On the Arithmetic of Sequences of Permutation Polynomials

Alev Topuzoğlu
(joint work with Tekgül Kalaycı and Henning Stichtenoth)
Sabancı University, İstanbul

Carleton Finite Fields eSeminar, 15 July 2020

Outline:

- A class of permutation polynomials
- Factorization, degrees of irreducible factors
- Sequences of permutation polynomials
- Number theoretic properties

We study a class of permutation polynomials F_{n} of \mathbb{F}_{q}, which are defined recursively as

$$
\begin{gathered}
F_{0}(x)=a_{0} x+a_{1} \in \mathbb{F}_{q}[x], a_{0} \neq 0 \text { and } \\
F_{n}(x)=F_{n-1}(x)^{q-2}+a_{n+1}, n \geq 1, a_{n+1} \in \mathbb{F}_{q} .
\end{gathered}
$$

Recall that the set of permutation polynomials over \mathbb{F}_{q} of degree $<q$ forms a group \mathbf{G}_{P} under composition modulo $x^{q}-x$. The group \mathbf{G}_{p} is generated by the linear polynomials $a x+b$ for $a, b \in \mathbb{F}_{q}, a \neq 0$ and x^{q-2}, (L. Carlitz, 1953).

In other words, any permutation σ of \mathbb{F}_{q}, can be represented by $F_{n}(x)=F_{n-1}(x)^{q-2}+a_{n+1}, n \geq 1, a_{n+1} \in \mathbb{F}_{q}$ for some $n \geq 0$, with $F_{0}(x)=a_{0} x+a_{1} \in \mathbb{F}_{q}[x], a_{0} \neq 0$,
i.e., there is a polynomial

$$
F_{n}(x)=\left(\ldots\left(\left(a_{0} x+a_{1}\right)^{q-2}+a_{2}\right)^{q-2} \ldots+a_{n}\right)^{q-2}+a_{n+1},
$$

satisfying $\sigma(c)=F_{n}(c)$ for all $c \in \mathbb{F}_{q}$, where $n \geq 0, a_{1}, a_{n+1} \in \mathbb{F}_{q}$, $a_{i} \in \mathbb{F}_{q}^{*}$ for $i=0,2, \ldots, n$.

$$
F_{n}(x)=\left(\ldots\left(\left(a_{0} x+a_{1}\right)^{q-2}+a_{2}\right)^{q-2} \ldots+a_{n}\right)^{q-2}+a_{n+1}
$$

The polynomial $F_{n}(x)$ can be approximated by rational fractions in the folowing sense. The rational fraction

$$
R_{n}(x)=\frac{\alpha_{n+1} x+\beta_{n+1}}{\alpha_{n} x+\beta_{n}}
$$

with

$$
\alpha_{n+2}=a_{n+2} \alpha_{n+1}+\alpha_{n}, \beta_{n+2}=a_{n+2} \beta_{n+1}+\beta_{n}
$$

for $n \geq 0$ with $\alpha_{0}=0, \alpha_{1}=a_{0}, \beta_{0}=1, \beta_{1}=a_{1}$,
satisfies

$$
F_{n}(c)=R_{n}(c), \text { for all } c \in \mathbb{F}_{q} \backslash S_{n},
$$

where the cardinality of S_{n} is at most n.

Question. Consider

$$
F_{n}(x)=\left(\ldots\left(\left(a x+a_{1}\right)^{q-2}+a_{2}\right)^{q-2} \ldots+a_{n}\right)^{q-2}+a_{n+1} \in \mathbb{F}_{q}[x]
$$

of degree $(q-2)^{n}$. What can one say about the irreducible factors?

Example:
Let $F_{2}(x)=\left(x^{27}+3\right)^{27}-2 \in \mathbb{F}_{29}[x]$.

$$
\begin{aligned}
& F_{2}(x)=(x+12)\left(x^{2}+17 x-1\right)\left(x^{6}+2 x^{3}-1\right)\left(x^{18}+x^{9}-1\right)\left(x^{54}+2 x^{27}+18\right) \\
& \left(x^{162}+18 x^{135}+19 x^{108}+9 x^{54}+15 x^{27}+16\right)\left(x^{486}+25 x^{459}+14 x^{432}+\right. \\
& 21 x^{405}+26 x^{378}+27 x^{351}+16 x^{324}+16 x^{297}+8 x^{270}+14 x+243+ \\
& \left.20 x^{216}+5 x^{189}+17 x^{162}+21 x^{135}+3 x^{108}+24 x^{81}+24 x^{54}+21 x^{27}+10\right)
\end{aligned}
$$

Let $n \geq 1$ and $a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}$. Suppose that the integers d_{1}, \ldots, d_{n} satisfy

$$
d_{i} \geq 2 \text { and } \operatorname{gcd}\left(d_{i}, q\right)=\operatorname{gcd}\left(d_{i}, q-1\right)=1 \text { for } 1 \leq i \leq n .
$$

Put

$$
F_{0}(x)=x \quad \text { and } \quad F_{i}(x)=F_{i-1}(x)^{d_{i}}+a_{i}
$$

Aim: Determine the degrees of the irreducible factors.

Let $Q(x)$ be an irreducible factor of $F_{n}(x)$ of $\operatorname{deg} Q(x)>1$.
Put $K=\mathbb{F}_{q}$, choose a root $\lambda \in \bar{K}$ of the polynomial $Q(x) \Longrightarrow$ $\operatorname{deg} Q(x)=[K(\lambda): K]$.

Define

$$
\lambda_{i}=F_{i}(\lambda)=F_{i-1}(\lambda)^{d_{i}}+a_{i} \text { for } i=0, \ldots, n .
$$

Hence

$$
\begin{gathered}
\lambda_{0}=F_{0}(\lambda)=\lambda, \\
\lambda_{i}=\lambda_{i-1}^{d_{i}}+a_{i}, 1 \leq i \leq n-1, \\
\lambda_{n}=F_{n}(\lambda)=0 .
\end{gathered}
$$

Consider

$$
\mathbb{F}_{q}=\mathbb{F}_{q}\left(\lambda_{n}\right)=K\left(\lambda_{n}\right) \subseteq K\left(\lambda_{n-1}\right) \subseteq \ldots \subseteq K\left(\lambda_{1}\right) \subseteq K\left(\lambda_{0}\right)=K(\lambda) .
$$

$$
\mathbb{F}_{q}=K=K\left(\lambda_{n}\right)
$$

Let $d=\operatorname{lcm}\left(d_{1}, \ldots, d_{n}\right)$, and $L=K(\omega)$, where $\omega \in \bar{K}$ is a primitive d-th root of unity.

Put $M=L \cap K(\lambda)$ and let $L(\lambda)=L \cdot K(\lambda)$.

Theorem: Let

$$
F_{0}(x)=x \text { and } F_{i}(x)=F_{i-1}(x)^{d_{i}}+a_{i},
$$

with $a_{i} \in \mathbb{F}_{q}, d_{i} \geq 2$, and

$$
\operatorname{gcd}\left(d_{i}, q\right)=\operatorname{gcd}\left(d_{i}, q-1\right)=1 \text { for } 1 \leq i \leq n .
$$

Put $d=\operatorname{lcm}\left(d_{1}, \ldots, d_{n}\right)$. Suppose that $Q(x) \in \mathbb{F}_{q}[x]$ is an irreducible factor of $F_{n}(x)$. Then,

$$
\operatorname{deg} Q(x) \mid d_{1} \cdot d_{2} \cdot \ldots \cdot d_{n-1} \cdot d_{n} \cdot \operatorname{ord}_{d}(q)
$$

Theorem: Let

$$
F_{0}(x)=x \text { and } F_{i}(x)=F_{i-1}(x)^{d_{i}}+a_{i},
$$

with $a_{i} \in \mathbb{F}_{q}, d_{i} \geq 2$, and

$$
\operatorname{gcd}\left(d_{i}, q\right)=\operatorname{gcd}\left(d_{i}, q-1\right)=1 \text { for } 1 \leq i \leq n .
$$

Put $d=\operatorname{lcm}\left(d_{1}, \ldots, d_{n}\right)$. Suppose that $Q(x) \in \mathbb{F}_{q}[x]$ is an irreducible factor of $F_{n}(x)$. Then,

$$
\operatorname{deg} Q(x) \mid d_{1} \cdot d_{2} \cdot \ldots \cdot d_{n-1} \cdot \operatorname{ord}_{d}(q)
$$

$$
\operatorname{deg} Q(x) \mid d_{1} \cdot d_{2} \cdot \ldots \cdot d_{n-1} \cdot \operatorname{ord}_{d}(q)
$$

Example:
Let $F_{2}(x)=\left(x^{27}+3\right)^{27}-2 \in \mathbb{F}_{29}[x]$.
$d=d_{1}=d_{2}=27, \operatorname{ord}_{27}(29)=18$.
Degrees of the irreducible factors are: $1,2,6,18,54,162,486=18 \cdot 27$.

Theorem: Let

$$
F_{0}(x)=x \text { and } F_{i}(x)=F_{i-1}(x)^{d_{i}}+a_{i}
$$

with $a_{i} \in \mathbb{F}_{q}, d_{i} \geq 2$, and

$$
\operatorname{gcd}\left(d_{i}, q\right)=\operatorname{gcd}\left(d_{i}, q-1\right)=1 \text { for } 1 \leq i \leq n .
$$

Put $d=\operatorname{lcm}\left(d_{1}, \ldots, d_{n}\right)$. Suppose that $Q(x) \in \mathbb{F}_{q}[x]$ is an irreducible factor of $F_{n}(x)$. Then,
(i) $\operatorname{deg} Q(x) \mid d_{1} \cdot d_{2} \cdot \ldots \cdot d_{n-1} \cdot \operatorname{ord}_{d}(q)$.
(ii) Suppose $\operatorname{deg} Q(x)>1$. Then there exists some $j \in\{1,2, \ldots, n\}$ and a prime number $\ell \mid d_{j}$ such that $\operatorname{ord}_{\ell}(q) \mid \operatorname{deg} Q(x)$.

Example:
Let $F_{2}(x)=\left(x^{27}+3\right)^{27}-2 \in \mathbb{F}_{29}[x]$.
$d=d_{1}=d_{2}=3^{3}, \quad \operatorname{ord}_{3}(29)=2$.
Degrees of the irreducible factors are: $1,2,6,18,54,162,486$.

Let $A=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}$ and $D=\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z}^{n}$, where

$$
\begin{gathered}
d_{i} \geq 2 \text { and } \operatorname{gcd}\left(d_{i}, q\right)=\operatorname{gcd}\left(d_{i}, q-1\right)=1,1 \leq i \leq n . \\
F_{n}^{(A, D)}:=F_{n}(x)=\left(\ldots\left(x^{d_{1}}+a_{1}\right)^{d_{2}} \ldots+a_{n}\right)^{d_{n}}+a_{n} .
\end{gathered}
$$

We introduce the sets
$\Delta_{n}^{(A, D)}:=\left\{\operatorname{deg} Q(x) \mid Q(x)\right.$ is an irreducible factor of $\left.F_{n}^{(A, D)}(x)\right\}$,

$$
\bar{\Delta}_{n}^{(D)}:=\bigcup_{A \in \mathbb{F}_{q}^{\mathfrak{n}}} \Delta_{n}^{(A, D)} .
$$

$\Delta_{n}^{(D)}:=\left\{k>1 \mid k\right.$ divides $d_{1} d_{2} \cdots d_{n-1} \cdot \operatorname{ord}_{d}(q)$, and k is divisible by $\operatorname{ord}_{\ell}(q)$ for some prime divisor ℓ of $\left.d\right\} \cup\{1\}$,
$\Longrightarrow \bar{\Delta}_{n}^{(D)} \subseteq \Delta_{n}^{(D)}$.
Question: How are these sets related?

$$
\Delta_{n}^{(A, D)}=\left\{\operatorname{deg} Q(x) \mid Q(x) \text { is an irreducible factor of } F_{n}^{(A, D)}(x)\right\}
$$

$$
\bar{\Delta}_{n}^{(D)}=\bigcup_{A \in \mathbb{F}_{q}^{n}} \Delta_{n}^{(A, D)}
$$

$$
\begin{array}{r}
\Delta_{n}^{(D)}=\left\{k>1 \mid k \text { divides } d_{1} d_{2} \cdots d_{n-1} \cdot \operatorname{ord}_{d}(q), \text { and } k\right. \text { is divisible } \\
\\
\text { by } \left.\operatorname{ord}_{\ell}(q) \text { for some prime divisor } \ell \text { of } d\right\} \cup\{1\},
\end{array}
$$

Theorem: Let m be any divisor of d_{1}. Then $\operatorname{ord}_{m}(q) \in \bar{\Delta}_{n}^{(D)}$. Moreover, $\operatorname{ord}_{m}(q) \in \Delta_{n}^{(A, D)}$ for any $A \in \mathbb{F}_{q}^{n}$, satisfying $F_{n}^{(A, D)}(0) \neq 0$.

$$
\Delta_{n}^{(A, D)}=\left\{\operatorname{deg} Q(x) \mid Q(x) \text { is an irreducible factor of } F_{n}^{(A, D)}(x)\right\} .
$$

Theorem: Let $A \in \mathbb{F}_{q}^{n}$ be arbitrary. Suppose $F_{n}^{(A, D)}$ has an irreducible factor $Q(x)$ of degree $r>1$. Then $F_{n}^{(A, D)}$ has an irreducible factor $R(x)$ also with $\operatorname{deg} R(x)=t$, where

$$
t=\frac{\operatorname{lcm}\left(r, \operatorname{ord}_{m}(q)\right)}{f}
$$

m is a divisor of d_{1} and f is a divisor of $\operatorname{gcd}\left(r, \operatorname{ord}_{m}(q)\right)$. In other words, if $r \in \Delta_{n}^{(A, D)}$, then $t \in \Delta_{n}^{(A, D)}$.

Problem: If $\bar{\Delta}_{n}^{(D)} \varsubsetneqq \Delta_{n}^{(D)}$, determine $\Delta_{n}^{(D)} \backslash \bar{\Delta}_{n}^{(D)}$, i.e., eliminate the degrees in $\Delta_{n}^{(D)}$, which are not in $\bar{\Delta}_{n}^{(D)}$ (and hence find $\bar{\Delta}_{n}^{(D)}$).

Theorem: Suppose that $d=\operatorname{lcm}\left(d_{1}, \ldots, d_{n}\right)=\ell \cdot e$, where ℓ is a prime number and $\ell \nmid e \cdot \operatorname{ord}_{e}(q)$. Let m be an integer with $\operatorname{ord}_{\ell}(q) \nmid m$. Then $m \cdot \ell \notin \Delta_{n}^{(A, D)}$ for any $A \in \mathbb{F}_{q}^{n}$.
Example:
Let $q=683, D=(45,15)$. Then,

$$
\Delta_{2}^{(D)}=\{1,2,4,6,10,12,18,20,30,60,90,180,\}
$$

The degrees $10,30,90$, can be eliminated to yield

$$
S:=\{1,2,4,6,12,18,20,36,60,108\} .
$$

Indeed, $\bar{\Delta}_{2}^{(D)}=S$.

Example:

Let $q=59, D=(357,357)$. Then
$\Delta_{2}^{(D)}=\{1,2,4,6,8,12,14,18,24,28,34,36,42,56,68,72,84,102$,
$126,136,168,204,238,252,306,408,476,504,612,714,952,1224$, $1428,2142,2856,4284,8568\}$.

Example:

Let $q=59, D=(357,357)$. Then

$$
\begin{gathered}
\Delta_{2}^{(D)}=\{1,2,4,6,8,12,14,18,24,28,34,36,42,56,68,72,84,102, \\
126,136,168,204,238,252,306,408,476,504,612,714,952,1224, \\
1428,2142,2856,4284,8568\} .
\end{gathered}
$$

$\bar{\Delta}_{2}^{(D)}=\{1,2,6,8,18,24,42,72,126,136,168,408,504,1224,2856,8568\}$. If $A=(1,45)$, then $\Delta_{2}^{(A, D)}=\bar{\Delta}_{2}^{(D)}$, while $\operatorname{deg}\left(F_{2}^{(A, D)}\right)=127449$, and $w\left(F_{2}^{(A, D)}\right)=13507$.

Example:

Let $q=317, D=(3,5,13)$. Then,

$$
\Delta_{n}^{(D)}=\{1,2,4,6,10,12,20,30,60\} .
$$

Let $A=(19,128,254)$. One can eliminate $6,10,30$ to find

$$
\Delta_{3}^{(A, D)}=\{1,2,4,12,20,60\} .
$$

The polynomial $F_{n}^{(A, D)}$ is of degree 195 and weight 196.

Let $A=\left\{a_{i}\right\}_{i \geq 1}$ be a sequence over \mathbb{F}_{q}^{*} and $D=\left\{d_{i}\right\}_{i \geq 1}$ be a sequence in \mathbb{Z}, satisfying

$$
d_{i} \geq 2 \text { and } \operatorname{gcd}\left(d_{i}, q\right)=\operatorname{gcd}\left(d_{i}, q-1\right)=1
$$

Consider the sequence $\mathcal{F}=\mathcal{F}^{(A, D)}=\left\{F_{i}^{(A, D)}(x)\right\}_{i \geq 0}$, of permutation polynomials associated to the sequences A and D, which we define recursively by

$$
F_{0}(x)=x+a_{1} \quad \text { and } \quad F_{i}(x)=F_{i-1}(x)^{d_{i}}+a_{i+1} \text { for } \quad i \geq 1 .
$$

Questions:

- Find upper/lower bounds for the largest degree $\mathcal{D}\left(F_{n}\right)$ of irreducible factors of the n'th term of the sequence \mathcal{F},
- Find upper/lower bounds for the number $\nu\left(F_{n}\right)$ of irreducible factors of the n'th term of the sequence \mathcal{F}.

Let $F_{n}=\prod_{Q \in \operatorname{irr}\left(F_{n}\right)} Q^{e_{n, Q}}$, where $\operatorname{irr}\left(F_{n}\right)$ denotes the set of all irreducible factors of F_{n}.

- Find upper/lower bounds for the multiplicities $e_{n, Q}$, when $Q(x)$ ranges over $\operatorname{irr}\left(F_{n}\right)$.
- Find upper/lower bounds for $\Sigma_{Q \in \operatorname{irr}\left(F_{n}\right)} e_{n, Q}$.
- Given q, D, N. Can one construct a sequence \mathcal{F} over \mathbb{F}_{q} of N terms, such that $F_{1}, F_{2}, \ldots, F_{N}$ are pairwise relatively prime?

Theorem: Let $\mathcal{D}\left(F_{n}\right)$ be the largest degree of irreducible factors of the nth term F_{n} of the sequence \mathcal{F}. Then,

$$
\operatorname{ord}_{d_{n}}(q) \leq \mathcal{D}\left(F_{n}\right) \leq d_{1} \cdot d_{2} \cdot \ldots \cdot d_{n-1} \cdot \operatorname{ord}_{d_{n}}(q)
$$

A polynomial is m-smooth if the degrees of its irreducible factors are all at most m.

Recall that

$$
\mathcal{D}\left(F_{n}\right) \leq d_{1} \cdot d_{2} \cdot \ldots \cdot d_{n-1} \cdot \operatorname{ord}_{d_{n}}(q) .
$$

Corollary: Let $m=d_{1} \cdot d_{2} \cdots d_{n-1} \cdot \operatorname{ord}_{d_{n}}(q)$, then $F_{n}^{(A, D)}$ is m-smooth for any A.

Examples:

- Let $q=2^{7}, n=4, d_{1}=d_{2}=d_{3}=3, d_{4}=129$. Then $\operatorname{ord}_{d_{4}}(q)=2$, $\operatorname{deg}\left(F_{4}(x)\right)=3483$ and $m=54$.
- Let $q=289, D=(5,5,5,145)$. Then $\operatorname{ord}_{d_{4}}(q)=2$, $\operatorname{deg}\left(F_{4}(x)\right)=18125$ and $m=250$.
$\rho(m):=$ number of irreducible factors of $\left(T^{m}-1\right)$ over \mathbb{F}_{q}.
Theorem: Let $\nu\left(F_{n}\right)$ be the number of irreducible factors of the polynomial F_{n}. Then,
(i) $\nu\left(F_{n}\right) \geq \rho\left(d_{n}\right)$ for all $n \geq 1$. If $F_{n}\left(-a_{1}\right) \neq 0$ then $\nu\left(F_{n}\right) \geq \rho\left(d_{1}\right)$.
(ii) For any $q>2$ and any fixed $n \geq 1$, there is a sequence $A=\left\{a_{i}\right\}_{i \geq 1}$ in \mathbb{F}_{q}^{*} such that

$$
\nu\left(F_{n}^{(A, D)}\right) \geq \rho\left(d_{1}\right)+\sum_{i=2}^{n}\left(\rho\left(d_{i}\right)-1\right) \geq n+1
$$

Method:
Let $0 \leq i<j \leq n$. We define auxiliary polynomials $H_{i, j} \in \mathbb{F}_{q}[T]$ as follows.
$H_{j-1, j}(T)=T+a_{j+1}$,
$H_{i, j}(T)=\left(\ldots\left(\left(T+a_{i+2}\right)^{d_{i+2}}+a_{i+3}\right)^{d_{i+3}}+\ldots+a_{j}\right)^{d_{j}}+a_{j+1}$ for $i \leq j-2$,
$F_{j}=H_{i, j}\left(F_{i}^{d_{i+1}}\right)$ for $0 \leq i<j \leq n$.
$H_{i, k}(T)=H_{j, k}\left(H_{i, j}(T)^{d_{j+1}}\right)$ for $0 \leq i<j<k \leq n$.
$H_{i, j}(T)=H_{i, j-1}(T)^{d_{j}}+a_{j+1}$ for $0 \leq i \leq j-1<n$.
Lemma: The following hold for $0 \leq i<j \leq n$.
(i) $\operatorname{gcd}\left(F_{i}, F_{j}\right)=1$ if and only if $H_{i, j}(0) \neq 0$.
(ii) If $\operatorname{gcd}\left(F_{i}, F_{j}\right) \neq 1$, then $F_{i}^{d_{i+1}} \mid F_{j}$.

Theorem: Let $J \subseteq\{0,1, \ldots, N\}$ and $|J|>q$. Then there exist $i, j \in J$ with $i<j$ such that $\operatorname{gcd}\left(F_{i}, F_{j}\right) \neq 1$ (and hence $\left.F_{i}^{d_{i+1}} \mid F_{j}\right)$.

Theorem: For all n with $1 \leq n \leq q-1$ and for all n-tuples $\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{n}$, there exists an element $a_{n+1} \in \mathbb{F}_{q}^{*}$ such that $\operatorname{gcd}\left(F_{i}, F_{n}\right)=1$ for all $i=0, \ldots, n-1$.

Corollary: For all n with $1 \leq n \leq q-1$ and for all n-tuples $\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{n}$, one can choose an element $a_{n+1} \in \mathbb{F}_{q}^{*}$ such that all polynomials $F_{0}^{(A, D)}, \ldots, F_{n}^{(A, D)}$ are squarefree, where $A=\left\{a_{n}\right\}_{n \geq 1}$.

Theorem: Let $Q \in \mathbb{F}_{q}[x]$ be an irreducible factor of F_{n}, and $e_{n, Q}$ be the multiplicity of Q in F_{n}. Put $I_{n, Q}=\left\{i: Q \mid F_{i}, 0 \leq i<n\right\}$. Then, either

$$
e_{n, Q}=1 \quad \text { or } \quad e_{n, Q}=\prod_{i \in I_{n, Q}} d_{i+1}
$$

Theorem: Let $d_{i}=d$ for all $i \geq 1$, and

$$
e_{n}=\max \left\{e_{n, Q}: Q \in \operatorname{irr}\left(F_{n}\right)\right\} .
$$

Then $e_{n} \leq d^{\frac{n}{2}}$, if n is even, and $e_{n} \leq d^{\frac{n-1}{2}}$, if n is odd.

Let $G=\left\{G_{n}(x)\right\}_{n \geq 1}$ be a sequence in $\mathbb{F}_{q}[x]$. An irreducible polynomial $Q(x)$ is called a primitive irreducible divisor of $G_{n}, n \geq 2$, if $Q \mid G_{n}$ and $\operatorname{gcd}\left(Q, G_{i}\right)=1$, for any $1 \leq i<n$.

Theorem: Every term F_{n} of the sequence \mathcal{F} has a primitive irreducible divisor.

- Suppose $\operatorname{deg} F_{n}=d_{1} \cdots d_{n}<q$, and σ is the permutation induced by F_{n}. Is there a relation between the factorization pattern of F_{n} and properties of σ ?
- Find conditions on A, such that $\Delta_{n}^{(A, D)}=\bar{\Delta}_{n}^{(D)}$.
- Construct sequences of length $N, N \geq 1$, such that all the irreducible factors of $F_{i}^{(A, D)}, \ldots, F_{i+N}^{(A, \bar{D})}, i \geq 1$, are of the same degree or of distinct degrees (except for the factor of degree 1).

For details of proofs and references see "Permutation polynomials and factorization" by T. Kalaycı, H. Stichtenoth and A. Topuzoğlu, which appeared in Cryptography and Communications;
https://doi.org/10.1007/s12095-020-00446-y

