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Constanza; Stănică, Pantelimon. Vanishing flats: a combinatorial viewpoint on
the planarity of functions and their application. IEEE Trans. Inform. Theory 66
no. 11 (2020), 7101–7112.

2Meidl, Wilfried; Polujan, Alexandr; Pott, Alexander. Linear codes and
incidence structures of bent functions and their generalizations. arXiv:
2012.06866v1 (29 pages).

1 / 26



Outline

I Perfect nonlinearity, almost perfect nonlinearity ....

I Nonlinearity measure using vanishing flats:
I Motivation.
I Power mappings.
I Quadratic mappings.

I Partially almost perfect nonlinear permutations.
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I will not cover ...

I The new constructions of Beierle and Leander.3

I The new inequivalence results by Kaspers and Zhou.4

3Beierle, Christian; Leander, Gregor. New Instances of Quadratic APN
Functions. arXiv: 2009.07204v3 (18 pages).

4Kaspers, Christian; Zhou, Yue. The Number of Almost Perfect Nonlinear
Functions Grows Exponentially. Journal of Cryptology 34 no. 4 (2021).
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Perfect nonlinearity

I Linear functions F : V →W satisfiy F (x + a)− F (x) = F (a),
hence x 7→ F (x + a)− F (x) is constant for all a ∈ V .

I If |V |, |W | <∞, being on the other side of the spectrum
means

x 7→ F (x + a)− F (x)

is balanced, hence

F (x + a)− F (x) = b

has |V |/|W | solutions.

Such functions are called perfect nonlinear.

Example

F (x) = x2 with V = W = Fpn , p odd: (x + a)2 − x2 = 2xa + a2
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Perfect nonlinearity: Four questions

If V and W are abelian groups, we call a mapping F : V →W
perfect nonlinear if F (x + a)− F (x) = b has |V |/|W | solutions.
The graph {(x ,F (x)) : x ∈ V } ⊂ V ×W is a relative difference
set5 6

1. For which parameters |V |, |W | do we have perfect nonlinear
functions?

2. For which groups do we have such perfect nonlinear functions?

3. If we know that for certain groups V and W no perfect
nonlinear function exists, what is the (second) best.

4. Classification? How many examples?

5Carlet, Claude; Ding, Cunsheng. Highly nonlinear mappings. J. Complexity
20 (2004), no. 2-3, 205–244.

6Pott, Alexander. Nonlinear functions in abelian groups and relative
difference sets. Discrete Appl. Math. 138 (2004), no. 1-2, 177–193.
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From now on: V = Fn
2, W = Fm

2

If F : V →W , then

δF (a, b) = |{x : F (x + a) + F (x) = b}|.

Definition
Almost perfect nonlinear function F : V → V :

F (x + a) + F (x) = b

has 0 or 2 solutions for all a 6= 0 and all b, hence δF (a, b) ∈ {0, 2}
for a 6= 0.

Example

x2
i+1 on F2n if gcd(i , n) = 1.
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Rodier condition

F : Fn
2 → Fn

2 is APN, if and only if

F (x) + F (y) + F (z) + F (u) 6= 0

whenever x + y + z + u = 0 and x , y , z , u are distinct. The sets
{x , y , z , u} are 2-dimensional affine subspaces of Fn

2.

Definition
Let F : V →W . Then

V(F ) := {x , y , z , u distinct : F (x) + F (y) + F (z) + F (u) = 0,
x + y + z + u = 0}

is the set of vanishing 2-dimensional flats.
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If F is APN, then ...

δF (a, b) = |{x : F (x + a) + F (x) = b}|.

I The maximum of δF (a, b), a 6= 0 is 2.

I
∑
δF (a, b)2 is as small as possible.

I V(F ) = ∅.
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If F : V → W is perfect nonlinear, then ...

δF (a, b) = |{x : F (x + a) + F (x) = b}|.

I The maximum of δF (a, b), a 6= 0 is |V |/|W |.

I
∑
δF (a, b)2 is as small as possible.

I |V(F )| is as small as possible.
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Relaxations

I Maximum δF (a, b), a 6= 0 is small (differential uniformity).

I
∑
δF (a, b)2 (equivalently: minimizing the fourth powers of

the Walsh coefficients) is small.

I |V(F )| is small.

Knowing the differential spectrum

{∗ δF (a, b) : a, b ∈ V ∗}

we know the three quantities above.
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Knowing the δF , we know |V(F )|.

Lemma

|V(F )| =
∑
a 6=0,b

(
δF (a, b)/2

2

)
.

The converse is not true:

Example

n = 6

I x5: differential spectrum {641, 4336, 03759}
I x11: differential spectrum {641, 1063, 6126, 21323, 02584}

In both cases |V| = 336.
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V(F ) also carries combinatorial information

If there are functions fi such that

F (x) =

 f1(x)
...

fm(x)

 ,

then

V(F ) =
m⋂
i=1

V(fi )

I Which functions fi : Fn
2 → Fm

2 have small |V(fi )|.
I Known for n even and m ≤ n/2: perfect nonlinear functions,

bent functions.

I Known for n = m: APN (and the minimum is 0).

I Not known for other values.
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Strategy to build APN?
Find a large set of boolean functions fi on Fn

2, i ∈ I , where we can
compute V(fi ), and then find a subset J ⊂ I , |J| = n, such that⋂

i∈J
V(fi ) = ∅.

Similarly: functions fi : Fn
2 → Fmi

2 . Then choose J such that∑
i∈J mi = n.

I Classical case: n = 2m, m1 = m2 = m (perfect nonlinear).

I Classical case: mi = 1 and use quadratic boolean functions.

I Why not extend the class of functions fi from whom we build
APN’s by functions where V(fi ) is small.

I It is easy to construct boolean functions which are almost as
good as perfect nonlinear functions.7

7Arshad, Razi. Contributions to the theory of almost perfect nonlinear
functions. Ph.D. thesis Magdeburg (2018).
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F : Fn
2 → Fn

2

Although the goal is to find V(F ) for functions F : Fn
2 → Fm

2 ,
m < n to build APN functions, we consider here, as a first step,
the case m = n.

If F is a non-APN power mapping, then

|V(F )| ≥


2n+1
3 if n is odd

2n−1
3 if n is even

The inverse function shows that the bound for n even is sharp.
Open for n odd.
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Proof

I Let a1, a2 6= 0 be in F2n .

(x+a1)d+xd = b ⇔ a2
a1

x is solution of (x+a2)d+xd =

(
a2
a1

)d

b.

I {∗ δ(a, b) : b ∈ Fn
2 ∗} is the same for all a 6= 0.

I For each a 6= 0 there is a b such that δ(a, b) ≥ 4 (non-APN).

I Each vanishing flat {x , y , z , u} with
F (x) + F (y) + F (z) + F (u) = 0 gives rise to three different
(ai , bi ) with δ(ai , bi ) ≥ 4: a1 = x + y or a2 = x + z or
a3 = x + u.

I |V| ≥ (2n − 1)/3.
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The inverse function

Theorem
Let n be even and α be a primitive element of F2n and ζ = α

2n−1
3 .

V(x−1) =

{{
0, αi , αiζ, αiζ2

}
| 0 ≤ i ≤ 2n − 4

3

}
.

We not only know |V(x−1)| = 2n−1
3 but also the set!
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The Gold power functions

Theorem
Let F (x) = x2

t+1 be a function over F2n with gcd(n, t) = s > 1.
For a ∈ F2s \ {0, 1} and x ∈ F∗2n , we define a 2-dimensional vector
space Va,x = {0, x , ax , (1 + a)x} and

Ua,x = {{c , x + c , ax + c , (1 + a)x + c} :

c coset representatives of Va,x}.

Then V(F ) =
⋃

a∈F2s \{0,1}
x∈F∗

2n

Ua,x and

|V(F )| =
2n−2(2s − 2)(2n − 1)

6
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The number of vanishing flats of xd over F2n, for
2 ≤ n ≤ 8, F: unexplained.

n
(
d , |V(xd)|

)
2 (1, 1)
3 (1, 14), (3, 0)
4 (1, 140), (3, 0), (5, 20), (7, 5)
5 (1, 1240), (3, 0), (5, 0), (15, 0)

6
(1, 10416), (3, 0), (5, 336), (7, 84), (9, 1008),

(11, 336)F, (15, 126), (21, 2520)F, (27, 1260)F, (31, 21)

7
(1, 85344), (3, 0), (5, 0), (7, 889), (9, 0), (11, 0), (19, 889)F,

(21, 889), (23, 0), (63, 0)

8

(1, 690880), (3, 0), (5, 5440), (7, 3655), (9, 0), (11, 5185)F,
(13, 5185)F, (15, 1785), (17, 38080), (19, 4420)F, (21, 2040),
(23, 4930)F, (25, 4420)F, (27, 15810)F, (31, 2380), (39, 0),

(43, 27625)F, (45, 1785)F, (51, 66300)F, (53, 7480)F,
(55, 5440)F, (63, 3570), (85, 174760)F, (87, 24480)F, (95, 2380)F,

(111, 1020)F, (119, 41905)F, (127, 85)
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The quadratic case, Dembowski-Ostrom polynomials

Theorem
Let F (x) =

∑
0≤i<j<n ci ,jx

2i+2j be a quadratic polynomial.

I If {x1, x2, x3, x4} ∈ V(F ), then
{{x1 + a, x2 + a, x3 + a, x4 + a} | a ∈ F2n} ⊂ V(F ) for each
a ∈ F2n . Consequently, 2n−2 divides |V(F )|.

I For each a ∈ F2n , the subset
{a, x1 + a, x2 + a, x1 + x2 + a} ∈ V(F ) if and only if∑

0≤i<j<n

ci ,j

(
x2

i

1 x2
j

2 + x2
j

1 x2
i

2

)
= 0.

Corollary

|V(F )| ≥ 2n−2 if F is not APN. Is this sharp? Power DO
(Gold) are far away from this bound.

19 / 26



The BIG APN problem

Is there a permutation APN if n is even? For n odd: x3, x−1.

I No, if n = 4.

I Yes, if n = 6 8

8Browning, K. A.; Dillon, J. F.; McQuistan, M. T.; Wolfe, A. J. An APN
permutation in dimension six. Finite fields: theory and applications, 33–42,
Contemp. Math., 518, Amer. Math. Soc., Providence, RI, 2010.
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Partially APN permutations9

Definition
Functions F : Fn

2 → Fn
2 such that for all a 6= 0

F (x + a) + F (x) 6= F (a) + F (0)

for all x 6= 0, a are partially APN.

Alternatively: F (x) + F (x + a) + F (a) + F (0) 6= 0 or (if F (0) = 0)

F (x)+F (y)+F (z) 6= 0 for all distinct x , y , z 6= 0 with x + y + z = 0.

I There are many more partially APN than APN.

I They found many partially APN permutations, but no infinite
family.

9Budaghyan, Lilya; Kaleyski, Nikolay S.; Kwon, Soonhak; Riera, Constanza;
Stănică, Pantelimon. Partially APN Boolean functions and classes of functions
that are not APN infinitely often. Cryptogr. Commun. 12 (2020), no. 3,
527–545.
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Steiner systems

Steiner triple systems:

I v points

I blocks of size 3

I Any two different points are contained in exactly one block.

Classical example on Fn
2 \ {0}: points and 2-dimensional subspaces.

Steiner quadruple systems:

I v points

I blocks of size 4

I Any three different points are contained in exactly one block.

Classical example on Fn
2: points and 2-dimensional affine

subspaces.

22 / 26



Partially APN permutations

Theorem (P.)

For any n ≥ 3 there are partially APN permutations on Fn
2.

Proof:

I The blocks {x , y , z : x , y , z different} form the classical
Steiner triple system on Fn

2 \ {0} (any two different points
are contained in exactly one triple).

I Teirlinck10 proved that any two Steiner triple systems S
and T defined on a point set V have a disjoint realization.

I That means, there is an isomorphic copy T ′ of T on V such
that no triple occurs both in S and T ′.

I If we begin with the classical Steiner triple systems T = S,
then T ′ provides us with the desired permutation.

10Teirlinck, Luc. On making two Steiner triple systems disjoint. J.
Combinatorial Theory Ser. A 23 (1977), no. 3, 349–350.
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Teirlinck’s result

I has a short (1 page) and elementary but non-trivial proof;

I is needed only for the classical Steiner triple system;

I is not constructive;

I is far away from using finite fields!
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APN permutations and Steiner quadruple systems

If F is APN on Fn
2, then F (x) + F (y) + F (z) + F (u) 6= 0 if

{x , y , z , u} is an affine subspace of Fn
2.

Observation:

There is an APN permutation F iff there are two disjoint
realizations of the classical Steiner quadruple system on Fn

2.

25 / 26



APN permutations and quadruple systems

I We tried to generalize the result to quadruple systems,
without success.

I Hope that a non algebraic approach solves the BIG APN
problem?

I APN for arbitrary quadruple systems (vanishing quadruples).
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