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Complete mappings: Background 1

group-theoretic concept

introduced by H.B. Mann in 19421

applications in
I combinatorics (Latin squares1),
I check-digit systems2,
I cryptography3, etc.

also studied by pure group theorists (Hall-Paige Conjecture4)

1H.B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics
13: 418–423, 1942.

2R.H. Schulz, On check digit systems using anti-symmetric mappings, in: I. Althöfer
et al. (eds.), Numbers, information and complexity, Kluwer, Boston, 2000, pp. 295–310.

3A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields
and their applications in crpytography, Finite Fields Appl. 25: 306–315, 2014.

4A.B. Evans, Orthogonal Latin Squares Based on Groups, Springer (Developments in
Mathematics, 57), Cham, 2018. Chapter 3.
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et al. (eds.), Numbers, information and complexity, Kluwer, Boston, 2000, pp. 295–310.
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3A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields
and their applications in crpytography, Finite Fields Appl. 25: 306–315, 2014.

4A.B. Evans, Orthogonal Latin Squares Based on Groups, Springer (Developments in
Mathematics, 57), Cham, 2018. Chapter 3.

Bors (j/w Wang) (Carleton) Cycle types of complete mappings 29th of September, 2021 4 / 34



Complete mappings: Background 1

group-theoretic concept

introduced by H.B. Mann in 19421

applications in
I combinatorics (Latin squares1),
I check-digit systems2,
I cryptography3, etc.

also studied by pure group theorists (Hall-Paige Conjecture4)

1H.B. Mann, The construction of orthogonal Latin squares, Ann. Math. Statistics
13: 418–423, 1942.

2R.H. Schulz, On check digit systems using anti-symmetric mappings, in: I. Althöfer
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3A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields
and their applications in crpytography, Finite Fields Appl. 25: 306–315, 2014.

4A.B. Evans, Orthogonal Latin Squares Based on Groups, Springer (Developments in
Mathematics, 57), Cham, 2018. Chapter 3.

Bors (j/w Wang) (Carleton) Cycle types of complete mappings 29th of September, 2021 4 / 34



Complete mappings: Definition

Definition

(G ,+): group, n.n. abelian.

1 f : G → is a complete mapping of G if
1 f is bijective, and
2 f + id : x 7→ f (x) + x is bijective.

2 Orthomorphism of G : analogous def., replacing f + id by f − id.

3 Strong complete mapping of G : both properties at once.

f is complete mapping ⇔ f + id is orthomorphism.
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Complete mappings: Background 2

Orthomorphisms also have applications, see Evans’ paper5.

K : field. A (strong) complete mapping/orthomorphism of K is one of
(K ,+).

Complete mappings of finite fields: First studied by Niederreiter and
Robinson6.

Studied by many authors since, especially w.r.t. polynomial
representations. See e.g. [15], [29], [33], [34], [36] and [37] at the end
of these slides.

5A.B. Evans, Applications of complete mappings and orthomorphisms of finite
groups, Quasigroups Related Systems 23: 5–30, 2015.

6H. Niederreiter and K.H. Robinson, Complete mappings of finite fields,
J. Austral. Math. Soc. Ser. A 33(2): 197–212, 1984.
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Cycle types: Background

Ω: finite set, σ ∈ Sym(Ω). σ has decomposition into disjoint cycles.

Cycle type of σ, CT(σ): info how many cycles of each length σ has.

Popular research topic: Study CT(σ) with σ ∈ Sym(K ), K finite field,
σ given by polynomial. See e.g. [6], [13], [26] and [27].

Some applications require particular cycle types. For example:
I Pseudorandom number generation: long cycles7.
I Cryptography & Coding theory: involutions8.

7H. Niederreiter, Random number generation and quasi-Monte Carlo Methods, SIAM
(CBMS-NSF Regional Conference Series in Applied Mathematics, 63), Philadelphia,
1992. Section 7.2, p. 164.

8P. Charpin, S. Mesnager and S. Sarkar, Involutions over the Galois field F2n , IEEE
Trans. Inform. Theory 62(4): 2266–2276, 2016. Introduction.
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Cycle types of complete mappings: Research question

Question

What can be said about the cycle types of complete mappings of a finite
group (field)?

Two ways of “saying something”:

1 negative results: necessary conditions, allowing to refute cycle types;

2 positive results: give examples of possible cycle types (and
corr. complete mappings).
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Cycle types of complete mappings: Known negative results

Only these elementary results are known:

1 G : abelian group, f : compl. map. of G . Then f has no 2-cycle
(x , f (x)). Otherwise,

(f +id)(x) = f (x)+x = f (x)+f (f (x)) = f (f (x))+f (x) = (f +id)(f (x)),

contradiction as f + id is injective.
2 G : group, f : orthomor. of G . Then f has exactly 1 fixed point,

because f (x) = x is equ. to x = (f − id)−1(0G ).

If x + x = 0G for all x ∈ G , then f is compl. map. of G ⇔ f is
orthomor. of G .
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Cycle types of complete mappings: Known positive results

Regular complete mappings:
I K : fin. field, a ∈ K , a 6= 0,−1. Then x 7→ ax is a compl. map. of K .

I It has 1 fixed point (0K ) and |K |−1
` cycles of length ` = ordK∗(a).

I Permutations with such a cycle type are called `-regular.
I Focus so far mostly on constructing other examples of `-regular

complete mappings, see e.g. [17], [18], [23] and [35].

Fixed-point-free complete mappings: If char(K ) > 2, then K has
compl. map. without fixed points (e.g., x 7→ x + 1). For other
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9A. Muratović-Ribić and E. Pasalic, A note on complete polynomials over finite fields
and their applications in crpytography, Finite Fields Appl. 25: 306–315, 2014. Theorem
9.

Bors (j/w Wang) (Carleton) Cycle types of complete mappings 29th of September, 2021 10 / 34



Cycle types of complete mappings: Known positive results

Regular complete mappings:
I K : fin. field, a ∈ K , a 6= 0,−1. Then x 7→ ax is a compl. map. of K .

I It has 1 fixed point (0K ) and |K |−1
` cycles of length ` = ordK∗(a).

I Permutations with such a cycle type are called `-regular.
I Focus so far mostly on constructing other examples of `-regular

complete mappings, see e.g. [17], [18], [23] and [35].

Fixed-point-free complete mappings: If char(K ) > 2, then K has
compl. map. without fixed points (e.g., x 7→ x + 1). For other
examples, see 9.
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Overview of our main results

positive results

two classes of functions K → K , each with “piecewise” definitions:
I first-order cyclotomic mappings, defined via multiplicative cosets of K .

Results from 10.
I coset-wise affine functions, defined via additive cosets of K . Results

from 11.

proved with methods from different areas:
I wreath products from permutation group theory;
I combinatorial observations on cycle indices;
I character sums (following & extending a method of Carlitz12) for the

results on cycl. map.

10A. Bors and Q. Wang, Cycle types of complete mappings of finite fields, to appear
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First-order cyclotomic mappings

K = Fq, d | q − 1, C . . . index d subgroup of F∗q = 〈ω〉.

Ci := ωiC for i = 0, 1, . . . , d − 1 are the cosets of C .

f : Fq → Fq is a first-order cyclotomic mapping (FOCM) of index d
of Fq if

f (x) =

{
0, if x = 0,

aix , if x ∈ Ci , i ∈ {0, . . . , d − 1}.

for some ai ∈ Fq.

Remark (generalizations):
I “aix” → “aix

r”: r -th order cyclotomic mapping of index d .
I “aix” → “aix

ri ”: generalized cyclotomic mapping of index d

Many authors have studied these kinds of functions, see e.g. [1], [2],
[22], [30], [31] and [38].
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First main result (Long cycles)

f : first-order cyclotomic permutation (FOCP) of Fq.

Ass.: All cycles 6= (0) of f are long and q is large enough.

Then there ex. FOCP g of Fq s.t.:
I CT(g) = CT(f ), and
I g is a strong complete mapping.

Theorem 1

Let d , n ∈ N+ and 1 > ε > 0. For all prime powers q ≥ q1(d , n, ε) with
q ≡ 1 (mod d) and all c1, c2, . . . , cn ∈ Fq: If f is an FOCP of index d of
Fq s.t. all cycles 6= (0) of f have length ≥ εq, then there ex. index d
FOCP g of Fq s.t.

1 CT(g) = CT(f ).

2 g + ci id is a permutation of Fq for i = 1, 2, . . . , n.

For d = 1: Theorem of Carlitz (see loc. cit.).
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Second main result (Cosets)

f : index d FOCM of Fq, f (x) = aix for x ∈ Ci = ωiC .

If ai 6= 0, then f (Ci ) is a coset.

If q is large enough: complete control over how f + cj id for
j = 1, . . . , n map cosets, where f is suitable index d FOCM of Fq.

Theorem 2

Let d , n ∈ N+. For all prime powers q ≥ q2(d , n) with q ≡ 1 (mod d): Let
c1, c2, . . . , cn ∈ Fq, pairwise distinct, and choose functions

s1, s2, . . . , sn : {0, 1, . . . , d − 1} → {0, 1, . . . , d − 1}.

There ex. index d FOCM f of Fq such that

(f + cj id)(Ci ) = Csj (i)

for 0 ≤ i ≤ d − 1 and 1 ≤ j ≤ n.
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Third main result (Simultaneous long cycles)

Controlling the CT(f + cj id) is much harder.

By a theorem of Carlitz, 13, if q is large enough, there ex. prim. root
ω of Fq s.t. ω + 1 is also prim. root.

Then f : x 7→ ωx , and f + id : x 7→ (ω + 1)x are both (q − 1)-regular,
and FOCMs of index d = 1.

Theorem 3 extends this to d > 1.

Theorem 3

Let d ∈ N+. For all prime powers q ≥ q3(d) with q ≡ 1 (mod d), there
ex. FOCM f of Fq of smallest index d s.t.:

1 f is compl. map. of Fq.

2 f and f + id are (q − 1)-regular.

13L. Carlitz, Sets of primitive roots, Compositio Math. 13: 65–70, 1956. Theorem 1.
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Cycle types: Formal definition and background

Ω: fin. set, σ ∈ Sym(Ω). For ` = 1, 2, . . . , |Ω|:
k`: number of length ` cycles of σ. Set

CT(σ) := xk1
1 xk2

2 · · · x
k|Ω|
|Ω| ∈ Q[xn : n ∈ N+].

Pólya14: original def.; also def. cycle index (“average CT”) of
perm. gp.

Cycle indices studied by many authors, e.g. [2], [11], [12] and [32].

` ∈ N+: BU` (`-th blow-up function) is the Q-algebra end. of
Q[xn : n ∈ N+] with BU`(xn) = x`n for all n ∈ N+.

14G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und
chemische Verbindungen, Acta Math. 68(1): 145–254, 1937.
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Fourth main result (Recursive construction): Notation 1

K : field, V : K -vector space, W : K -subspace of V .

f : V → V is W -coset-wise K -affine if f (x) = ϕC (x) + vC for all
x ∈ C (coset of W ), and

1 ϕC . . .K -end. of V with ϕC (W ) ⊆W ;
2 vC ∈ V .

Case ϕC = ϕ for all C recently studied by Reis and Wang15.

GLd(p): group of invertible (d × d)-mat. over Fp.

CGLd(p): subset of M ∈ GLd(p) with det(M + 1) 6= 0 (complete
linear mappings).

M ∈ GLd(p), v ∈ Fd
p : x 7→ xM + v is denot. by λ(M, v) (aff. perm.).

On next slide, we give a technical def. of a set Γ(d , p, `) of CTs of
aff. permutations.

15L. Reis and Q. Wang, The additive index of polynomials over finite fields, preprint
(2021), https://arxiv.org/abs/2105.02374.
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Fourth main result (Recursive construction): Notation 2

If ` = 1, set

Γ(d , p, `) := {CT(λ(M, v)) : M ∈ CGLd(p), v ∈ Fd
p}.

If ` ≥ 2 and (d , p) 6= (1, 2), (1, 3), (2, 2), set

Γ(d , p, `) := {CT(λ(M, v)) : M ∈ GLd(p), v ∈ Fd
p}.

If ` ≥ 2 and (d , p) = (1, 2), set Γ(d , p, `) := ∅.
If ` ≥ 2 and (d , p) = (1, 3), set Γ(d , p, `) := {x3

1 , x3}.
If ` ≥ 2 and (d , p) = (2, 2), set Γ(d , p, `) := {x4

1 , x
2
2 , x1x3}.
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Fourth main result (Recursive construction)

Theorem 4

Let d , t ∈ N+, p a prime.

Assume that xk1
1 xk2

2 · · · x
kpt

pt = CT(f ) for some compl. map. f of Ft
p.

For ` = 1, 2, . . . , pt and i = 1, 2, . . . , k`, fix γ`,i ∈ Γ(d , p, `).

Then for each d-dim. Fp-subsp. W of Fd+t
p , there ex. W -coset-wise

Fp-affine compl. map. of Fd+t
p of cycle type

pt∏
`=1

k∏̀
i=1

BU`(γ`,i ).

Corollary

q = pk : odd prime power, S : Sylow p-subgroup of Sym(q). Then for all
σ ∈ S : CT(σ) = CT(f ) for some compl. map. f of Fq.
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Wreath products

Definition (Imprimitive permutational wreath product)

G ≤ Sym(Ω), P ≤ Sym(Λ).

G oimp P ≤ Sym(Ω× Λ) has elements

(σ, (gλ′)λ′∈Λ) : (ω, λ) 7→ (gσ(λ)(ω), σ(λ))

for σ ∈ P and gλ′ ∈ G .

Intuition:

Ω× Λ =
⊔
λ∈Λ Ωλ where Ωλ := Ω× {λ} (copy of Ω).

(σ, (gλ′)λ′∈Λ) acts on Ω× Λ by
I first permuting the copies Ωλ acc. to σ: (ω, λ) 7→ (ω, σ(λ)), and then
I permuting each copy Ωλ′ acc. to gλ′ : (ω, σ(λ)) 7→ (gσ(λ)(ω), σ(λ)).
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Coset-wise affine permutations as a wreath product

G ≤ Sym(Ω), H ≤ Sym(Σ). An isomorphism of perm. gps. G → H is
a bijection β : Ω→ Σ s.t. H is im. of

G → Sym(Σ), g 7→ β ◦ g ◦ β−1.

K : field, V : K -vector space, W : K -subspace of V . CAffK (V ,W ):
perm. gp. of W -coset-wise K -aff. perm. of V . It is iso. to

AffK (W ) oimp Sym(V /W ),

where AffK (W ): gp. of K -aff. perm. x 7→ xM + w of W .

There ex. iso.

CAffK (V ,W )→ AffK (W ) oimp Sym(V /W )

s.t. compl. map. in CAffK (V ,W ) corr. to the el. (σ, (Au)u∈V /W ) with
σ and each Au compl. map. (of V /W resp. W ).

Bors (j/w Wang) (Carleton) Cycle types of complete mappings 29th of September, 2021 23 / 34



Coset-wise affine permutations as a wreath product
G ≤ Sym(Ω), H ≤ Sym(Σ). An isomorphism of perm. gps. G → H is
a bijection β : Ω→ Σ s.t. H is im. of

G → Sym(Σ), g 7→ β ◦ g ◦ β−1.

K : field, V : K -vector space, W : K -subspace of V . CAffK (V ,W ):
perm. gp. of W -coset-wise K -aff. perm. of V . It is iso. to

AffK (W ) oimp Sym(V /W ),

where AffK (W ): gp. of K -aff. perm. x 7→ xM + w of W .

There ex. iso.

CAffK (V ,W )→ AffK (W ) oimp Sym(V /W )

s.t. compl. map. in CAffK (V ,W ) corr. to the el. (σ, (Au)u∈V /W ) with
σ and each Au compl. map. (of V /W resp. W ).

Bors (j/w Wang) (Carleton) Cycle types of complete mappings 29th of September, 2021 23 / 34



Coset-wise affine permutations as a wreath product
G ≤ Sym(Ω), H ≤ Sym(Σ). An isomorphism of perm. gps. G → H is
a bijection β : Ω→ Σ s.t. H is im. of

G → Sym(Σ), g 7→ β ◦ g ◦ β−1.

K : field, V : K -vector space, W : K -subspace of V .

CAffK (V ,W ):
perm. gp. of W -coset-wise K -aff. perm. of V . It is iso. to

AffK (W ) oimp Sym(V /W ),

where AffK (W ): gp. of K -aff. perm. x 7→ xM + w of W .

There ex. iso.

CAffK (V ,W )→ AffK (W ) oimp Sym(V /W )

s.t. compl. map. in CAffK (V ,W ) corr. to the el. (σ, (Au)u∈V /W ) with
σ and each Au compl. map. (of V /W resp. W ).

Bors (j/w Wang) (Carleton) Cycle types of complete mappings 29th of September, 2021 23 / 34



Coset-wise affine permutations as a wreath product
G ≤ Sym(Ω), H ≤ Sym(Σ). An isomorphism of perm. gps. G → H is
a bijection β : Ω→ Σ s.t. H is im. of

G → Sym(Σ), g 7→ β ◦ g ◦ β−1.

K : field, V : K -vector space, W : K -subspace of V . CAffK (V ,W ):
perm. gp. of W -coset-wise K -aff. perm. of V .

It is iso. to

AffK (W ) oimp Sym(V /W ),

where AffK (W ): gp. of K -aff. perm. x 7→ xM + w of W .

There ex. iso.

CAffK (V ,W )→ AffK (W ) oimp Sym(V /W )

s.t. compl. map. in CAffK (V ,W ) corr. to the el. (σ, (Au)u∈V /W ) with
σ and each Au compl. map. (of V /W resp. W ).

Bors (j/w Wang) (Carleton) Cycle types of complete mappings 29th of September, 2021 23 / 34



Coset-wise affine permutations as a wreath product
G ≤ Sym(Ω), H ≤ Sym(Σ). An isomorphism of perm. gps. G → H is
a bijection β : Ω→ Σ s.t. H is im. of

G → Sym(Σ), g 7→ β ◦ g ◦ β−1.

K : field, V : K -vector space, W : K -subspace of V . CAffK (V ,W ):
perm. gp. of W -coset-wise K -aff. perm. of V . It is iso. to

AffK (W ) oimp Sym(V /W ),

where AffK (W ): gp. of K -aff. perm. x 7→ xM + w of W .

There ex. iso.

CAffK (V ,W )→ AffK (W ) oimp Sym(V /W )

s.t. compl. map. in CAffK (V ,W ) corr. to the el. (σ, (Au)u∈V /W ) with
σ and each Au compl. map. (of V /W resp. W ).

Bors (j/w Wang) (Carleton) Cycle types of complete mappings 29th of September, 2021 23 / 34



Coset-wise affine permutations as a wreath product
G ≤ Sym(Ω), H ≤ Sym(Σ). An isomorphism of perm. gps. G → H is
a bijection β : Ω→ Σ s.t. H is im. of

G → Sym(Σ), g 7→ β ◦ g ◦ β−1.

K : field, V : K -vector space, W : K -subspace of V . CAffK (V ,W ):
perm. gp. of W -coset-wise K -aff. perm. of V . It is iso. to

AffK (W ) oimp Sym(V /W ),

where AffK (W ): gp. of K -aff. perm. x 7→ xM + w of W .

There ex. iso.

CAffK (V ,W )→ AffK (W ) oimp Sym(V /W )

s.t. compl. map. in CAffK (V ,W ) corr. to the el. (σ, (Au)u∈V /W ) with
σ and each Au compl. map. (of V /W resp. W ).

Bors (j/w Wang) (Carleton) Cycle types of complete mappings 29th of September, 2021 23 / 34



Coset-wise affine permutations as a wreath product
G ≤ Sym(Ω), H ≤ Sym(Σ). An isomorphism of perm. gps. G → H is
a bijection β : Ω→ Σ s.t. H is im. of

G → Sym(Σ), g 7→ β ◦ g ◦ β−1.

K : field, V : K -vector space, W : K -subspace of V . CAffK (V ,W ):
perm. gp. of W -coset-wise K -aff. perm. of V . It is iso. to

AffK (W ) oimp Sym(V /W ),

where AffK (W ): gp. of K -aff. perm. x 7→ xM + w of W .

There ex. iso.

CAffK (V ,W )→ AffK (W ) oimp Sym(V /W )

s.t. compl. map. in CAffK (V ,W ) corr. to the el. (σ, (Au)u∈V /W ) with
σ and each Au compl. map. (of V /W resp. W ).

Bors (j/w Wang) (Carleton) Cycle types of complete mappings 29th of September, 2021 23 / 34



Cycle types of wreath product elements

Goal: Determine all possible CT((σ, (Au)u∈V /W )) with σ and Au

compl. map.

To compute these cycle types, follow Pólya16:
I For each cycle ζ = (u1, u2, . . . , u`) of σ, form

Au1Au2 · · ·Au` ∈ AffK (W ).
I Then form the blow-up BU`(CT(Au1Au2 · · ·Au`)).
I Finally, multiply those blow-ups together:

CT((σ, (Au)u∈V/W )) =
∏

cycles ζ=(u1,...,u`) of σ

BU`(CT(Au1 · · ·Au`)).

16G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und
chemische Verbindungen, Acta Math. 68(1): 145–254, 1937.
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Products of complete affine mappings
Our case: K = Fp, σ and each Au arbitrary compl. map.

Question

For given `, which elements of AffFp(Fd
p) = AGLd(p) are a product of `

compl. map. in AGLd(p)?

Proposition

d , ` ∈ N+, p prime.
M(d , p, `): set of products of ` compl. map. in AGLd(p). Then

1 M(d , p, 1) = {λ(M, v) : M ∈ CGLd(p), v ∈ Fd
p}.

2 If ` ≥ 2: M(d , p, `) = AGLd(p) unless (d , p) ∈ {(1, 2), (1, 3), (2, 2)}.
3 If ` ≥ 2, (d , p) = (1, 2): M(d , p, `) = ∅.
4 If ` ≥ 2, (d , p) = (1, 3): M(d , p, `) = {(1)}.

5 If ` ≥ 2, (d , p) = (2, 2): M(d , p, `) = 〈
(

0 1
1 1

)
〉.
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Concluding the proof of Theorem 4

Consequence:

Γ(d , p, `) = {CT(B1B2 · · ·B`) : Bi ∈ AGLd(p),Bi is complete}.

Choosing the Au suitably, we can get

CT((σ, (Au)u∈V /W )) =
∏

cycles ζ of σ

BU`(γζ)

for arbitrary el. γζ ∈ Γ(dimFp(W ), p, `(ζ)).

If we
I set t := dimFp (V /W ) and d := dimFp (W ),

I write CT(σ) = xk1
1 xk2

2 · · · x
kpt

pt ,
I enumerate `-cycles of σ as ζ`,i for i = 1, 2, . . . , k`, and
I write γ`,i instead of γζ`,i ,

this becomes the statement of Theorem 4.
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