p \text { a prime }}$.

- Assume that $x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{p^{t}}^{k_{p t}}=\mathrm{CT}(f)$ for some compl. map. f of \mathbb{F}_{p}^{t}.
- For $\ell=1,2, \ldots, p^{t}$ and $i=1,2, \ldots, k_{\ell}$, fix $\gamma_{\ell, i} \in \Gamma(d, p, \ell)$.

Then for each d-dim. $\mathbb{F}_{p^{-}}$-subsp. W of \mathbb{F}_{p}^{d+t}, there ex. W-coset-wise $\mathbb{F}_{p^{-}}$-affine compl. map. of \mathbb{F}_{p}^{d+t} of cycle type

$$
\prod_{\ell=1}^{p^{t}} \prod_{i=1}^{k_{\ell}} \mathrm{BU}_{\ell}\left(\gamma_{\ell, i}\right)
$$

Corollary
$q=p^{k}$: odd prime power, S : Sylow p-subgroup of $\operatorname{Sym}(q)$.

Fourth main result (Recursive construction)

Theorem 4

Let $\underline{d, t \in \mathbb{N}^{+}}, \underline{p \text { a prime }}$.

- Assume that $x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{p^{t}}^{k_{p t}}=\mathrm{CT}(f)$ for some compl. map. f of \mathbb{F}_{p}^{t}.
- For $\ell=1,2, \ldots, p^{t}$ and $i=1,2, \ldots, k_{\ell}$, fix $\gamma_{\ell, i} \in \Gamma(d, p, \ell)$.

Then for each d-dim. $\mathbb{F}_{p^{-s u b s p}}$. W of \mathbb{F}_{p}^{d+t}, there ex. W-coset-wise $\mathbb{F}_{p^{-}}$-affine compl. map. of \mathbb{F}_{p}^{d+t} of cycle type

$$
\prod_{\ell=1}^{p^{t}} \prod_{i=1}^{k_{\ell}} \mathrm{BU}_{\ell}\left(\gamma_{\ell, i}\right)
$$

Corollary

$q=p^{k}$: odd prime power, S : Sylow p-subgroup of $\operatorname{Sym}(q)$. Then for all $\sigma \in S: C T(\sigma)=\mathrm{CT}(f)$ for some compl. map. f of \mathbb{F}_{q}.

Current section

(1) Introduction: Complete mappings and cycle types
(2) Our main results
(3) Proof sketch of Theorem 4

4 References

Wreath products

Definition (Imprimitive permutational wreath product)
$G \leq \operatorname{Sym}(\Omega), ~ P \leq \operatorname{Sym}(\Lambda)$.

Wreath products

Definition (Imprimitive permutational wreath product)
$\underline{G \leq \operatorname{Sym}(\Omega)}, \underline{P \leq \operatorname{Sym}(\Lambda)} . G \operatorname{limp} P \leq \operatorname{Sym}(\Omega \times \Lambda)$ has elements

Wreath products

Definition (Imprimitive permutational wreath product)
$\underline{G \leq \operatorname{Sym}(\Omega)}, \underline{P \leq \operatorname{Sym}(\Lambda)} . G \operatorname{limp} P \leq \operatorname{Sym}(\Omega \times \Lambda)$ has elements

$$
\left(\sigma,\left(g_{\lambda^{\prime}}\right)_{\lambda^{\prime} \in \Lambda}\right):(\omega, \lambda) \mapsto\left(g_{\sigma(\lambda)}(\omega), \sigma(\lambda)\right)
$$

for $\sigma \in P$ and $g_{\lambda^{\prime}} \in G$.

Wreath products

Definition (Imprimitive permutational wreath product)
$\underline{G \leq \operatorname{Sym}(\Omega)}, \underline{P \leq \operatorname{Sym}(\Lambda)} . G \operatorname{limp} P \leq \operatorname{Sym}(\Omega \times \Lambda)$ has elements

$$
\left(\sigma,\left(g_{\lambda^{\prime}}\right)_{\lambda^{\prime} \in \Lambda}\right):(\omega, \lambda) \mapsto\left(g_{\sigma(\lambda)}(\omega), \sigma(\lambda)\right)
$$

for $\sigma \in P$ and $g_{\lambda^{\prime}} \in G$.
Intuition:

- $\Omega \times \Lambda=\bigsqcup_{\lambda \in \Lambda} \Omega_{\lambda}$ where $\Omega_{\lambda}:=\Omega \times\{\lambda\}$ (copy of Ω).

Wreath products

Definition (Imprimitive permutational wreath product)
$\underline{G \leq \operatorname{Sym}(\Omega)}, \underline{P \leq \operatorname{Sym}(\Lambda)} . G \operatorname{limp} P \leq \operatorname{Sym}(\Omega \times \Lambda)$ has elements

$$
\left(\sigma,\left(g_{\lambda^{\prime}}\right)_{\lambda^{\prime} \in \Lambda}\right):(\omega, \lambda) \mapsto\left(g_{\sigma(\lambda)}(\omega), \sigma(\lambda)\right)
$$

for $\sigma \in P$ and $g_{\lambda^{\prime}} \in G$.
Intuition:

- $\Omega \times \Lambda=\bigsqcup_{\lambda \in \Lambda} \Omega_{\lambda}$ where $\Omega_{\lambda}:=\Omega \times\{\lambda\}$ (copy of Ω).
- $\left(\sigma,\left(g_{\lambda^{\prime}}\right)_{\lambda^{\prime} \in \Lambda}\right)$ acts on $\Omega \times \Lambda$ by

Wreath products

Definition (Imprimitive permutational wreath product)
$\underline{G \leq \operatorname{Sym}(\Omega)}, \underline{P \leq \operatorname{Sym}(\Lambda)} . G \operatorname{limp} P \leq \operatorname{Sym}(\Omega \times \Lambda)$ has elements

$$
\left(\sigma,\left(g_{\lambda^{\prime}}\right)_{\lambda^{\prime} \in \Lambda}\right):(\omega, \lambda) \mapsto\left(g_{\sigma(\lambda)}(\omega), \sigma(\lambda)\right)
$$

for $\sigma \in P$ and $g_{\lambda^{\prime}} \in G$.
Intuition:

- $\Omega \times \Lambda=\bigsqcup_{\lambda \in \Lambda} \Omega_{\lambda}$ where $\Omega_{\lambda}:=\Omega \times\{\lambda\}$ (copy of Ω).
- $\left(\sigma,\left(g_{\lambda^{\prime}}\right)_{\lambda^{\prime} \in \Lambda}\right)$ acts on $\Omega \times \Lambda$ by
- first permuting the copies Ω_{λ} acc. to $\sigma:(\omega, \lambda) \mapsto(\omega, \sigma(\lambda))$, and then

Wreath products

Definition (Imprimitive permutational wreath product)
$\underline{G \leq \operatorname{Sym}(\Omega)}, \underline{P \leq \operatorname{Sym}(\Lambda)} . G \operatorname{limp} P \leq \operatorname{Sym}(\Omega \times \Lambda)$ has elements

$$
\left(\sigma,\left(g_{\lambda^{\prime}}\right)_{\lambda^{\prime} \in \Lambda}\right):(\omega, \lambda) \mapsto\left(g_{\sigma(\lambda)}(\omega), \sigma(\lambda)\right)
$$

for $\sigma \in P$ and $g_{\lambda^{\prime}} \in G$.
Intuition:

- $\Omega \times \Lambda=\bigsqcup_{\lambda \in \Lambda} \Omega_{\lambda}$ where $\Omega_{\lambda}:=\Omega \times\{\lambda\}$ (copy of Ω).
- $\left(\sigma,\left(g_{\lambda^{\prime}}\right)_{\lambda^{\prime} \in \Lambda}\right)$ acts on $\Omega \times \Lambda$ by
- first permuting the copies Ω_{λ} acc. to $\sigma:(\omega, \lambda) \mapsto(\omega, \sigma(\lambda))$, and then
- permuting each copy $\Omega_{\lambda^{\prime}}$ acc. to $g_{\lambda^{\prime}}:(\omega, \sigma(\lambda)) \mapsto\left(g_{\sigma(\lambda)}(\omega), \sigma(\lambda)\right)$.

Coset-wise affine permutations as a wreath product

Coset-wise affine permutations as a wreath product

- $G \leq \operatorname{Sym}(\Omega), H \leq \operatorname{Sym}(\Sigma)$. An isomorphism of perm. gps. $G \rightarrow H$ is

$$
G \rightarrow \operatorname{Sym}(\Sigma), g \mapsto \beta \circ g \circ \beta^{-1} .
$$

Coset-wise affine permutations as a wreath product

- $G \leq \operatorname{Sym}(\Omega), H \leq \operatorname{Sym}(\Sigma)$. An isomorphism of perm. gps. $G \rightarrow H$ is

$$
G \rightarrow \operatorname{Sym}(\Sigma), g \mapsto \beta \circ g \circ \beta^{-1} .
$$

- K: field, $\underline{V:}$: -vector space, $W: K$-subspace of V.

Coset-wise affine permutations as a wreath product

- $G \leq \operatorname{Sym}(\Omega), H \leq \operatorname{Sym}(\Sigma)$. An isomorphism of perm. gps. $G \rightarrow H$ is

$$
G \rightarrow \operatorname{Sym}(\Sigma), g \mapsto \beta \circ g \circ \beta^{-1} .
$$

- K: field, V : K-vector space, W : K-subspace of V. CAff $K(V, W)$: perm. gp. of W-coset-wise K-aff. perm. of V.

Coset-wise affine permutations as a wreath product

- $G \leq \operatorname{Sym}(\Omega), H \leq \operatorname{Sym}(\Sigma)$. An isomorphism of perm. gps. $G \rightarrow H$ is

$$
G \rightarrow \operatorname{Sym}(\Sigma), g \mapsto \beta \circ g \circ \beta^{-1}
$$

- K: field, V : K-vector space, W : K-subspace of V. CAff $K(V, W)$: perm. gp. of W-coset-wise K-aff. perm. of V. It is iso. to

$$
\operatorname{Aff}_{K}(W) \tau_{\mathrm{imp}} \operatorname{Sym}(V / W),
$$

where $\operatorname{Aff}_{K}(W)$: gp. of K-aff. perm. $x \mapsto x M+w$ of W.

Coset-wise affine permutations as a wreath product

- $G \leq \operatorname{Sym}(\Omega), H \leq \operatorname{Sym}(\Sigma)$. An isomorphism of perm. gps. $G \rightarrow H$ is

$$
G \rightarrow \operatorname{Sym}(\Sigma), g \mapsto \beta \circ g \circ \beta^{-1}
$$

- K: field, V : K-vector space, W : K-subspace of V. CAff $K(V, W)$: perm. gp. of W-coset-wise K-aff. perm. of V. It is iso. to

$$
\operatorname{Aff}_{K}(W) \tau_{\mathrm{imp}} \operatorname{Sym}(V / W),
$$

where $\operatorname{Aff}_{K}(W)$: gp. of K-aff. perm. $x \mapsto x M+w$ of W.

- There ex. iso.

$$
\operatorname{CAff}_{K}(V, W) \rightarrow \operatorname{Aff}_{K}(W) \tau_{i m p} \operatorname{Sym}(V / W)
$$

Coset-wise affine permutations as a wreath product

- $G \leq \operatorname{Sym}(\Omega), H \leq \operatorname{Sym}(\Sigma)$. An isomorphism of perm. gps. $G \rightarrow H$ is

$$
G \rightarrow \operatorname{Sym}(\Sigma), g \mapsto \beta \circ g \circ \beta^{-1}
$$

- K: field, V : K-vector space, W : K-subspace of V. CAff $K(V, W)$: perm. gp. of W-coset-wise K-aff. perm. of V. It is iso. to

$$
\operatorname{Aff}_{K}(W) \tau_{\mathrm{imp}} \operatorname{Sym}(V / W),
$$

where $\operatorname{Aff}_{K}(W)$: gp. of K-aff. perm. $x \mapsto x M+w$ of W.

- There ex. iso.

$$
\operatorname{CAff}_{K}(V, W) \rightarrow \operatorname{Aff}_{K}(W) \tau_{i m p} \operatorname{Sym}(V / W)
$$

s.t. compl. map. in $\operatorname{CAff}_{K}(V, W)$ corr. to the el. $\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)$ with σ and each A_{u} compl. map. (of V / W resp. W).

Cycle types of wreath product elements

- Goal: Determine all possible $\operatorname{CT}\left(\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)\right)$ with σ and A_{u} compl. map.

[^46]
Cycle types of wreath product elements

- Goal: Determine all possible $\operatorname{CT}\left(\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)\right)$ with σ and A_{u} compl. map.
- To compute these cycle types, follow Pólya ${ }^{16}$:

[^47]
Cycle types of wreath product elements

- Goal: Determine all possible $\operatorname{CT}\left(\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)\right)$ with σ and A_{u} compl. map.
- To compute these cycle types, follow Pólya ${ }^{16}$:
- For each cycle $\zeta=\left(u_{1}, u_{2}, \ldots, u_{\ell}\right)$ of σ, form

$$
A_{u_{1}} A_{L_{2}} \cdots A_{u_{\ell}} \in \operatorname{Aff}_{K}(W)
$$

[^48]
Cycle types of wreath product elements

- Goal: Determine all possible $\operatorname{CT}\left(\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)\right)$ with σ and A_{u} compl. map.
- To compute these cycle types, follow Pólya ${ }^{16}$:
- For each cycle $\zeta=\left(u_{1}, u_{2}, \ldots, u_{\ell}\right)$ of σ, form $A_{u_{1}} A_{u_{2}} \cdots A_{u_{\ell}} \in \operatorname{Aff}_{K}(W)$.
- Then form the blow-up $\mathrm{BU}_{\ell}\left(\operatorname{CT}\left(A_{u_{1}} A_{L_{2}} \cdots A_{u_{\ell}}\right)\right)$.

[^49]
Cycle types of wreath product elements

- Goal: Determine all possible $\operatorname{CT}\left(\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)\right)$ with σ and A_{u} compl. map.
- To compute these cycle types, follow Pólya ${ }^{16}$:
- For each cycle $\zeta=\left(u_{1}, u_{2}, \ldots, u_{\ell}\right)$ of σ, form

$$
A_{L_{1}} A_{L_{2}} \cdots A_{U_{\ell}} \in \operatorname{Aff}_{K}(W) .
$$

- Then form the blow-up $\mathrm{BU}_{\ell}\left(\mathrm{CT}\left(A_{u_{1}} A_{L_{2}} \cdots A_{u_{\ell}}\right)\right)$.
- Finally, multiply those blow-ups together:

$$
\mathrm{CT}\left(\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)\right)=\prod_{\operatorname{cycles} \zeta=\left(u_{1}, \ldots, u_{\ell}\right) \text { of } \sigma} \mathrm{BU}_{\ell}\left(\mathrm{CT}\left(A_{u_{1}} \cdots A_{u_{\ell}}\right)\right) .
$$

[^50] chemische Verbindungen, Acta Math. 68(1): 145-254, 1937.

Products of complete affine mappings

Our case: $K=\mathbb{F}_{p}, \underline{\sigma \text { and each } A_{u} \text { arbitrary compl. map. }}$

Products of complete affine mappings

Our case: $K=\mathbb{F}_{p}, \sigma$ and each A_{u} arbitrary compl. map.

Question

For given ℓ, which elements of $\operatorname{Aff}_{\mathbb{F}_{p}}\left(\mathbb{F}_{p}^{d}\right)=\mathrm{AGL}_{d}(p)$ are a product of ℓ compl. map. in $\mathrm{AGL}_{d}(p)$?

Products of complete affine mappings

Our case: $\underline{K=\mathbb{F}_{p}}, \underline{\sigma \text { and each } A_{u} \text { arbitrary compl. map. }}$

Question

For given ℓ, which elements of $\operatorname{Aff}_{\mathbb{F}_{p}}\left(\mathbb{F}_{p}^{d}\right)=\mathrm{AGL}_{d}(p)$ are a product of ℓ compl. map. in $\mathrm{AGL}_{d}(p)$?

Proposition

$d, \ell \in \mathbb{N}^{+}, p$ prime.
$\overline{M(d, p, \ell)}$: set of products of ℓ compl. map. in $\mathrm{AGL}_{d}(p)$. Then

Products of complete affine mappings

Our case: $K=\mathbb{F}_{p}, \underline{\sigma}$ and each A_{u} arbitrary compl. map.

Question

For given ℓ, which elements of $\operatorname{Aff}_{\mathbb{F}_{p}}\left(\mathbb{F}_{p}^{d}\right)=\mathrm{AGL}_{d}(p)$ are a product of ℓ compl. map. in $\mathrm{AGL}_{d}(p)$?

Proposition

$d, \ell \in \mathbb{N}^{+}, p$ prime.
$\overline{M(d, p, \ell)}$: set of products of ℓ compl. map. in $\mathrm{AGL}_{d}(p)$. Then
(1) $M(d, p, 1)=\left\{\lambda(M, v): M \in C L_{d}(p), v \in \mathbb{F}_{p}^{d}\right\}$.

Products of complete affine mappings

Our case: $K=\mathbb{F}_{p}, \underline{\sigma}$ and each A_{u} arbitrary compl. map.

Question

For given ℓ, which elements of $\operatorname{Aff}_{\mathbb{F}_{p}}\left(\mathbb{F}_{p}^{d}\right)=\mathrm{AGL}_{d}(p)$ are a product of ℓ compl. map. in $\mathrm{AGL}_{d}(p)$?

Proposition

$d, \ell \in \mathbb{N}^{+}, p$ prime.
$M(d, p, \ell)$: set of products of ℓ compl. map. in $\mathrm{AGL}_{d}(p)$. Then
(1) $M(d, p, 1)=\left\{\lambda(M, v): M \in C L_{d}(p), v \in \mathbb{F}_{p}^{d}\right\}$.
(2) If $\ell \geq 2: M(d, p, \ell)=A G L_{d}(p)$ unless $(d, p) \in\{(1,2),(1,3),(2,2)\}$.

Products of complete affine mappings

Our case: $K=\mathbb{F}_{p}, \sigma$ and each A_{u} arbitrary compl. map.

Question

For given ℓ, which elements of $\operatorname{Aff}_{\mathbb{F}_{p}}\left(\mathbb{F}_{p}^{d}\right)=\operatorname{AGL}_{d}(p)$ are a product of ℓ compl. map. in $\mathrm{AGL}_{d}(p)$?

Proposition

$d, \ell \in \mathbb{N}^{+}, p$ prime.
$\overline{M(d, p, \ell)}$: set of products of ℓ compl. map. in $\mathrm{AGL}_{d}(p)$. Then
(1) $M(d, p, 1)=\left\{\lambda(M, v): M \in C G L_{d}(p), v \in \mathbb{F}_{p}^{d}\right\}$.
(2) If $\ell \geq 2: M(d, p, \ell)=A G L_{d}(p)$ unless $(d, p) \in\{(1,2),(1,3),(2,2)\}$.
(3) If $\ell \geq 2,(d, p)=(1,2): M(d, p, \ell)=\emptyset$.
(1) If $\ell \geq 2,(d, p)=(1,3): M(d, p, \ell)=\{(1)\}$.
(3) If $\ell \geq 2,(d, p)=(2,2): M(d, p, \ell)=\left\langle\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)\right\rangle$.

Concluding the proof of Theorem 4

Concluding the proof of Theorem 4

- Consequence:

$$
\Gamma(d, p, \ell)=\left\{\mathrm{CT}\left(B_{1} B_{2} \cdots B_{\ell}\right): B_{i} \in \mathrm{AGL}_{d}(p), B_{i} \text { is complete }\right\} .
$$

Concluding the proof of Theorem 4

- Consequence:

$$
\Gamma(d, p, \ell)=\left\{\mathrm{CT}\left(B_{1} B_{2} \cdots B_{\ell}\right): B_{i} \in \mathrm{AGL}_{d}(p), B_{i} \text { is complete }\right\} .
$$

- Choosing the A_{u} suitably, we can get

$$
\mathrm{CT}\left(\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)\right)=\prod_{\operatorname{cycles} \zeta \text { of } \sigma} \mathrm{BU}_{\ell}\left(\gamma_{\zeta}\right)
$$

for arbitrary el. $\gamma_{\zeta} \in \Gamma\left(\operatorname{dim}_{\mathbb{F}_{p}}(W), p, \ell(\zeta)\right)$.

Concluding the proof of Theorem 4

- Consequence:

$$
\Gamma(d, p, \ell)=\left\{\mathrm{CT}\left(B_{1} B_{2} \cdots B_{\ell}\right): B_{i} \in \mathrm{AGL}_{d}(p), B_{i} \text { is complete }\right\} .
$$

- Choosing the A_{u} suitably, we can get

$$
\mathrm{CT}\left(\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)\right)=\prod_{\operatorname{cycles} \zeta \text { of } \sigma} \mathrm{BU}_{\ell}\left(\gamma_{\zeta}\right)
$$

for arbitrary el. $\gamma_{\zeta} \in \Gamma\left(\operatorname{dim}_{\mathbb{F}_{p}}(W), p, \ell(\zeta)\right)$.

- If we
- set $t:=\operatorname{dim}_{\mathbb{F}_{p}}(V / W)$ and $d:=\operatorname{dim}_{\mathbb{F}_{p}}(W)$,

Concluding the proof of Theorem 4

- Consequence:

$$
\Gamma(d, p, \ell)=\left\{\mathrm{CT}\left(B_{1} B_{2} \cdots B_{\ell}\right): B_{i} \in \mathrm{AGL}_{d}(p), B_{i} \text { is complete }\right\} .
$$

- Choosing the A_{u} suitably, we can get

$$
\mathrm{CT}\left(\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)\right)=\prod_{\operatorname{cycles} \zeta \text { of } \sigma} \mathrm{BU}_{\ell}\left(\gamma_{\zeta}\right)
$$

for arbitrary el. $\gamma_{\zeta} \in \Gamma\left(\operatorname{dim}_{\mathbb{F}_{p}}(W), p, \ell(\zeta)\right)$.

- If we
- set $t:=\operatorname{dim}_{\mathbb{F}_{p}}(V / W)$ and $d:=\operatorname{dim}_{\mathbb{F}_{p}}(W)$,
- write $\mathrm{CT}(\sigma)=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{p^{t}}^{k_{p t}}$,

Concluding the proof of Theorem 4

- Consequence:

$$
\Gamma(d, p, \ell)=\left\{\mathrm{CT}\left(B_{1} B_{2} \cdots B_{\ell}\right): B_{i} \in \mathrm{AGL}_{d}(p), B_{i} \text { is complete }\right\} .
$$

- Choosing the A_{u} suitably, we can get

$$
\mathrm{CT}\left(\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)\right)=\prod_{\text {cycles } \zeta \text { of } \sigma} \mathrm{BU}_{\ell}\left(\gamma_{\zeta}\right)
$$

for arbitrary el. $\gamma_{\zeta} \in \Gamma\left(\operatorname{dim}_{\mathbb{F}_{p}}(W), p, \ell(\zeta)\right)$.

- If we
- set $t:=\operatorname{dim}_{\mathbb{F}_{p}}(V / W)$ and $d:=\operatorname{dim}_{\mathbb{F}_{p}}(W)$,
- write CT $(\sigma)=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{p t}^{k_{p t}}$,
- enumerate ℓ-cycles of σ as $\zeta_{\ell, i}$ for $i=1,2, \ldots, k_{\ell}$, and

Concluding the proof of Theorem 4

- Consequence:

$$
\Gamma(d, p, \ell)=\left\{\mathrm{CT}\left(B_{1} B_{2} \cdots B_{\ell}\right): B_{i} \in \mathrm{AGL}_{d}(p), B_{i} \text { is complete }\right\} .
$$

- Choosing the A_{u} suitably, we can get

$$
\mathrm{CT}\left(\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)\right)=\prod_{\text {cycles } \zeta \text { of } \sigma} \mathrm{BU}_{\ell}\left(\gamma_{\zeta}\right)
$$

for arbitrary el. $\gamma_{\zeta} \in \Gamma\left(\operatorname{dim}_{\mathbb{F}_{p}}(W), p, \ell(\zeta)\right)$.

- If we
- set $t:=\operatorname{dim}_{\mathbb{F}_{p}}(V / W)$ and $d:=\operatorname{dim}_{\mathbb{F}_{p}}(W)$,
- write CT $(\sigma)=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{p t}^{k_{p t}}$,
- enumerate ℓ-cycles of σ as $\zeta_{\ell, i}$ for $i=1,2, \ldots, k_{\ell}$, and
- write $\gamma_{\ell, i}$ instead of $\gamma_{\zeta_{\ell, j}}$,

Concluding the proof of Theorem 4

- Consequence:

$$
\Gamma(d, p, \ell)=\left\{\mathrm{CT}\left(B_{1} B_{2} \cdots B_{\ell}\right): B_{i} \in \mathrm{AGL}_{d}(p), B_{i} \text { is complete }\right\} .
$$

- Choosing the A_{u} suitably, we can get

$$
\mathrm{CT}\left(\left(\sigma,\left(A_{u}\right)_{u \in V / W}\right)\right)=\prod_{\text {cycles } \zeta \text { of } \sigma} \mathrm{BU}_{\ell}\left(\gamma_{\zeta}\right)
$$

for arbitrary el. $\gamma_{\zeta} \in \Gamma\left(\operatorname{dim}_{\mathbb{F}_{p}}(W), p, \ell(\zeta)\right)$.

- If we
- set $t:=\operatorname{dim}_{\mathbb{F}_{p}}(V / W)$ and $d:=\operatorname{dim}_{\mathbb{F}_{p}}(W)$,
- write CT $(\sigma)=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{p t}^{k_{p t}}$,
- enumerate ℓ-cycles of σ as $\zeta_{\ell, i}$ for $i=1,2, \ldots, k_{\ell}$, and
- write $\gamma_{\ell, i}$ instead of $\gamma_{\zeta_{\ell, i}}$,
this becomes the statement of Theorem 4.

Current section

(1) Introduction: Complete mappings and cycle types
(2) Our main results
(3) Proof sketch of Theorem 4

4 References

References

(1) J. Bell, Cyclotomic orthomorphisms of finite fields, Discrete Appl. Math. 161(1-2): 294-300, 2013.
(2) A. Bors and Q. Wang, Generalized cyclotomic mappings: Switching between polynomial, cyclotomic, and wreath product form, to appear in Commun. Math. Res., digital version available under https://doc.global-sci.org/uploads/online_news/CMR/ a399f07452983bc3e4a1841da72b5780.pdf.
(3) A. Bors and Q. Wang, Cycle types of complete mappings of finite fields, to appear in J. Algebra, preprint available under https://arxiv.org/abs/2105.00140.
(9) A. Bors and Q. Wang, Coset-wise affine functions and cycle types of complete mappings, preprint (2021), https://arxiv.org/abs/2109.03922.
(3) L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956.
(0) A. Çeșmelioğlu, W. Meidl and A. Topuzoğlu, On the cycle structure of permutation polynomials, Finite Fields Appl. 14: 593-614, 2008.

References cont.

(1) P. Charpin, S. Mesnager and S. Sarkar, Involutions over the Galois field $\mathbb{F}_{2^{n}}$, IEEE Trans. Inform. Theory 62(4): 2266-2276, 2016.
(8) Y. Chen, L. Wang and S. Zhu, On the constructions of n-cycle permutations, Finite Fields Appl. 73: 101847, 2017.
(9) A.B. Evans, Applications of complete mappings and orthomorphisms of finite groups, Quasigroups Related Systems 23: 5-30, 2015.
(10) A.B. Evans, Orthogonal Latin Squares Based on Groups, Springer (Developments in Mathematics, 57), Cham, 2018.
(1) H. Fripertinger, Cycle indices of linear, affine, and projective groups, Linear Algebra Appl. 263: 133-156, 1997.
(12) J. Fulman, Cycle indices for the finite classical groups, J. Group Theory 2: 251-289, 1999.
(3) D. Gerike and G.M. Kyureghan, Permutations on finite fields with invariant cycle structure on lines, Des. Codes Cryptogr. 88: 1723-1740, 2020.

References cont.

(44) S.W. Golomb, G. Gong and L. Mittenthal, Constructions of orthomorphisms of \mathbb{Z}_{2}^{n}, in: D. Jungnickel and H. Niederreiter (eds.), Finite Fields and Applications. Proceedings of the Fifth International Conference on Finite Fields and Applications Fq5, held at the University of Augsburg, Germany, August 2-6, 1999, Springer, Berlin-Heidelberg, 2001, pp. 178-195.
(5) L. Ișik, A. Topuzoğlu and A. Winterhof, Complete mappings and Carlitz rank, Des. Codes Cryptogr. 85: 121-128, 2017.
(10) H.B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics 13: 418-423, 1942.
(1) L. Mittenthal, Block substitutions using orthomorphic mappings, Adv. Appl. Math. 16(10): 59-71, 1995.
(88) L. Mittenthal, Nonlinear dynamic substitution devices and methods for block substitutions employing coset decompositions and direct geometric generation, US Patent 5647001, 1997.

References cont.

(10) A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014.
(20) H. Niederreiter, Random number generation and quasi-Monte Carlo Methods, SIAM (CBMS-NSF Regional Conference Series in Applied Mathematics, 63), Philadelphia, 1992.
(1) H. Niederreiter and K.H. Robinson, Complete mappings of finite fields, J. Austral. Math. Soc. Ser. A 33(2): 197-212, 1984.
(2) H. Niederreiter and A. Winterhof, Cyclotomic \mathcal{R}-orthomorphisms of finite fields, Discrete Math. 295(1-3): 161-171, 2005.
(3) T. Niu, K. Li, L. Qu and Q. Wang, New constructions of involutions over finite fields, Cryptogr. Commun. 12: 165-185, 2020.
(24 G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68(1): 145-254, 1937.

References cont.

(23) L. Reis and Q. Wang, The additive index of polynomials over finite fields, preprint (2021), https://arxiv.org/abs/2105.02374.
(20) I.M. Rubio, G.L. Mullen, C. Corrada and F.N. Castro, Dickson permutation polynomials that decompose in cycles of the same length, in: G.L. Mullen et al. (eds.), Finite Fields and Applications. Eighth International Conference on Finite Fields and Applications. July 9-13, 2007. Melbourne, Australia, American Mathematical Society (Contemporary Mathematics, vol. 461), Providence, 2008, pp. 229-240.
(27) A. Sakzad, M.-R. Sadeghi and D. Panario, Cycle structure of permutation functions over finite fields and their applications, Adv. Math. Commun. 6(3): 347-361, 2012.
(8) R.H. Schulz, On check digit systems using anti-symmetric mappings, in: I. Althöfer et al. (eds.), Numbers, information and complexity, Kluwer, Boston, 2000, pp. 295-310.

References cont.

(2) Z. Tu, X. Zeng and L. Hu, Several classes of complete permutation polynomials, Finite Fields Appl. 25: 182-193, 2014.
(30) Q. Wang, Cyclotomic mapping permutation polynomials over finite fields, in: S.W. Golomb et al. (eds.), Sequences, Subsequences, and Consequences, Springer (Lecture Notes in Comput. Sci., vol. 4893), Berlin, 2007, pp. 119-128.
(3) Q. Wang, Cyclotomy and permutation polynomials of large indices, Finite Fields Appl. 22: 57-69, 2013.
(32) W.-D. Wei, X.-H. Gao and B.-F. Yang, Equivalence relation on the set of subsets of Z_{V} and enumeration of the equivalence classes (Research Announcement), Adv. Math. 17: 326-327, 1988.
(3) A. Winterhof, Generalizations of complete mappings of finite fields and some applications, J. Symbolic Comput. 64: 42-52, 2014.
(33) G. Wu, N. Li, T. Helleseth and Y. Zhang, Some classes of monomial complete permutation polynomials over finite fields of characteristic two, Finite Fields Appl. 28: 148-165, 2014.

References cont.

(5) G. Xu and X . Cao, Complete permutation polynomials over finite fields of odd characteristic, Finite Fields Appl. 31: 228-240, 2015.
(30) Z. Zha, L. Hu and X. Cao, Constructing permutations and complete permutations over finite fields via subfield-valued polynomials, Finite Fields Appl. 31: 162-177, 2015.
(3) Y. Zheng, Y. Yu, Y. Zhang and D. Pei, Piecewise constructions of inverses of cyclotomic mapping permutation polynomials, Finite Fields Appl. 40: 1-9, 2016.
(38) M. Wu, C. Li and Z. Wang, Characterizations and constructions of triple-cycle permutations of the form $x^{r} h\left(x^{s}\right)$, Des. Codes Cryptogr. 88(10): 2119-2132, 2020.

[^0]: ${ }^{1}$ H.B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics 13: 418-423, 1942.
 ${ }^{2}$ R.H. Schulz, On check digit systems using anti-symmetric mappings, in: I. Althöfer et al. (eds.), Numbers, information and complexity, Kluwer, Boston, 2000, pp. 295-310.
 ${ }^{3}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014.
 ${ }^{4}$ A.B. Evans, Orthogonal Latin Squares Based on Groups, Springer (Developments in Mathematics, 57), Cham, 2018. Chapter 3.

[^1]: ${ }^{1}$ H.B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics 13: 418-423, 1942.
 ${ }^{2}$ R.H. Schulz, On check digit systems using anti-symmetric mappings, in: I. Althöfer et al. (eds.), Numbers, information and complexity, Kluwer, Boston, 2000, pp. 295-310.
 ${ }^{3}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014.
 ${ }^{4}$ A.B. Evans, Orthogonal Latin Squares Based on Groups, Springer (Developments in Mathematics, 57), Cham, 2018. Chapter 3.

[^2]: ${ }^{1}$ H.B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics 13: 418-423, 1942.
 ${ }^{2}$ R.H. Schulz, On check digit systems using anti-symmetric mappings, in: I. Althöfer et al. (eds.), Numbers, information and complexity, Kluwer, Boston, 2000, pp. 295-310.
 ${ }^{3}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014.
 ${ }^{4}$ A.B. Evans, Orthogonal Latin Squares Based on Groups, Springer (Developments in Mathematics, 57), Cham, 2018. Chapter 3.

[^3]: ${ }^{1}$ H.B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics 13: 418-423, 1942.
 ${ }^{2}$ R.H. Schulz, On check digit systems using anti-symmetric mappings, in: I. Althöfer et al. (eds.), Numbers, information and complexity, Kluwer, Boston, 2000, pp. 295-310.
 ${ }^{3}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014.
 ${ }^{4}$ A.B. Evans, Orthogonal Latin Squares Based on Groups, Springer (Developments in Mathematics, 57), Cham, 2018. Chapter 3.

[^4]: ${ }^{1}$ H.B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics 13: 418-423, 1942.
 ${ }^{2}$ R.H. Schulz, On check digit systems using anti-symmetric mappings, in: I. Althöfer et al. (eds.), Numbers, information and complexity, Kluwer, Boston, 2000, pp. 295-310.
 ${ }^{3}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014.
 ${ }^{4}$ A.B. Evans, Orthogonal Latin Squares Based on Groups, Springer (Developments in Mathematics, 57), Cham, 2018. Chapter 3.

[^5]: ${ }^{1}$ H.B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics 13: 418-423, 1942.
 ${ }^{2}$ R.H. Schulz, On check digit systems using anti-symmetric mappings, in: I. Althöfer et al. (eds.), Numbers, information and complexity, Kluwer, Boston, 2000, pp. 295-310.
 ${ }^{3}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014.
 ${ }^{4}$ A.B. Evans, Orthogonal Latin Squares Based on Groups, Springer (Developments in Mathematics, 57), Cham, 2018. Chapter 3.

[^6]: ${ }^{1}$ H.B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics 13: 418-423, 1942.
 ${ }^{2}$ R.H. Schulz, On check digit systems using anti-symmetric mappings, in: I. Althöfer et al. (eds.), Numbers, information and complexity, Kluwer, Boston, 2000, pp. 295-310.
 ${ }^{3}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014.
 ${ }^{4}$ A.B. Evans, Orthogonal Latin Squares Based on Groups, Springer (Developments in Mathematics, 57), Cham, 2018. Chapter 3.

[^7]: ${ }^{5}$ A.B. Evans, Applications of complete mappings and orthomorphisms of finite groups, Quasigroups Related Systems 23: 5-30, 2015.
 ${ }^{6}$ H. Niederreiter and K.H. Robinson, Complete mappings of finite fields, J. Austral. Math. Soc. Ser. A 33(2): 197-212, 1984.

[^8]: ${ }^{5}$ A.B. Evans, Applications of complete mappings and orthomorphisms of finite groups, Quasigroups Related Systems 23: 5-30, 2015.
 ${ }^{6}$ H. Niederreiter and K.H. Robinson, Complete mappings of finite fields, J. Austral. Math. Soc. Ser. A 33(2): 197-212, 1984.

[^9]: ${ }^{5}$ A.B. Evans, Applications of complete mappings and orthomorphisms of finite groups, Quasigroups Related Systems 23: 5-30, 2015.
 ${ }^{6}$ H. Niederreiter and K.H. Robinson, Complete mappings of finite fields, J. Austral. Math. Soc. Ser. A 33(2): 197-212, 1984.

[^10]: ${ }^{5}$ A.B. Evans, Applications of complete mappings and orthomorphisms of finite groups, Quasigroups Related Systems 23: 5-30, 2015.
 ${ }^{6}$ H. Niederreiter and K.H. Robinson, Complete mappings of finite fields, J. Austral. Math. Soc. Ser. A 33(2): 197-212, 1984.

[^11]: ${ }^{5}$ A.B. Evans, Applications of complete mappings and orthomorphisms of finite groups, Quasigroups Related Systems 23: 5-30, 2015.
 ${ }^{6}$ H. Niederreiter and K.H. Robinson, Complete mappings of finite fields, J. Austral. Math. Soc. Ser. A 33(2): 197-212, 1984.

[^12]: ${ }^{7} \mathrm{H}$. Niederreiter, Random number generation and quasi-Monte Carlo Methods, SIAM (CBMS-NSF Regional Conference Series in Applied Mathematics, 63), Philadelphia, 1992. Section 7.2, p. 164.
 ${ }^{8} \mathrm{P}$. Charpin, S. Mesnager and S. Sarkar, Involutions over the Galois field $\mathbb{F}_{2^{n}}$, IEEE Trans. Inform. Theory 62(4): 2266-2276, 2016. Introduction.

[^13]: ${ }^{7}$ H. Niederreiter, Random number generation and quasi-Monte Carlo Methods, SIAM (CBMS-NSF Regional Conference Series in Applied Mathematics, 63), Philadelphia, 1992. Section 7.2, p. 164.
 ${ }^{8}$ P. Charpin, S. Mesnager and S. Sarkar, Involutions over the Galois field $\mathbb{F}_{2^{n}}$, IEEE Trans. Inform. Theory 62(4): 2266-2276, 2016. Introduction.

[^14]: ${ }^{7}$ H. Niederreiter, Random number generation and quasi-Monte Carlo Methods, SIAM (CBMS-NSF Regional Conference Series in Applied Mathematics, 63), Philadelphia, 1992. Section 7.2, p. 164.
 ${ }^{8}$ P. Charpin, S. Mesnager and S. Sarkar, Involutions over the Galois field $\mathbb{F}_{2^{n}}$, IEEE Trans. Inform. Theory 62(4): 2266-2276, 2016. Introduction.

[^15]: ${ }^{7}$ H. Niederreiter, Random number generation and quasi-Monte Carlo Methods, SIAM (CBMS-NSF Regional Conference Series in Applied Mathematics, 63), Philadelphia, 1992. Section 7.2, p. 164.
 ${ }^{8}$ P. Charpin, S. Mesnager and S. Sarkar, Involutions over the Galois field $\mathbb{F}_{2^{n}}$, IEEE Trans. Inform. Theory 62(4): 2266-2276, 2016. Introduction.

[^16]: ${ }^{7}$ H. Niederreiter, Random number generation and quasi-Monte Carlo Methods, SIAM (CBMS-NSF Regional Conference Series in Applied Mathematics, 63), Philadelphia, 1992. Section 7.2, p. 164.
 ${ }^{8}$ P. Charpin, S. Mesnager and S. Sarkar, Involutions over the Galois field $\mathbb{F}_{2^{n}}$, IEEE Trans. Inform. Theory 62(4): 2266-2276, 2016. Introduction.

[^17]: ${ }^{7} \mathrm{H}$. Niederreiter, Random number generation and quasi-Monte Carlo Methods, SIAM (CBMS-NSF Regional Conference Series in Applied Mathematics, 63), Philadelphia, 1992. Section 7.2, p. 164.
 ${ }^{8} \mathrm{P}$. Charpin, S. Mesnager and S. Sarkar, Involutions over the Galois field $\mathbb{F}_{2^{n}}$, IEEE Trans. Inform. Theory 62(4): 2266-2276, 2016. Introduction.

[^18]: ${ }^{7} \mathrm{H}$. Niederreiter, Random number generation and quasi-Monte Carlo Methods, SIAM (CBMS-NSF Regional Conference Series in Applied Mathematics, 63), Philadelphia, 1992. Section 7.2, p. 164.
 ${ }^{8}$ P. Charpin, S. Mesnager and S. Sarkar, Involutions over the Galois field $\mathbb{F}_{2^{n}}$, IEEE Trans. Inform. Theory 62(4): 2266-2276, 2016. Introduction.

[^19]: ${ }^{9}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014. Theorem 9.

[^20]: ${ }^{9}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014. Theorem 9.

[^21]: ${ }^{9}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014. Theorem 9.

[^22]: ${ }^{9}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014. Theorem 9.

[^23]: ${ }^{9}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014. Theorem 9.

[^24]: ${ }^{9}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014. Theorem 9.

[^25]: ${ }^{9}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014. Theorem 9.

[^26]: ${ }^{9}$ A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields and their applications in crpytography, Finite Fields Appl. 25: 306-315, 2014. Theorem 9.

[^27]: ${ }^{10}$ A. Bors and Q. Wang, Cycle types of complete mappings of finite fields, to appear in J. Algebra, preprint available under https://arxiv.org/abs/2105.00140.
 ${ }^{11} \mathrm{~A}$. Bors and Q. Wang, Coset-wise affine functions and cycle types of complete mappings, preprint (2021), https://arxiv.org/abs/2109.03922.
 ${ }^{12}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Eheorem 1.

[^28]: ${ }^{10}$ A. Bors and Q. Wang, Cycle types of complete mappings of finite fields, to appear in J. Algebra, preprint available under https://arxiv.org/abs/2105.00140.
 ${ }^{11} \mathrm{~A}$. Bors and Q. Wang, Coset-wise affine functions and cycle types of complete mappings, preprint (2021), https://arxiv.org/abs/2109.03922.
 ${ }^{12}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Eheorem 1.

[^29]: ${ }^{10}$ A. Bors and Q. Wang, Cycle types of complete mappings of finite fields, to appear in J. Algebra, preprint available under https://arxiv.org/abs/2105.00140.
 ${ }^{11}$ A. Bors and Q. Wang, Coset-wise affine functions and cycle types of complete mappings, preprint (2021), https://arxiv.org/abs/2109.03922.
 ${ }^{12}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Eheorem 1.

[^30]: ${ }^{10} \mathrm{~A}$. Bors and Q. Wang, Cycle types of complete mappings of finite fields, to appear in J. Algebra, preprint available under https://arxiv.org/abs/2105.00140.
 ${ }^{11}$ A. Bors and Q. Wang, Coset-wise affine functions and cycle types of complete mappings, preprint (2021), https://arxiv.org/abs/2109.03922.
 ${ }^{12}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Eheorem 1.

[^31]: ${ }^{10} \mathrm{~A}$. Bors and Q. Wang, Cycle types of complete mappings of finite fields, to appear in J. Algebra, preprint available under https://arxiv.org/abs/2105.00140.
 ${ }^{11}$ A. Bors and Q. Wang, Coset-wise affine functions and cycle types of complete mappings, preprint (2021), https://arxiv.org/abs/2109.03922.
 ${ }^{12}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Eheorem 1.

[^32]: ${ }^{10} \mathrm{~A}$. Bors and Q. Wang, Cycle types of complete mappings of finite fields, to appear in J. Algebra, preprint available under https://arxiv.org/abs/2105.00140.
 ${ }^{11}$ A. Bors and Q. Wang, Coset-wise affine functions and cycle types of complete mappings, preprint (2021), https://arxiv.org/abs/2109.03922.
 ${ }^{12}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Eheorem 1.

[^33]: ${ }^{10} \mathrm{~A}$. Bors and Q. Wang, Cycle types of complete mappings of finite fields, to appear in J. Algebra, preprint available under https://arxiv.org/abs/2105.00140.
 ${ }^{11} \mathrm{~A}$. Bors and Q. Wang, Coset-wise affine functions and cycle types of complete mappings, preprint (2021), https://arxiv.org/abs/2109.03922.
 ${ }^{12}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Eheorem 1.

[^34]: ${ }^{13}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Theorem 1.aC

[^35]: ${ }^{13}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Theorem 1

[^36]: ${ }^{13}$ L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65-70, 1956. Eheorem 1.

[^37]: ${ }^{14}$ G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68(1): 145-254, 1937.

[^38]: ${ }^{14}$ G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68(1): 145-254, 1937.

[^39]: ${ }^{14}$ G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68(1): 145-254, 1937.

[^40]: ${ }^{14}$ G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68(1): 145-254, 1937.

[^41]: ${ }^{14}$ G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68(1): 145-254, 1937.

[^42]: ${ }^{14}$ G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68(1): 145-254, 1937.

[^43]: ${ }^{15}$ L. Reis and Q. Wang, The additive index of polynomials over finite fields, preprint (2021), https://arxiv.org/abs/2105.02374.

[^44]: ${ }^{15}$ L. Reis and Q. Wang, The additive index of polynomials over finite fields, preprint (2021), https://arxiv.org/abs/2105.02374.

[^45]: ${ }^{15}$ L. Reis and Q. Wang, The additive index of polynomials over finite fields, preprint (2021), https://arxiv.org/abs/2105.02374.

[^46]: ${ }^{16}$ G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68(1): 145-254, 1937.

[^47]: ${ }^{16}$ G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68(1): 145-254, 1937.

[^48]: ${ }^{16}$ G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68(1): 145-254, 1937.

[^49]: ${ }^{16}$ G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen, Acta Math. 68(1): 145-254, 1937.

[^50]: ${ }^{16}$ G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und

