
Image sets, nonlinearity and distance to
affine functions of δ-uniform functions, and

γ-functions of APN functions

Claude Carlet

University of Bergen, Norway ; University of Paris 8, France



Outline

I Known results on the image sets of differentially uniform functions

I On the nonlinearity of differentially uniform functions

I On the distance to affine functions

→ Case of of differentially uniform functions

→ Upper bounds for general vectorial functions

I On the γ-functions associated to general APN functions

→ Linear structures of γF and bent components of F

→ Relation between WγF and WF ; deduced relation on WF

→ Lower bound on the nonlinearity of a class of APN functions

→ Relation between the nonlinearities of F and γF

1



Known results on differentially uniform functions

[CHP 2017] “C. C., A. Heuser and S. Picek. Trade-Offs for S-Boxes : Cryptographic

Properties and Side-Channel Resilience. ACNS 2017” (not very well known) :

Let F : Fn2 7→ Fm2 be any (n,m)-function (to be used as an S-box in

a block cipher) and for a ∈ Fn2 , define the so-called derivative of F :

DaF (x) = F (x) + F (x+ a).
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∑
a∈Fn2 ;a6=0n

|(DaF )
−1(0m)| =

|{(x, y) ∈ (Fn2)2;F (x) = F (y)}| − 2n =∑
b∈Im(F )

|F−1(b)|2 − 2n ≥

(∑
b |F−1(b)|

)2
|Im(F )|

− 2n =

22n

|Im(F )|
− 2n.
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Hence : ∑
a∈Fn2 ;a6=0n

|(DaF )
−1(0m)|

2n − 1
≥

22n

|Im(F )| − 2n

2n − 1
,

which implies :

max
a∈Fn2 ;a6=0n

|DaF
−1(0m)| ≥

22n

|Im(F )| − 2n

2n − 1
.
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The differential uniformity δF of F , equal by definition to :

max
a∈Fn2 ,a6=0n

b∈Fm2

|{x ∈ Fn2 ;F (x) + F (x+ a) = b}| = max
a∈Fn2 ,a6=0n

b∈Fm2

|(DaF )
−1(b)|,

satisfies then :

δF ≥


22n

|Im(F )| − 2n

2n − 1

 .
Equivalently, we have the following bound on the image set size :

|Im(F )| ≥
⌈

22n

(2n − 1) δF + 2n

⌉
≥
⌈

2n

δF + 1

⌉
.
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For almost perfect nonlinear (APN) (n, n)-functions (δF = 2) :

|Im(F )| ≥
⌈

22n

3 · 2n − 2

⌉
. (1)

Bound (1), which is tight (achieved by APN power functions in even

dimension n), has been recently rediscovered in :

[I. Czerwinski. On the minimal value set size of APN functions. IACR ePrint

Archive, 2020], with
⌈

22n

3·2n−2

⌉
=

{
2n+1

3 , n odd,
2n+2

3 , n even
.
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This proof generalizes straightforwardly to any characteristic :

δF ≥


p2n

|Im(F )| − p
n

pn − 1

 ,
which implies :

|Im(F )| ≥
⌈

p2n

(pn − 1) δF + pn

⌉
≥
⌈

pn

δF + 1

⌉
,

and this has been found “again” in :

[L. Kölsch, B. Kriepke and G.M. Kyureghyan. Image sets of perfectly nonlinear

maps. arXiv, 2020].
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On the nonlinearity of differentially uniform
functions

Recall that the nonlinearity of an (n,m)-function F equals the

minimum Hamming distance between its component functions v · F ,

v 6= 0m (where · is any inner product), and affine Boolean functions

u · x+ ε.

Equivalently, using the Walsh transform of F :

WF (u, v) =
∑
x∈Fn2

(−1)v·F (x)+u·x, we have :
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nl(F ) = 2n−1 − 1

2
max
u∈Fn2

v∈Fm2 ,v 6=0m

|WF (u, v)|.

The covering radius bound writes : nl(F ) ≤ 2n−1 − 2
n
2−1, and is

achieved with equality by the so-called bent functions, which exist if

and only if m ≤ n
2 , n even, according to K. Nyberg.

In [CHP 2017] is proved : nl(F ) ≤ 2n−1 −
2n+m−1
|Im(F )| −2

n−1

2m−1 .

This bound is weak. Let us improve it. We have :
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∑
v∈Fm2

W 2
F (0n, v) = 2m |{(x, y) ∈ Fn2 ;F (x) = F (y)}| ≥ 22n+m

|Im(F )|
,

and then : max
v∈Fm2 ,v 6=0m

W 2
F (0n, v) ≥

22n+m

|Im(F )| − 22n

2m − 1
,

nl(F ) ≤ 2n−1 −

√
22n+m−2
|Im(F )| − 22n−2

2m − 1
.

This bound is sharper than the covering radius bound if and only if

|Im(F )| < 2n+m

2n+2m−1 (which ranges from roughly 2m to 2m−1 when

m ranges from n
2 to n).
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On the distance to affine functions

Let A denote the space of affine (n,m)-functions, dH denote the

Hamming distance and dH(F,A) = minA∈A dH(F,A).

We have dH(F,A) ≥ nl(F ) as shown in :

[LMC 2017] “J. Liu, S. Mesnager and L. Chen. On the nonlinearity of S-boxes and

linear codes. Cryptography and Communications, 2017”.

For differentially uniform functions : For every affine function A,

we have :

dH(F,A) = |{x ∈ Fn2 ;F (x) +A(x) 6= 0m}| ≥ |Im(F +A)| − 1.
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We deduce then from the bound on the image set size :

dH(F,A) ≥
⌈

22n

(2n − 1)δF + 2n

⌉
− 1, (2)

but this bound is weak. Let us improve it. We have :

|F−1(0m)| ≤
√∑
b∈Fn2

|F−1(b)|2 =

√
|{(x, y) ∈ (Fn2)2;F (x) = F (y)}| =√∑

a∈Fn2

|(DaF )−1(0m)| ≤
√

2n + δF (2n − 1).
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Applying this to F +A instead of F , we deduce :

dH(F,A) ≥ 2n −
√

2n + δF (2n − 1).

Hence :

dH(F,A) ≥ 2n −
√
2n + δF (2n − 1).

In particular, for APN functions :

dH(F,A) ≥ 2n −
√
3 · 2n − 2 (rather large).
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For general (n,m)-functions :

[LMC 2017] proved by using the Walsh transform :

dH(F,A) < (1− 2−m)(2n − 1). Note that this means :

dH(F,A) ≤
{

2n − 2n−m − 1 for m ≤ n
2n − 2 for m ≥ n.

- Slight improvement when m < n :

For every linear (n,m)-function L, we have :

max
b∈Fm2

|{x ∈ Fn2 ; F (x) + L(x) = b}|2 ≥
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∑
b∈Fm2

|{x ∈ Fn2 ; F (x) + L(x) = b}|2

2m
=

2−m|{(x, y) ∈ (Fn2)2; F (x) + L(x) = F (y) + L(y)}| =

2−2m
∑

x,y∈Fn2 ,v∈F
m
2

(−1)v·(F (x)+F (y)+L(x+y)).

We have, for v 6= 0m that :

∑
L∈L

(−1)v·L(x+y) =
{
|L| if x+ y = 0n
0 otherwise.
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We deduce (distinguishing the cases v = 0m and v 6= 0m) :∑
L∈L

max
b∈Fm2

|{x ∈ Fn2 ; F (x) + L(x) = b}|2 ≥

(22n−2m + (2m − 1)2n−2m)|L|.
This leads to :

dH(F,A) ≤ 2n −
⌈
2
n
2−m
√
2n + 2m − 1

⌉
.

- Stronger improvement when m ≥ n− lnn :

Let a ∈ Fn2 and let a1, . . . , an be linearly independent in Fn2 .

16



Let A be the unique affine function such that A(a) = F (a) and

A(a+ ai) = F (a+ ai) for i = 1, . . . , n.

Then we have dH(F,A) ≤ 2n − (n + 1) since A and F coincide

at the n+ 1 distinct points a, a+ a1, . . . , a+ an.

We have then :

dH(F,A) ≤ 2n − n− 1.

We could prove that no function exists achieving this bound as an

equality.

Question : is it possible to further reduce the gap between the

lower bound dH(F,A) ≥ 2n−
√
3 · 2n − 2, valid for F APN, and the

upper bound dH(F,A) ≤ 2n − n− 1, valid for any (n, n)-function ?
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On the γ-functions associated to general APN
functions

[CCZ 1998]”C.C., P. Charpin, and V. Zinoviev. Codes, bent functions and per-

mutations suitable for DES-like cryptosystems. Designs, Codes and Cryptography,

1998” :

given F : Fn2 7→ Fn2 , the Boolean function :

γF (a, b) =

{
1 if a 6= 0 and {x ∈ Fn2 ;F (x) + F (x+ a) = b} 6= ∅
0 otherwise

is bent if and only if F is almost bent (i.e. F has nonlinearity

2n−1 − 2
n−1
2 ; n must then be odd).
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For general APN functions, the only known results are that :

- γF has weight 22n−1 − 2n−1 ; more precisely, b 7→ γF (a, b) is

balanced for a 6= 0n and null for a = 0n,

-
∑
b∈Fn2

b γF (a, b) =
∑
x∈Fn2

F (x), for every a 6= 0n,

- ∀a 6= 0n, b, a
′ 6= 0n, a 6= a′ :

(γF (a, b) = 1)⇒ (∃b′; γF (a′, b′) = γF (a+ a′, b+ b′) = 1),
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- For every u, v ∈ Fn2 :

WγF (u, v) =
∑
a,b∈Fn2

(−1)γF (a,b)+u·a+v·b =
{

2n if v = 0n,

2n −W 2
F (u, v) if v 6= 0n.

Linear structures of γF and bent components of F :

We shall say that (α, β) is an ε-valued linear structure of F if :

D(α,β)γF (a, b) = γF (a, b) + γF (a+ α, b+ β) ≡ ε.
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Characterization by the Walsh transform :

∀u, v ∈ Fn2 , (α · u+ β · v = ε+ 1)⇒WγF (u, v) = 0.

Function γF admits then :

- no 1-valued linear structure,

- no linear structure (α, β) such that α 6= 0n.

For β ∈ Fn2 , (0n, β) is a 0-valued linear structure of γF if and

only if v · F is bent for every v 6∈ {0n, β}⊥ (i.e. we have an affine

hyperplane of bent components of F ). So, n must then be even.

Open : for n even, determine if γF can have linear structures.
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Negative results : for every APN power (n, n)-function F , the γF
function has no (nonzero) linear structure. A super-class of almost

bent functions has the same inexistence property.

Other open questions :

- Maximum dimension of affine spaces of bent components ?

- Maximum dimension of affine spaces of bent Boolean functions ?

The maximum number of bent components is known : 2n − 2
n
2 :

[PMB 2018] ”A. Pott, E. Pasalic, A. Muratović-Ribić and S. Bajrić. On the

Maximum Number of Bent Components of Vectorial Functions. IEEE Transactions

on Information Theory, 2018.”
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More on bent components :

- For every v 6= 0n, v · F is bent if and only if, for every a ∈ Fn2 ,

the Boolean function b 7→ γF (a, b) + v · b is balanced.

- F has 2n − 2
n
2 bent components if and only if there exists an

n
2-dimensional vector subspace V of Fn2 such that any pair (0n, β)

with β ∈ V is a 0-valued linear structure of γF .

Hence, APN power functions cannot have 2n− 2
n
2 bent components.

This result is complementary with that of : [MZTZ 2019] “S. Mesnager,

F. Zhang, C. Tang and Y. Zhou. Further study on the maximum number of

bent components of vectorial functions. Designs, Codes and Cryptography, 2019”,

which shows the same for plateaued APN functions.
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A property on WF deduced from a relation on WγF :

The Titsworth relation applied to γF writes :

∀(u0, v0) 6= (0n, 0n),
∑

u,v∈Fn2

WγF (u, v)WγF (u+ u0, v + v0) = 0.

It implies that, for every (u0, v0) and every APN (n, n)-function F :∑
u,v∈Fn2

v 6=0n,v 6=v0

W 2
F (u, v)W

2
F (u+u0, v+v0) = 24n−23n+1+24n δ0(u0, v0),

where δ0 is the Dirac (Kronecker) symbol.

24



This relation looks like the known characterizations of differentially

uniform functions by the Walsh transform, but is in fact different.

Lower bound on the nonlinearity of a class of APN functions :

If {|WF (u, v)|;u, v ∈ Fn2 , v 6= 0n} takes its maximum for at least

two different inputs (u, v), then we have :

nl(F ) ≥ 2n−1 − 1

2
4
√

24n−1 − 23n.

Stronger than nl(F ) > 0.

All known APN functions (all are equivalent to power functions or

to quadratic functions except one) satisfy the condition.
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Open : Determine whether all APN functions satisfy the condition.

Relation between the nonlinearities of F and γF :

nl(γF ) = 2n+1nl(F )− 2(nl(F ))2 + 2n−1.
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Conclusion

- Differentially uniform functions have large image sets.

The larger the image set, the larger the upper bound on nl(F ).

- Differentially uniform functions lie at large Hamming distance

from affine functions, which preserves them from attacks based on

affine approximation.

The largest possible distance to affine functions is unknown for

diff. uniform functions and for general functions.
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- The existence of linear structures of γF is related to that of

affine spaces of bent Boolean functions.

The nonlinearities of F and γF are directly linked.

Little is known on the nonlinearity of APN (and more general diff.

uniform) functions.

In particular, we do not know if they can have low nonlinearity.

A lower bound gives a beginning of explanation why the nonlinea-

rity of all known APN functions is rather good.
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We leave many open problems :

– on the existence of linear structures of γF functions for n even,

– on the largest dimension of affine spaces of bent components,

– on the largest dimension of affine spaces of bent Boolean functions.

And open questions :

– Do all APN functions take their maximum absolute Walsh value

more than once ?

– What are the possible values of nl(F ) and nl(γF ) when F is APN ?
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