Recovering or Testing Extended-Affine Equivalence

Anne Canteaut, Alain Couvreur, Léo Perrin

Inria, France

Carleton Finite Fields eSeminar - April 2021, 14

Extended-Affine Equivalence

$$F$$
 and $G \colon \mathbb{F}_2^n o \mathbb{F}_2^m$

Affine equivalence:

$$G = \mathbf{A} \circ \mathbf{F} \circ \mathbf{B}$$

for some affine permutations A and B.

Extended-affine equivalence (EA-equivalence):

 $G = \mathbf{A} \circ F \circ \mathbf{B} + C$

for some affine permutations A and B, and some affine function C.

Two different problems

EA-recovery:

Given F and G, find, if they exist, three affine mappings A, B and C such that $G = A \circ F \circ B + C$.

EA-testing:

Given $\{F_i\}_{0 \le i < \ell}$, partition this set in such a way that two functions in distinct subsets are not EA-equivalent.

 \rightarrow testing EA-equivalence between a set of 20,000+ 8-bit quadratic APN functions [Yu-Wang-Li 14][Beierle-Leander 20]

Outline

- 1. A new algorithm for EA-recovery for quadratic functions
 - Jacobian matrices for Boolean functions
 - A new algorithm
 - Complexity analysis and differential spectrum
- 2. A new algorithm for EA-testing for quadratic APN functions

EA-recovery

Known Algorithms for EA-recovery

Affine equivalence (C = 0):

• Guess-and-determine [Biryukov et al 2003] only when *F* and *G* are bijective.

$$\mathcal{O}\left(n^32^{2n}
ight)$$

• Rank table [Dinur 2018] only when $\deg F \ge n-1$

$$\mathcal{O}\left(n^32^n
ight)$$

Extended-affine equivalence (any C):

partial results when $oldsymbol{A}(x)=x+a$, $oldsymbol{B}(x)=x+b$ [Budaghyan-Kazymyrov 2012]

Here: solve EA-recovery when $\deg F=2$

$$\mathcal{O}\left(n^{2\omega}2^{2n}
ight)$$
 for APN functions (worst case)

Differential uniformity and APN functions

$$F: \mathbb{F}_2^n o \mathbb{F}_2^m$$
 coordinates $= (F_1, \dots, F_m).$

Derivative of *F*:

$$\Delta_a F: x \longmapsto F(x+a) + F(x)$$

Differential properties of F [Nyberg 93]

$$\delta_F(a,b)=\#\{x\in \mathbb{F}_2^n:\Delta_aF(x)=b\}$$

- ullet Differential spectrum: $\{\delta_F(a,b), a\in \mathbb{F}_2^n, b\in \mathbb{F}_2^m\}$
- Differential uniformity:

$$\delta(F) = \max_{a
eq 0, b} \delta_F(a, b)$$

• Functions with optimal differential uniformity:

 $\delta(F) \geq 2^{n-m}, ext{ with equality for Perfect-Nonlinear (PN) functions.}$ When $m \geq n$,

 $\delta(F) \geq 2$, with equality for Almost Perfect-Nonlinear (APN) functions.

Jacobian matrix

 $F: \mathbb{F}_2^n o \mathbb{F}_2^m$ with coordinates (F_1, \ldots, F_m) (e_1, \ldots, e_n) = canonical basis of \mathbb{F}_2^n . Jacobian matrix of F:

$$\operatorname{Jac} F(x) := egin{pmatrix} \Delta_{e_1} F_1(x) & \cdots & \Delta_{e_n} F_1(x) \ dots & dots \ \Delta_{e_1} F_m(x) & \cdots & \Delta_{e_n} F_m(x) \end{pmatrix}$$

When the coordinates of $oldsymbol{F}$ are in ANF, it is similar to

$$egin{pmatrix} rac{\partial F_1}{\partial x_1} & \cdots & rac{\partial F_1}{\partial x_n} \ dots & &dots \ rac{\partial F_m}{\partial x_1} & \cdots & rac{\partial F_m}{\partial x_n} \end{pmatrix}$$

Linear part of the Jacobian matrix when $\deg F = 2$:

$$\operatorname{Jac}_{\operatorname{lin}} F(x) := \operatorname{Jac} F(x) + \operatorname{Jac} F(0)$$

Proposition. Let F and G be two EA-equivalent quadratic functions:

$$G = A \circ F \circ B + C$$

Then, for all $x\in\mathbb{F}_2^n$,

 $\operatorname{Jac}_{\operatorname{lin}} G(x) = A_0 \cdot \operatorname{Jac}_{\operatorname{lin}} F(B(x)) \cdot B_0$

where A_0 and B_0 are the matrices corresponding to the linear parts of A and B.

EA-recovery for quadratic functions

We can assume wlog that \boldsymbol{B} and \boldsymbol{C} are linear.

$$A\circ F\circ B(x)+C(x)=A_0\cdot F(B_0x+b)+a+C_0x+c$$

• The constant part of B can be included in C since

$$F(B_0x + b) = F(B_0x) + \underbrace{\Delta_b F(B_0x)}_{\text{affine}}$$

• The constant parts of C and of $\Delta_b F(B_0 x)$ can be included in a.

Algorithm for EA-recovery: basic steps

$$\forall x \in \mathbb{F}_2^n, \ A_0^{-1} \cdot \operatorname{Jac}_{\operatorname{lin}} G(x) = \operatorname{Jac}_{\operatorname{lin}} F(B_0 x) \cdot B_0$$

Search for pairs (v_i, w_i) such that $B_0 v_i = w_i$. Choose v_i and w_i such that $\operatorname{Jac}_{\operatorname{lin}} G(v_i)$ and $\operatorname{Jac}_{\operatorname{lin}} F(w_i)$ have the same rank.

Solve the linear system

$$\left\{egin{array}{ll} X \cdot \operatorname{Jac}_{\operatorname{lin}} G(v_i) - \operatorname{Jac}_{\operatorname{lin}} F(w_i) \cdot Y &= 0 \ Y \cdot v_i &= w_i \end{array} & orall i \in \{1, \dots, s\} \end{array}
ight.$$

For each solution $A_0 = X^{-1}$ and $B_0 = Y$, compute

$$egin{array}{rcl} a &=& G(0) + A_0 F(0) \ C_0 x &=& G(x) + A_0 F(B_0 x) + a \end{array}$$

Algorithm for EA-recovery: basic steps

$$\forall x \in \mathbb{F}_2^n, \ A_0^{-1} \cdot \operatorname{Jac}_{\operatorname{lin}} G(x) = \operatorname{Jac}_{\operatorname{lin}} F(B_0 x) \cdot B_0$$

Search for pairs (v_i, w_i) such that $B_0v_i = w_i$.

Choose v_i and w_i such that $\operatorname{Jac}_{\operatorname{lin}} G(v_i)$ and $\operatorname{Jac}_{\operatorname{lin}} F(w_i)$ have the same rank. What is the rank distribution of all $\operatorname{Jac}_{\operatorname{lin}} F(x)$?

Solve the linear system

$$\left\{egin{array}{ll} X \cdot \operatorname{Jac}_{\operatorname{lin}} G(v_i) - \operatorname{Jac}_{\operatorname{lin}} F(w_i) \cdot Y &= 0 \ Y \cdot v_i &= w_i \end{array} & orall i \in \{1, \dots, s\} \end{array}
ight.$$

How many pairs (v_i, w_i) do we need?

For each solution $A_0 = X^{-1}$ and $B_0 = Y$, compute

$$a = G(0) + A_0 F(0)$$

 $C_0 x = G(x) + A_0 F(B_0 x) + a$

Rank distribution of a quadratic function

$$\mathcal{R}(F)[r] := \{ u \in \mathbb{F}_2^n \mid \mathsf{rank}(\operatorname{Jac}_{\operatorname{lin}} F(u)) = r \}$$

Proposition. For any $r,\,0\leq r\leq \min(m,n)$, $\#\mathcal{R}(F)[r]=2^{-r}\#\{(a,b):\delta_F(a,b)=2^{n-r}\}$

Sketch of proof. For any given $u \in \mathbb{F}_2^n$,

$$\operatorname{Jac}_{\operatorname{lin}} F(u) \cdot x = \operatorname{Jac}_{\operatorname{lin}} F(x) \cdot u = \Delta_u F(x) + \Delta_u F(0)$$

Corollary.

F is APN iff $\operatorname{Jac}_{\operatorname{lin}} F(x)$ has rank (n-1) for all $x \neq 0$.

How many pairs $w_i = B_0 v_i$ are needed?

Rank of

$$\begin{cases} X \cdot \operatorname{Jac}_{\lim} G(v) - \operatorname{Jac}_{\lim} F(w) \cdot Y &= 0 \\ Y \cdot v &= w \end{cases}$$

 (m^2+n^2) unknowns, (m+1)n equations

$$\mathrm{rank} \leq r(m+n-r) + (n-r)$$

where $r = \operatorname{\mathsf{rankJac}}_{\operatorname{lin}} F(w)$.

 \rightarrow In practice, the rank corresponds to this bound.

For s pairs (v_i, w_i)

$$\mathsf{rank} \leq \sum_{i=1}^{s} r_i(m+n-r_i) + (n-r_i)$$

 \rightarrow In practice, the rank is slightly lower.

Experimental results

m	n	$m^2 + n^2$	s	Ranks of $\operatorname{Jac}_{\operatorname{lin}} F(w_i)$	Expected rank	Observed rank
6	6	72	1	3	30	30
6	6	72	1	4	34	34
6	6	72	2	(3,3)	60	5054
6	6	72	2	(3,4)	64	5657
6	6	72	2	(4,4)	68	6061
6	6	72	3	(3,4,4)	72	6972
6	6	72	3	(4,4,4)	72	6672

In most cases, s=3 pairs (v_i,w_i) are enough.

Complexity

$$R := \min_{0 < r < \min(m,n)} \#\{u \in \mathbb{F}_2^n \mid \mathsf{rank}(\operatorname{Jac}_{\operatorname{lin}} F(u)) = r\}$$

In many cases, the number of candidates for $(v_1, w_1), \ldots, (v_s, w_s)$ is roughly R^s .

$$\mathcal{O}\left(\underbrace{\max(n,m)^{\omega}2^{n}}_{\text{computation of the rank tables}} + \underbrace{\mathcal{R}^{s}}_{\text{nb of guesses}} (m^{2} + n^{2})^{\omega}\right)$$

- For random quadratic functions, R is small and s = 3.
- For quadratic APN functions, $R=2^n-1$ and s=2,

$$\mathcal{O}\left(2^{2n}n^{2\omega}
ight)$$

Examples of running times

Implementation with SageMath

https://github.com/alaincouvreur/EA_equivalence	e_for	_quadratic	_functions
---	-------	------------	------------

m	n	Rank distribution	Number of guesses	Time (seconds)
6	6	[1, 0, 0, 2, 18, 43, 0]	21	0.68
6	6	[1, 0, 0, 1, 24, 38, 0]	386	5.36
6	6	[1, 0, 0, 0, 27, 36, 0]	4605	61.1
6	8	[1, 0, 0, 0, 9, 96, 150]	127	15.5
6	8	[1, 0, 1, 12, 98, 144]	24	13.8
8	6	[1, 0, 0, 0, 0, 63, 0]	11067	195.1
8	6	[1, 0, 0, 0, 3, 60, 0]	318	53.4
8	8	[1, 0, 0, 0, 0, 6, 93, 156, 0]	95	20.3
8	8	[1, 0, 0, 0, 1, 13, 104, 137, 0]	36	15.3

EA-testing

EA-testing

Problem:

Given $\{F_i\}_{0 \le i < \ell}$, partition this set in such a way that two functions in distinct subsets are not EA-equivalent.

 \rightarrow testing EA-equivalence between a set of 20,000+ 8-bit quadratic APN functions [Yu-Wang-Li 14][Beierle-Leander 20]

Using EA-invariants:

- Compute EA-invariant(s) and use it for each F_i as a bucket label
- Solve the EA-recovery problem for each pair (F_i, F_j) in the same bucket.

Examples of EA-invariants

Invariant	Condition	
Extended Walsh spectrum		
Differential spectrum		
Γ-rank	m = n	[Browning et al. 09]
Δ -rank	m = n	[Browning et al. 09]
# Subspaces with dim n in the Walsh zeroes		[Canteaut-Perrin19]
Algebraic degree		
Thickness spectrum		[Canteaut-Perrin19]
$\mathbf{\Sigma}^k$ -spectrum, k even		[Kaleyski 20]
# of subspaces in non-bent components	$\deg(F) = 2$	[Budaghyan et al. 20]

Orthoderivatives of quadratic functions

Definition. Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ with deg F = 2. A function $\pi : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is an orthoderivative for F if $\forall x, a \in \mathbb{F}_2^n : \pi(a) \cdot (\Delta_a F(x) + \Delta_a F(0)) = 0$

Orthoderivative of quadratic APN functions.

F is APN if and only if it has a unique orthoderivative π such that $\pi(0) = 0$ and $\pi(x) \neq 0$ for all $x \neq 0$.

Proposition. Let F and G be two EA-equivalent quadratic APN functions:

$$G = A \circ F \circ B + C$$

Then,

$$\pi_G = (A_0^T)^{-1} \circ \pi_F \circ B_0$$

where A_0 and B_0 are the linear parts of A and B.

Any invariant under affine equivalence applied to π_F is an EA-invariant for F.

Invariants of quadratic APN functions based on orthoderivatives

Any invariant under affine equivalence applied to π_F is an EA-invariant for F.

Such invariants have by far the finest grained.

13 classes of 6-bit quadratic APN functions (Banff list).

The differential spectra of the 13 orthoderivatives are all different.

i	Linearity	ran F	k △	Differential Spectrum of π_F
1	16	1102	94	{0:2205,2:1764,8:63}
2	16	1146	94	{0:2583,2:1008,4:378,8:63}
3	16	1158	96	{0:2454,2:1176,4:370,6:30,10:2}
4	16	1166	94	{0:2338,2:1428,4:210,6:56}
5	16	1166	96	{0:2373,2:1428,4:168,8:63}
6	16	1168	96	{0:2442,2:1229,4:303,6:51,8:7}
7	32	1170	96	$\{0: 2401, 2: 1371, 4: 195, 6: 50, 14: 15\}$
8	16	1170	96	{0:2426,2:1255,4:297,6:49,8:5}
9	16	1170	96	{0:2439,2:1235,4:297,6:57,8:4}
10	16	1170	96	{0:2422,2:1271,4:279,6:53,8:7}
11	16	1172	96	{0:2385,2:1339,4:258,6:45,8:2,12:3}
12	16	1172	96	{0:2404,2:1307,4:261,6:53,8:7}
13	16	1174	96	$\{0: 2414, 2: 1271, 4: 303, 6: 37, 8: 7\}$

8-bit quadratic APN functions.

21,102 distinct quadratic APN functions from [Yu-Wang-Li 14][Beierle-Leander 20]

The differential and the extended Walsh spectra of their orthoderivatives are different \rightarrow All of them belong to different EA-classes (running time: a few minutes)

Conclusions

New algorithms for solving EA-recovery and EA-testing for quadratic functions.

Open problem.

Find general algorithms that could be applied to functions of any degree.