Relaxations of almost perfect nonlinearity

Alexander Pott^{1 2}

Otto von Guericke University Magdeburg

July 7, 2021

¹Li, Shuxing; Meidl, Wilfried; Polujan, Alexandr; Pott, Alexander; Riera, Constanza; Stănică, Pantelimon. *Vanishing flats: a combinatorial viewpoint on the planarity of functions and their application*. IEEE Trans. Inform. Theory **66** no. 11 (2020), 7101–7112.

²Meidl, Wilfried; Polujan, Alexandr; Pott, Alexander. *Linear codes and incidence structures of bent functions and their generalizations.* arXiv: 2012.06866v1 (29 pages).

Outline

- Perfect nonlinearity, almost perfect nonlinearity
- Nonlinearity measure using vanishing flats:
 - Motivation.
 - Power mappings.
 - Quadratic mappings.
- Partially almost perfect nonlinear permutations.

- ► The new constructions of Beierle and Leander.³
- ▶ The new inequivalence results by Kaspers and Zhou.⁴

³Beierle, Christian; Leander, Gregor. *New Instances of Quadratic APN Functions.* arXiv: 2009.07204v3 (18 pages).

⁴Kaspers, Christian; Zhou, Yue. *The Number of Almost Perfect Nonlinear Functions Grows Exponentially*. Journal of Cryptology **34** no. 4 (2021).

Perfect nonlinearity

- ► Linear functions $F : V \to W$ satisfy F(x + a) F(x) = F(a), hence $x \mapsto F(x + a) - F(x)$ is **constant** for all $a \in V$.
- If |V|, |W| < ∞, being on the other side of the spectrum means</p>

$$x \mapsto F(x+a) - F(x)$$

is **balanced**, hence

$$F(x+a)-F(x)=b$$

has |V|/|W| solutions.

Such functions are called perfect nonlinear.

Example $F(x) = x^2$ with $V = W = \mathbb{F}_{p^n}$, p odd: $(x + a)^2 - x^2 = 2xa + a^2$

Perfect nonlinearity: Four questions

If *V* and *W* are abelian groups, we call a mapping $F : V \to W$ perfect nonlinear if F(x + a) - F(x) = b has |V|/|W| solutions. The graph $\{(x, F(x)) : x \in V\} \subset V \times W$ is a relative difference set⁵ 6

- 1. For which parameters |V|, |W| do we have perfect nonlinear functions?
- 2. For which groups do we have such perfect nonlinear functions?
- 3. If we know that for certain groups V and W no perfect nonlinear function exists, what is the (second) best.
- 4. Classification? How many examples?

⁵Carlet, Claude; Ding, Cunsheng. *Highly nonlinear mappings.* J. Complexity **20** (2004), no. 2-3, 205–244.

⁶Pott, Alexander. *Nonlinear functions in abelian groups and relative difference sets.* Discrete Appl. Math. **138** (2004), no. 1-2, 177–193.

From now on: $V = \mathbb{F}_2^n$, $W = \mathbb{F}_2^m$

If $F: V \to W$, then

$$\delta_{F}(a,b) = |\{x : F(x+a) + F(x) = b\}|.$$

Definition Almost perfect nonlinear function $F: V \rightarrow V$:

$$F(x+a)+F(x)=b$$

has 0 or 2 solutions for all $a \neq 0$ and all b, hence $\delta_F(a, b) \in \{0, 2\}$ for $a \neq 0$.

Example $x^{2^{i}+1}$ on $\mathbb{F}_{2^{n}}$ if gcd(i, n) = 1.

RODIER condition

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is APN, if and only if

$$F(x) + F(y) + F(z) + F(u) \neq 0$$

whenever x + y + z + u = 0 and x, y, z, u are distinct. The sets $\{x, y, z, u\}$ are 2-dimensional affine subspaces of \mathbb{F}_2^n .

Definition

Let $F: V \to W$. Then

 $\mathcal{V}(F) := \{x, y, z, u \text{ distinct} : F(x) + F(y) + F(z) + F(u) = 0, \\ x + y + z + u = 0\}$

is the set of vanishing 2-dimensional flats.

If *F* is APN, then ...

$$\delta_F(a,b) = |\{x : F(x+a) + F(x) = b\}|.$$

- The maximum of $\delta_F(a, b)$, $a \neq 0$ is 2.
- $\sum \delta_F(a, b)^2$ is as small as possible.
- $\mathcal{V}(F) = \emptyset$.

If $F: V \to W$ is perfect nonlinear, then ...

$$\delta_F(a,b) = |\{x : F(x+a) + F(x) = b\}|.$$

- The maximum of $\delta_F(a, b)$, $a \neq 0$ is |V|/|W|.
- $\sum \delta_F(a, b)^2$ is as small as possible.
- $|\mathcal{V}(F)|$ is as small as possible.

Relaxations

- Maximum $\delta_F(a, b)$, $a \neq 0$ is small (differential uniformity).
- $\sum \delta_F(a, b)^2$ (equivalently: minimizing the fourth powers of the Walsh coefficients) is small.
- $|\mathcal{V}(F)|$ is small.

Knowing the differential spectrum

```
\{* \ \delta_F(a, b) : a, b \in V \ *\}
```

we know the three quantities above.

Knowing the δ_F , we know $|\mathcal{V}(F)|$.

Lemma

$$|\mathcal{V}(F)| = \sum_{a \neq 0, b} {\delta_F(a, b)/2 \choose 2}.$$

The converse is not true:

Example

n = 6

• x^5 : differential spectrum {64¹, 4³³⁶, 0³⁷⁵⁹}

► x^{11} : differential spectrum {64¹, 10⁶³, 6¹²⁶, 2¹³²³, 0²⁵⁸⁴} In both cases $|\mathcal{V}| = 336$.

$\mathcal{V}(F)$ also carries combinatorial information

If there are functions f_i such that

$$F(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix},$$

then

 $\mathcal{V}(F) = \bigcap_{i=1}^m \mathcal{V}(f_i)$

- Which functions $f_i : \mathbb{F}_2^n \to \mathbb{F}_2^m$ have small $|\mathcal{V}(f_i)|$.
- ► Known for *n* even and *m* ≤ *n*/2: perfect nonlinear functions, bent functions.
- Known for n = m: APN (and the minimum is 0).
- Not known for other values.

Strategy to build APN?

Find a large set of boolean functions f_i on \mathbb{F}_2^n , $i \in I$, where we can compute $\mathcal{V}(f_i)$, and then find a subset $J \subset I$, |J| = n, such that

 $\bigcap_{i\in J}\mathcal{V}(f_i)=\emptyset.$

Similarly: functions $f_i : \mathbb{F}_2^n \to \mathbb{F}_2^{m_i}$. Then choose J such that $\sum_{i \in J} m_i = n$.

- ▶ Classical case: n = 2m, $m_1 = m_2 = m$ (perfect nonlinear).
- Classical case: $m_i = 1$ and use quadratic boolean functions.
- ► Why not extend the class of functions f_i from whom we build APN's by functions where V(f_i) is small.
- It is easy to construct boolean functions which are almost as good as perfect nonlinear functions.⁷

⁷Arshad, Razi. *Contributions to the theory of almost perfect nonlinear functions.* Ph.D. thesis Magdeburg (2018).

$F: \mathbb{F}_2^n \to \mathbb{F}_2^n$

Although the goal is to find $\mathcal{V}(F)$ for functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, m < n to build APN functions, we consider here, as a first step, the case m = n.

If F is a non-APN power mapping, then

$$|\mathcal{V}(F)| \geq \left\{egin{array}{cc} rac{2^n+1}{3} & ext{if } n ext{ is odd} \ rac{2^n-1}{3} & ext{if } n ext{ is even} \end{array}
ight.$$

The inverse function shows that the bound for n even is sharp. Open for n odd.

Proof

• Let $a_1, a_2 \neq 0$ be in \mathbb{F}_{2^n} .

$$(x+a_1)^d+x^d=b\Leftrightarrow rac{a_2}{a_1}x$$
 is solution of $(x+a_2)^d+x^d=\left(rac{a_2}{a_1}
ight)^ab.$

- $\{* \ \delta(a, b) : b \in \mathbb{F}_2^n \ *\}$ is the same for all $a \neq 0$.
- For each $a \neq 0$ there is a b such that $\delta(a, b) \ge 4$ (non-APN).
- Each vanishing flat $\{x, y, z, u\}$ with F(x) + F(y) + F(z) + F(u) = 0 gives rise to three different (a_i, b_i) with $\delta(a_i, b_i) \ge 4$: $a_1 = x + y$ or $a_2 = x + z$ or $a_3 = x + u$.

► $|\mathcal{V}| \ge (2^n - 1)/3.$

-1

The inverse function

Theorem

Let **n** be even and α be a primitive element of \mathbb{F}_{2^n} and $\zeta = \alpha^{\frac{2^n-1}{3}}$.

$$\mathcal{V}(x^{-1}) = \left\{ \left\{ 0, \alpha^i, \alpha^i \zeta, \alpha^i \zeta^2 \right\} \mid 0 \le i \le \frac{2^n - 4}{3} \right\}.$$

We not only know $|\mathcal{V}(x^{-1})| = \frac{2^n - 1}{3}$ but also the set!

The GOLD power functions

Theorem Let $F(x) = x^{2^t+1}$ be a function over \mathbb{F}_{2^n} with gcd(n, t) = s > 1. For $a \in \mathbb{F}_{2^s} \setminus \{0, 1\}$ and $x \in \mathbb{F}_{2^n}^*$, we define a 2-dimensional vector space $V_{a,x} = \{0, x, ax, (1 + a)x\}$ and

$$U_{a,x} = \{ \{c, x + c, ax + c, (1 + a)x + c\} : c \text{ coset representatives of } V_{a,x} \}.$$

Then
$$\mathcal{V}(F) = \bigcup_{\substack{a \in \mathbb{F}_{2^s} \setminus \{0,1\}\\ x \in \mathbb{F}_{2^n}^*}} U_{a,x}$$
 and
$$|\mathcal{V}(F)| = \frac{2^{n-2}(2^s-2)(2^n-1)}{6}$$

The number of vanishing flats of x^d over \mathbb{F}_{2^n} , for $2 \le n \le 8$, \bigstar : unexplained.

n	$(d, \mathcal{V}(x^d))$
2	(1,1)
3	(1,14), (3,0)
4	(1,140), (3,0), (5,20), (7,5)
5	(1,1240), (3,0), (5,0), (15,0)
6	(1,10416), (3,0), (5,336), (7,84), (9,1008),
	(11, 336)★, (15, 126), (21, 2520)★, (27, 1260)★, (31, 21)
7	(1,85344), (3,0), (5,0), (7,889), (9,0), (11,0), (19,889)★,
	(21,889), (23,0), (63,0)
8	(1,690880), (3,0), (5,5440), (7,3655), (9,0), (11,5185)*,
	(13,5185)★, (15,1785), (17,38080), (19,4420)★, (21,2040),
	(23, 4930)*, (25, 4420)*, (27, 15810)*, (31, 2380), (39, 0),
	(43,27625)*, (45,1785)*, (51,66300)*, (53,7480)*,
	(55, 5440)*, (63, 3570), (85, 174760)*, (87, 24480)*, (95, 2380)*,
	(111, 1020)*, (119, 41905)*, (127, 85)

The quadratic case, DEMBOWSKI-OSTROM polynomials

Theorem

Let $F(x) = \sum_{0 \le i < j < n} c_{i,j} x^{2^i + 2^j}$ be a quadratic polynomial.

- ▶ If $\{x_1, x_2, x_3, x_4\} \in \mathcal{V}(F)$, then $\{\{x_1 + a, x_2 + a, x_3 + a, x_4 + a\} \mid a \in \mathbb{F}_{2^n}\} \subset \mathcal{V}(F)$ for each $a \in \mathbb{F}_{2^n}$. Consequently, 2^{n-2} divides $|\mathcal{V}(F)|$.
- ► For each $a \in \mathbb{F}_{2^n}$, the subset $\{a, x_1 + a, x_2 + a, x_1 + x_2 + a\} \in \mathcal{V}(F)$ if and only if

$$\sum_{0 \le i < j < n} c_{i,j} \left(x_1^{2^i} x_2^{2^j} + x_1^{2^j} x_2^{2^j} \right) = 0.$$

Corollary $|\mathcal{V}(F)| \ge 2^{n-2}$ if F is not APN. Is this sharp? Power DO (GOLD) are far away from this bound.

The BIG APN problem

Is there a permutation APN if *n* is even? For *n* odd: x^3 , x^{-1} .

• Yes, if
$$n = 6^{8}$$

⁸Browning, K. A.; Dillon, J. F.; McQuistan, M. T.; Wolfe, A. J. An APN permutation in dimension six. Finite fields: theory and applications, 33–42, Contemp. Math., **518**, Amer. Math. Soc., Providence, RI, 2010.

Partially APN permutations⁹

Definition Functions $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ such that for all $a \neq 0$

 $F(x+a) + F(x) \neq F(a) + F(0)$

for all $x \neq 0$, a are partially APN. Alternatively: $F(x) + F(x + a) + F(a) + F(0) \neq 0$ or (if F(0) = 0)

 $F(x)+F(y)+F(z) \neq 0$ for all distinct $x, y, z \neq 0$ with x + y + z = 0.

- There are many more partially APN than APN.
- They found many partially APN permutations, but no infinite family.

⁹Budaghyan, Lilya; Kaleyski, Nikolay S.; Kwon, Soonhak; Riera, Constanza; Stănică, Pantelimon. *Partially APN Boolean functions and classes of functions that are not APN infinitely often.* Cryptogr. Commun. **12** (2020), no. 3, 527–545.

Steiner systems

STEINER triple systems:

- v points
- blocks of size 3

Any two different points are contained in exactly one block. Classical example on $\mathbb{F}_2^n \setminus \{0\}$: points and 2-dimensional subspaces.

 $\ensuremath{\operatorname{STEINER}}$ quadruple systems:

- v points
- blocks of size 4

Any three different points are contained in exactly one block. Classical example on \mathbb{F}_2^n : points and 2-dimensional affine subspaces.

Partially APN permutations

Theorem (P.)

For any $n \geq 3$ there are partially APN permutations on \mathbb{F}_2^n .

Proof:

- ► The blocks {x, y, z : x, y, z different} form the classical STEINER triple system on Fⁿ₂ \ {0} (any two different points are contained in exactly one triple).
- TEIRLINCK¹⁰ proved that any two STEINER triple systems S and T defined on a point set V have a disjoint realization.
- ► That means, there is an isomorphic copy T' of T on V such that no triple occurs both in S and T'.
- ► If we begin with the classical STEINER triple systems T = S, then T' provides us with the desired permutation.

¹⁰Teirlinck, Luc. On making two Steiner triple systems disjoint. J. Combinatorial Theory Ser. A **23** (1977), no. 3, 349–350.

TEIRLINCK's result

- has a short (1 page) and elementary but non-trivial proof;
- ▶ is needed only for the classical STEINER triple system;
- is not constructive;
- is far away from using finite fields!

APN permutations and STEINER quadruple systems

If F is APN on \mathbb{F}_2^n , then $F(x) + F(y) + F(z) + F(u) \neq 0$ if $\{x, y, z, u\}$ is an affine subspace of \mathbb{F}_2^n .

Observation:

There is an APN permutation F iff there are two disjoint realizations of the classical Steiner quadruple system on \mathbb{F}_2^n .

APN permutations and quadruple systems

- We tried to generalize the result to quadruple systems, without success.
- Hope that a non algebraic approach solves the BIG APN problem?
- ► APN for arbitrary quadruple systems (vanishing quadruples).