Relaxations of almost perfect nonlinearity

Alexander Pott ${ }^{1} 2$
Otto von Guericke University Magdeburg

July 7, 2021

[^0]
Outline

- Perfect nonlinearity, almost perfect nonlinearity
- Nonlinearity measure using vanishing flats:
- Motivation.
- Power mappings.
- Quadratic mappings.
- Partially almost perfect nonlinear permutations.

I will not cover ...

- The new constructions of Beierle and Leander. ${ }^{3}$
- The new inequivalence results by Kaspers and Zhou. ${ }^{4}$

[^1]
Perfect nonlinearity

- Linear functions $F: V \rightarrow W$ satisfiy $F(x+a)-F(x)=F(a)$, hence $x \mapsto F(x+a)-F(x)$ is constant for all $a \in V$.
- If $|V|,|W|<\infty$, being on the other side of the spectrum means

$$
x \mapsto F(x+a)-F(x)
$$

is balanced, hence

$$
F(x+a)-F(x)=b
$$

has $|V| /|W|$ solutions.
Such functions are called perfect nonlinear.
Example
$F(x)=x^{2}$ with $V=W=\mathbb{F}_{p^{n}}, p$ odd: $(x+a)^{2}-x^{2}=2 x a+a^{2}$

Perfect nonlinearity: Four questions

If V and W are abelian groups, we call a mapping $F: V \rightarrow W$ perfect nonlinear if $F(x+a)-F(x)=b$ has $|V| /|W|$ solutions. The graph $\{(x, F(x)): x \in V\} \subset V \times W$ is a relative difference set ${ }^{5} 6$

1. For which parameters $|V|,|W|$ do we have perfect nonlinear functions?
2. For which groups do we have such perfect nonlinear functions?
3. If we know that for certain groups V and W no perfect nonlinear function exists, what is the (second) best.
4. Classification? How many examples?
[^2]
From now on: $V=\mathbb{F}_{2}^{n}, W=\mathbb{F}_{2}^{m}$

If $F: V \rightarrow W$, then

$$
\delta_{F}(a, b)=|\{x: F(x+a)+F(x)=b\}| .
$$

Definition
Almost perfect nonlinear function $F: V \rightarrow V$:

$$
F(x+a)+F(x)=b
$$

has 0 or 2 solutions for all $a \neq 0$ and all b, hence $\delta_{F}(a, b) \in\{0,2\}$ for $a \neq 0$.

Example
$x^{2^{i}+1}$ on $\mathbb{F}_{2^{n}}$ if $\operatorname{gcd}(i, n)=1$.

Rodier condition

$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is APN, if and only if

$$
F(x)+F(y)+F(z)+F(u) \neq 0
$$

whenever $x+y+z+u=0$ and x, y, z, u are distinct. The sets $\{x, y, z, u\}$ are 2-dimensional affine subspaces of \mathbb{F}_{2}^{n}.

Definition

Let $F: V \rightarrow W$. Then

$$
\begin{aligned}
\mathcal{V}(F):= & \{x, y, z, u \text { distinct }: F(x)+F(y)+F(z)+F(u)=0, \\
& x+y+z+u=0\}
\end{aligned}
$$

is the set of vanishing 2-dimensional flats.

If F is APN, then ...

$$
\delta_{F}(a, b)=|\{x: F(x+a)+F(x)=b\}| .
$$

- The maximum of $\delta_{F}(a, b), a \neq 0$ is 2 .
- $\sum \delta_{F}(a, b)^{2}$ is as small as possible.
- $\mathcal{V}(F)=\emptyset$.

If $F: V \rightarrow W$ is perfect nonlinear, then ...

$$
\delta_{F}(a, b)=|\{x: F(x+a)+F(x)=b\}| .
$$

- The maximum of $\delta_{F}(a, b), a \neq 0$ is $|V| /|W|$.
- $\sum \delta_{F}(a, b)^{2}$ is as small as possible.
- $|\mathcal{V}(F)|$ is as small as possible.

Relaxations

- Maximum $\delta_{F}(a, b), a \neq 0$ is small (differential uniformity).
- $\sum \delta_{F}(a, b)^{2}$ (equivalently: minimizing the fourth powers of the Walsh coefficients) is small.
- $|\mathcal{V}(F)|$ is small.

Knowing the differential spectrum

$$
\left\{* \delta_{F}(a, b): a, b \in V *\right\}
$$

we know the three quantities above.

Knowing the δ_{F}, we know $|\mathcal{V}(F)|$.

Lemma

$$
|\mathcal{V}(F)|=\sum_{a \neq 0, b}\binom{\delta_{F}(a, b) / 2}{2}
$$

The converse is not true:
Example
$n=6$

- x^{5} : differential spectrum $\left\{64^{1}, 4^{336}, 0^{3759}\right\}$
- x^{11} : differential spectrum $\left\{64^{1}, 10^{63}, 6^{126}, 2^{1323}, 0^{2584}\right\}$

In both cases $|\mathcal{V}|=336$.

$\mathcal{V}(F)$ also carries combinatorial information

If there are functions f_{i} such that

$$
F(x)=\left(\begin{array}{c}
f_{1}(x) \\
\vdots \\
f_{m}(x)
\end{array}\right)
$$

then

$$
\mathcal{V}(F)=\bigcap_{i=1}^{m} \mathcal{V}\left(f_{i}\right)
$$

- Which functions $f_{i}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$ have small $\left|\mathcal{V}\left(f_{i}\right)\right|$.
- Known for n even and $m \leq n / 2$: perfect nonlinear functions, bent functions.
- Known for $n=m$: APN (and the minimum is 0).
- Not known for other values.

Strategy to build APN?

Find a large set of boolean functions f_{i} on $\mathbb{F}_{2}^{n}, i \in I$, where we can compute $\mathcal{V}\left(f_{i}\right)$, and then find a subset $J \subset I,|J|=n$, such that

$$
\bigcap_{i \in J} \mathcal{V}\left(f_{i}\right)=\emptyset .
$$

Similarly: functions $f_{i}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m_{i}}$. Then choose J such that $\sum_{i \in J} m_{i}=n$.

- Classical case: $n=2 m, m_{1}=m_{2}=m$ (perfect nonlinear).
- Classical case: $m_{i}=1$ and use quadratic boolean functions.
- Why not extend the class of functions f_{i} from whom we build APN's by functions where $\mathcal{V}\left(f_{i}\right)$ is small.
- It is easy to construct boolean functions which are almost as good as perfect nonlinear functions. ${ }^{7}$

[^3]
$F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$

Although the goal is to find $\mathcal{V}(F)$ for functions $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$, $m<n$ to build APN functions, we consider here, as a first step, the case $m=n$.

If F is a non-APN power mapping, then

$$
|\mathcal{V}(F)| \geq \begin{cases}\frac{2^{n}+1}{3} & \text { if } n \text { is odd } \\ \frac{2^{n}-1}{3} & \text { if } n \text { is even }\end{cases}
$$

The inverse function shows that the bound for n even is sharp. Open for n odd.

Proof

- Let $a_{1}, a_{2} \neq 0$ be in $\mathbb{F}_{2^{n}}$.

$$
\left(x+a_{1}\right)^{d}+x^{d}=b \Leftrightarrow \frac{a_{2}}{a_{1}} x \text { is solution of }\left(x+a_{2}\right)^{d}+x^{d}=\left(\frac{a_{2}}{a_{1}}\right)^{d} b .
$$

- $\left\{* \delta(a, b): b \in \mathbb{F}_{2}^{n} *\right\}$ is the same for all $a \neq 0$.
- For each $a \neq 0$ there is a b such that $\delta(a, b) \geq 4$ (non-APN).
- Each vanishing flat $\{x, y, z, u\}$ with $F(x)+F(y)+F(z)+F(u)=0$ gives rise to three different $\left(a_{i}, b_{i}\right)$ with $\delta\left(a_{i}, b_{i}\right) \geq 4: a_{1}=x+y$ or $a_{2}=x+z$ or $a_{3}=x+u$.
- $|\mathcal{V}| \geq\left(2^{n}-1\right) / 3$.

The inverse function

Theorem
Let n be even and α be a primitive element of $\mathbb{F}_{2^{n}}$ and $\zeta=\alpha^{\frac{2^{n}-1}{3}}$.

$$
\mathcal{V}\left(x^{-1}\right)=\left\{\left\{0, \alpha^{i}, \alpha^{i} \zeta, \alpha^{i} \zeta^{2}\right\} \left\lvert\, 0 \leq i \leq \frac{2^{n}-4}{3}\right.\right\} .
$$

We not only know $\left|\mathcal{V}\left(x^{-1}\right)\right|=\frac{2^{n}-1}{3}$ but also the set!

The Gold power functions

Theorem
Let $F(x)=x^{2^{t}+1}$ be a function over $\mathbb{F}_{2^{n}}$ with $\operatorname{gcd}(n, t)=s>1$. For $a \in \mathbb{F}_{2^{s}} \backslash\{0,1\}$ and $x \in \mathbb{F}_{2^{n}}^{*}$, we define a 2-dimensional vector space $V_{a, x}=\{0, x, a x,(1+a) x\}$ and

$$
\begin{aligned}
U_{a, x}=\{ & \{c, x+c, a x+c,(1+a) x+c\}: \\
& \left.c \text { coset representatives of } V_{a, x}\right\} .
\end{aligned}
$$

Then $\mathcal{V}(F)=\bigcup_{\substack{a \in \mathbb{F}_{2} s \backslash\{0,1\} \\ x \in \mathbb{F}_{2} n}} U_{a, x}$ and

$$
|\mathcal{V}(F)|=\frac{2^{n-2}\left(2^{s}-2\right)\left(2^{n}-1\right)}{6}
$$

The number of vanishing flats of x^{d} over $\mathbb{F}_{2^{n}}$, for $2 \leq n \leq 8, \quad \star$: unexplained.

n	$\left(d,\left\|\mathcal{V}\left(x^{d}\right)\right\|\right)$
2	$(1,1)$
3	$(1,14),(3,0)$
4	$(1,140),(3,0),(5,20),(7,5)$
5	$(1,1240),(3,0),(5,0),(15,0)$
6	$(1,10416),(3,0),(5,336),(7,84),(9,1008)$,
	$(11,336)^{\star},(15,126),(21,2520)^{\star},(27,1260)^{\star},(31,21)$
7	$(1,85344),(3,0),(5,0),(7,889),(9,0),(11,0),(19,889)^{\star}$,
	$(21,889),(23,0),(63,0)$
	$(1,690880),(3,0),(5,5440),(7,3655),(9,0),(11,5185)^{\star}$,
	$(13,5185)^{\star},(15,1785),(17,38080),(19,4420)^{\star},(21,2040)$,
8	$(23,4930)^{\star},(25,4420)^{\star},(27,15810)^{\star},(31,2380),(39,0)$,
	$(43,27625)^{\star},(45,1785)^{\star},(51,66300)^{\star},(53,7480)^{\star}$,
	$(55,5440)^{\star},(63,3570),(85,174760)^{\star},(87,24480)^{\star},(95,2380)^{\star}$,
	$(111,1020)^{\star},(119,41905)^{\star},(127,85)$

The quadratic case, Dembowski-Ostrom polynomials

Theorem
Let $F(x)=\sum_{0 \leq i<j<n} c_{i, j} x^{2^{i}+2^{j}}$ be a quadratic polynomial.

- If $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \in \mathcal{V}(F)$, then
$\left\{\left\{x_{1}+a, x_{2}+a, x_{3}+a, x_{4}+a\right\} \mid a \in \mathbb{F}_{2^{n}}\right\} \subset \mathcal{V}(F)$ for each $a \in \mathbb{F}_{2^{n}}$. Consequently, 2^{n-2} divides $|\mathcal{V}(F)|$.
- For each $a \in \mathbb{F}_{2^{n}}$, the subset $\left\{a, x_{1}+a, x_{2}+a, x_{1}+x_{2}+a\right\} \in \mathcal{V}(F)$ if and only if

$$
\sum_{0 \leq i<j<n} c_{i, j}\left(x_{1}^{2^{i}} x_{2}^{2^{j}}+x_{1}^{2^{j}} x_{2}^{2^{i}}\right)=0 .
$$

Corollary
$|\mathcal{V}(F)| \geq 2^{n-2}$ if F is not APN. Is this sharp? Power DO (Gold) are far away from this bound.

The BIG APN problem

Is there a permutation APN if n is even? For n odd: x^{3}, x^{-1}.

- No, if $n=4$.
- Yes, if $n=6^{8}$

[^4]
Partially APN permutations ${ }^{9}$

Definition

Functions $F: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ such that for all $a \neq 0$

$$
F(x+a)+F(x) \neq F(a)+F(0)
$$

for all $x \neq 0, a$ are partially APN.
Alternatively: $F(x)+F(x+a)+F(a)+F(0) \neq 0$ or (if $F(0)=0$)
$F(x)+F(y)+F(z) \neq 0$ for all distinct $x, y, z \neq 0$ with $x+y+z=0$.

- There are many more partially APN than APN.
- They found many partially APN permutations, but no infinite family.

[^5]
Steiner systems

Steiner triple systems:

- v points
- blocks of size 3
- Any two different points are contained in exactly one block.

Classical example on $\mathbb{F}_{2}^{n} \backslash\{0\}$: points and 2-dimensional subspaces.
Steiner quadruple systems:

- v points
- blocks of size 4
- Any three different points are contained in exactly one block.

Classical example on \mathbb{F}_{2}^{n} : points and 2-dimensional affine subspaces.

Partially APN permutations

Theorem (P.)
For any $n \geq 3$ there are partially $A P N$ permutations on \mathbb{F}_{2}^{n}.

Proof:

- The blocks $\{x, y, z: x, y, z$ different $\}$ form the classical Steiner triple system on $\mathbb{F}_{2}^{n} \backslash\{0\}$ (any two different points are contained in exactly one triple).
- Teirlinck ${ }^{10}$ proved that any two Steiner triple systems \mathcal{S} and \mathcal{T} defined on a point set V have a disjoint realization.
- That means, there is an isomorphic copy \mathcal{T}^{\prime} of \mathcal{T} on V such that no triple occurs both in \mathcal{S} and \mathcal{T}^{\prime}.
- If we begin with the classical Steiner triple systems $\mathcal{T}=\mathcal{S}$, then \mathcal{T}^{\prime} provides us with the desired permutation.

[^6]
Teirlinck's result

- has a short (1 page) and elementary but non-trivial proof;
- is needed only for the classical Steiner triple system;
- is not constructive;
- is far away from using finite fields!

APN permutations and STEINER quadruple systems

If F is APN on \mathbb{F}_{2}^{n}, then $F(x)+F(y)+F(z)+F(u) \neq 0$ if $\{x, y, z, u\}$ is an affine subspace of \mathbb{F}_{2}^{n}.

Observation:
There is an APN permutation F iff there are two disjoint realizations of the classical Steiner quadruple system on \mathbb{F}_{2}^{n}.

APN permutations and quadruple systems

- We tried to generalize the result to quadruple systems, without success.
- Hope that a non algebraic approach solves the BIG APN problem?
- APN for arbitrary quadruple systems (vanishing quadruples).

[^0]: ${ }^{1}$ Li, Shuxing; Meidl, Wilfried; Polujan, Alexandr; Pott, Alexander; Riera, Constanza; Stănică, Pantelimon. Vanishing flats: a combinatorial viewpoint on the planarity of functions and their application. IEEE Trans. Inform. Theory 66 no. 11 (2020), 7101-7112.
 ${ }^{2}$ Meidl, Wilfried; Polujan, Alexandr; Pott, Alexander. Linear codes and incidence structures of bent functions and their generalizations. arXiv: 2012.06866v1 (29 pages).

[^1]: ${ }^{3}$ Beierle, Christian; Leander, Gregor. New Instances of Quadratic APN Functions. arXiv: 2009.07204v3 (18 pages).
 ${ }^{4}$ Kaspers, Christian; Zhou, Yue. The Number of Almost Perfect Nonlinear Functions Grows Exponentially. Journal of Cryptology 34 no. 4 (2021).

[^2]: ${ }^{5}$ Carlet, Claude; Ding, Cunsheng. Highly nonlinear mappings. J. Complexity 20 (2004), no. 2-3, 205-244.
 ${ }^{6}$ Pott, Alexander. Nonlinear functions in abelian groups and relative difference sets. Discrete Appl. Math. 138 (2004), no. 1-2, 177-193.

[^3]: ${ }^{7}$ Arshad, Razi. Contributions to the theory of almost perfect nonlinear functions. Ph.D. thesis Magdeburg (2018).

[^4]: ${ }^{8}$ Browning, K. A.; Dillon, J. F.; McQuistan, M. T.; Wolfe, A. J. An APN permutation in dimension six. Finite fields: theory and applications, 33-42, Contemp. Math., 518, Amer. Math. Soc., Providence, RI, 2010.

[^5]: ${ }^{9}$ Budaghyan, Lilya; Kaleyski, Nikolay S.; Kwon, Soonhak; Riera, Constanza; Stănică, Pantelimon. Partially APN Boolean functions and classes of functions that are not APN infinitely often. Cryptogr. Commun. 12 (2020), no. 3, 527-545.

[^6]: ${ }^{10}$ Teirlinck, Luc. On making two Steiner triple systems disjoint. J. Combinatorial Theory Ser. A 23 (1977), no. 3, 349-350.

