Trace of products in finite fields and additive double character sums

Cathy Swaenepoel

IMJ-PRG, Université de Paris.

Carleton Finite Fields eSeminar, April 28, 2021.

(1) "Distribution" of the trace of products in \mathbb{F}_{q} :

$$
\operatorname{Tr}(c d), \quad(c, d) \in C \times D
$$

(2) Additive double character sums over some structured sets and applications:

$$
\sum_{c \in C} \sum_{d \in D} \psi(c d)
$$

Joint work with Arne Winterhof.
(1) "Distribution" of the trace of products in \mathbb{F}_{q} :

$$
\operatorname{Tr}(c d), \quad(c, d) \in C \times D .
$$

(2) Additive double character sums over some structured sets and applications:

Joint work with Arne Winterhof.
$q=p^{r}, p$ prime, $r \geq 2$.
Trace function from \mathbb{F}_{q} to \mathbb{F}_{p} :

$$
\operatorname{Tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}, \quad \operatorname{Tr}(x)=\sum_{j=0}^{r-1} x^{p^{j}}
$$

Tr is a linear transformation of basic importance in finite fields.

- For any linear transformation $L: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$, there is a unique $b \in \mathbb{F}_{q}$ such that:

$$
\forall x \in \mathbb{F}_{q}, L(x)=\operatorname{Tr}(b x)
$$

- For any additive character ψ of \mathbb{F}_{q}, there is a unique $b \in \mathbb{F}_{q}$ such that:

$$
\forall x \in \mathbb{F}_{q}, \psi(x)=\exp \left(\frac{2 \pi i \operatorname{Tr}(b x)}{p}\right)
$$

Let $C \subseteq \mathbb{F}_{q}^{*}$ and $D \subseteq \mathbb{F}_{q}^{*}$. We study the products:

$$
c d, \quad(c, d) \in C \times D
$$

If C and D are large enough then these products are expected to be "well distributed".
Challenge: find a lower bound on $|C|$ and $|D|$ to ensure this behavior for a given randomness criterion.

Sárközy and co-authors have studied many problems in this spirit.

Given $A \subseteq \mathbb{F}_{p}$, let

$$
\mathcal{E}=\{(c, d) \in C \times D: \operatorname{Tr}(c d) \in A\} .
$$

Problem (Sárközy): Find a sharp lower bound on $|C|$ and $|D|$ to ensure that $\mathcal{E} \neq \emptyset$.

Interesting subsets A of \mathbb{F}_{p} include:

- $\{s\}$ for $s \in \mathbb{F}_{p}$,
- subgroups of \mathbb{F}_{p}^{*} (for instance squares),
- set of all generators of \mathbb{F}_{p}^{*}.

Recall that $\mathcal{E}=\{(c, d) \in C \times D: \operatorname{Tr}(c d) \in A\}$ and assume that $A \subseteq \mathbb{F}_{p}^{*}$.
Observe first that:

- for any $s \in \mathbb{F}_{p}^{*},\left|\left\{x \in \mathbb{F}_{q}^{*}: \operatorname{Tr}(x)=s\right\}\right|=p^{r-1}=q / p$,
- the proportion of $x \in \mathbb{F}_{q}^{*}$ such that $\operatorname{Tr}(x) \in A$ is

$$
\frac{1}{q-1} \cdot|A| \cdot q / p=\frac{|A|}{p} \frac{q}{q-1}
$$

If the products $c d$ were reasonably well distributed in \mathbb{F}_{q}^{*} then we would expect:

$$
|\mathcal{E}| \approx|C||D| \frac{|A|}{p} \frac{q}{q-1} .
$$

$$
\mathcal{E}=\{(c, d) \in C \times D: \operatorname{Tr}(c d)=s\}
$$

Proposition

If $s \in \mathbb{F}_{p}^{*}$ then

$$
\left||\mathcal{E}|-\frac{|C||D| q}{(q-1) p}\right| \leq\left(\frac{|C||D| q}{p}\right)^{1 / 2}
$$

Theorem 1 (S. 2018)

If $s \in \mathbb{F}_{p}^{*}$ and $|C||D| \geq p q$ then there exists $(c, d) \in C \times D$ such that $\operatorname{Tr}(c d)=s$.
Remark: This result is optimal up to a constant factor. There are explicit sets C and D such that $p q / 16<|C||D|<p q$ and $\mathcal{E}=\emptyset$. If $p \geq 3$ and s is a square, take for instance

$$
C=\left\{x \in \mathbb{F}_{q}^{*}: \operatorname{Tr}(x) \in\left(\mathbb{F}_{p}^{*}\right)^{2}\right\} \quad \text { and } \quad D=\mathbb{F}_{p}^{*} \backslash\left(\mathbb{F}_{p}^{*}\right)^{2} .
$$

$$
\mathcal{E}=\{(c, d) \in C \times D: \operatorname{Tr}(c d)=0\}
$$

Proposition (simplified form)

$$
\left||\mathcal{E}|-\frac{|C||D|}{q-1}\left(\frac{q}{p}-1\right)\right| \leq \frac{p-1}{p}(|C||D| q)^{1 / 2} .
$$

Theorem 2 (S. 2018)
If $|C||D| \geq p^{2} q$ then there exists $(c, d) \in C \times D$ such that $\operatorname{Tr}(c d)=0$.
Remark: This result is optimal up to a constant factor.
There are explicit sets C and D such that $p^{2} q / 128<|C||D|<p^{2} q$ and $\mathcal{E}=\emptyset$.
Remark: If $\lim _{q \rightarrow+\infty} \frac{|C||D|}{p^{2} q}=+\infty$, the traces $\operatorname{Tr}(c d)$ are well distributed in \mathbb{F}_{p}.

Let A be a nontrivial subgroup of \mathbb{F}_{p}^{*} and $m=|A|$.
Remark: By Theorem 1, if $|C||D| \geq p q$ then there exists $(c, d) \in C \times D$ such that $\operatorname{Tr}(c d) \in A$. This is optimal (up to constants).

Theorem 3 (S. 2018)

If C and D satisfy the two conditions:
(1) $|C||D| \geq 4 p q / m^{2}$
(2) $\Delta_{A}(C) \leq 1 / m$ and $\Delta_{A}(D) \leq 1 / m$
then there exists $(c, d) \in C \times D$ such that $\operatorname{Tr}(c d) \in A$.
The technical condition (2) is true with a probability close to 1 (see below).
Remark: This result is optimal up to a constant factor: there are sets C and D satisfying (2) such that $p q /\left(16 m^{2}\right)<|C||D|<p q / m^{2}$ and $\mathcal{E}=\emptyset$.

If $p \geq 3$ and A is the set of squares in \mathbb{F}_{p}^{*} (thus $m=|A|=\frac{p-1}{2}$), this implies:

Corollary (S.)

If C and D satisfy the two conditions:
(1) $|C||D| \geq \frac{16 p}{(p-1)^{2}} q$
(2) $\Delta_{A}(C) \leq 1 / m$ and $\Delta_{A}(D) \leq 1 / m$
then, there exists $(c, d) \in C \times D$ such that $\operatorname{Tr}(c d)$ is a square in \mathbb{F}_{p}^{*}.

If $|C|=|D|$, it suffices to suppose $|C| \geq \frac{4 \sqrt{p}}{p-1} \sqrt{q}$ to ensure that (1) is satisfied. Notice that this lower bound may be substantially below \sqrt{q}.

For any nonempty subset $C \subseteq \mathbb{F}_{q}^{*}$, let

$$
T_{A}(C)=\frac{1}{m} \sum_{t \in A \backslash\{1\}} \frac{|C \cap t C|}{|C|}
$$

and

$$
\Delta_{A}(C)=T_{A}(C)-\left(\frac{m-1}{m}\right) \frac{|C|-1}{q-2} .
$$

Recall condition (2): $\Delta_{A}(C) \leq 1 / m$ and $\Delta_{A}(D) \leq 1 / m$.
Condition (2) is true "on average":
Lemma (S.)
For any $1 \leq d \leq q-1$, the mean value of $\Delta_{A}(C)$ over all $C \subseteq \mathbb{F}_{q}^{*}$ with $|C|=d$ is 0 .

Recall condition (2): $\Delta_{A}(C) \leq 1 / m$ and $\Delta_{A}(D) \leq 1 / m$.

Lemma (S.)

For any $1 \leq d \leq q-1$, the variance of $\Delta_{A}(C)$ over all $C \subseteq \mathbb{F}_{q}^{*}$ with $|C|=d$ satisfies

$$
\frac{1}{\binom{q-1}{d}} \sum_{|C|=d}\left(\Delta_{A}(C)\right)^{2}=O\left(\frac{1}{m q}\right) .
$$

The probability that condition (2) is true is close to 1 : $\mathbb{P}\left(\Delta_{A}(C) \leq \frac{1}{m}\right)=1-O\left(\frac{m}{q}\right)$ with $\frac{m}{q} \rightarrow 0$ as $q \rightarrow+\infty$.

Examples of subsets C such that $\Delta_{A}(C) \leq 1 / m$:
all subsets of affine hyperplanes of the form $\left\{x \in \mathbb{F}_{q}: f(x)=s\right\}$ where f is an \mathbb{F}_{p}-linear form and $s \in \mathbb{F}_{p}^{*}$.

Quantity $|C \cap t C|$

The study of the quantity $|C \cap t C|$ is of independent interest.
Green and Konyagin (2009): if C is a subset of a group G of prime order with $|C|=\gamma|G|$ then there exists $x \in G$ such that

$$
\left||C \cap x C|-\gamma^{2}\right| G\left|\mid=O\left(|G|(\log \log |G| / \log |G|)^{1 / 3}\right)\right.
$$

Notice that a similar statement with $G=\mathbb{F}_{q}^{*}$ does not hold:
if C is the set of squares then $|C|=\gamma|G|$ with $\gamma=1 / 2$ and $C \cap x C=\emptyset$ or C.
Question: for $G=\mathbb{F}_{q}^{*}$ and C such that $|C|=\gamma|G|$, give natural conditions on C so that $|C \cap x C|$ is "close" to $\gamma^{2}|G|$ for at least one $x \in G$.

Recall $\mathcal{E}=\{(c, d) \in C \times D: \operatorname{Tr}(c d) \in A\}$. Assume $A \subseteq \mathbb{F}_{p}^{*}$.

$$
|\mathcal{E}|=\sum_{\substack{x \in \mathbb{F}_{q}^{*} \\ \operatorname{Tr}(x) \in A}} \sum_{(c, d) \in C \times D} \underbrace{\frac{1}{q-1} \sum_{\chi} \chi(c d) \overline{\chi(x)}}_{\mathbb{1}_{c d=x}}=\frac{1}{q-1} \sum_{\chi} \underbrace{\sum_{\substack{x \in \mathbb{F}_{q}^{*} \\ \operatorname{Tr}(x) \in A}} \overline{\chi(x)}}_{U_{A}(\chi)} \underbrace{\sum_{c \in C} \chi(c)}_{S_{C}(\chi)} \underbrace{\sum_{d \in D} \chi(d)}_{S_{D}(\chi)}
$$

Contribution of $\chi=\chi_{0}:|C||D| \frac{|A|}{p} \frac{q}{q-1}$.
For the sum over $\chi \neq \chi_{0}$:

- rewrite $U_{A}(\chi)$ as a product of two Gaussian sums and a character sum over A and deduce a sharp upper bound,
- apply Cauchy-Schwarz inequality,
- in the case where A is a subgroup, compute $\sum_{\substack{\chi \neq \chi_{0} \\ \chi \neq A=1}}\left|S_{C}(\chi)\right|^{2}$ (this makes appear $|C \cap t C|$).

Conclusion

- We provide (almost) optimal answers to Sárközy's question.
- For instance, we prove that if $p \geq 3$ and if C and D satisfy the two conditions:
(1) $|C||D| \geq \frac{16 p}{(p-1)^{2}} q$
(2) technical condition (true with probability close to 1) then there exists $(c, d) \in C \times D$ such that $\operatorname{Tr}(c d)$ is a square in \mathbb{F}_{p}^{*}.
- If $L: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$ is a linear transformation with $L \neq 0$ then the previous results can be reformulated with L in place of Tr (use $L(x)=\operatorname{Tr}(b x)$ for some $b \in \mathbb{F}_{q}^{*}$).

Remark: Mattheus (2019) uses an approach based on spectral graph theory with no reference to character theory to estimate $|\mathcal{E}|$. In particular, he extends some of the previous results to trace functions $\operatorname{Tr}: \mathbb{F}_{q^{h}} \rightarrow \mathbb{F}_{q}$.
(1) "Distribution" of the trace of products in \mathbb{F}_{q} :

$$
\operatorname{Tr}(c d), \quad(c, d) \in C \times D
$$

(2) Additive double character sums over some structured sets and applications:

$$
\sum_{c \in C} \sum_{d \in D} \psi(c d)
$$

Joint work with Arne Winterhof.

Additive double character sums

$q=p^{r}, p$ prime, $r \geq 1$.
We consider character sums of the form

$$
\sum_{c \in C} \sum_{d \in D} \psi(c d)
$$

where $C, D \subseteq \mathbb{F}_{q}$ and ψ is a non-trivial additive character of \mathbb{F}_{q}.

Many results on this type of character sums (with some variants) and many applications:
Bourgain, Fouvry, Garaev, Glibichuk, Gyarmati, Konyagin, Michel, Niederreiter, Roche-Newton, Sárközy, Shparlinski, Vinogradov, Winterhof,

Classical bound

For any non-trivial additive character ψ of \mathbb{F}_{q} and any subsets $C, D \subseteq \mathbb{F}_{q}$,

$$
\begin{equation*}
\left|\sum_{c \in C} \sum_{d \in D} \psi(c d)\right| \leq(|C||D| q)^{1 / 2} \tag{1}
\end{equation*}
$$

Proof: Cauchy-Schwarz inequality and orthogonality relations for characters.

- Non-trivial if $|C||D|>q$.
- Tight in general:
for instance, if q is a square, if $C=D=\mathbb{F}_{q^{1 / 2}}$ and ψ is any non-trivial additive character of \mathbb{F}_{q} which is trivial on the subfield $\mathbb{F}_{q^{1 / 2}}$ then (1) is an equality.

Better bounds with structured sets

With structured sets such as additive or multiplicative subgroups, we know better bounds.

- Winterhof (2001): If D is an additive subgroup of \mathbb{F}_{q} then

$$
\sum_{c \in \mathbb{F}_{q}}\left|\sum_{d \in D} \psi(c d)\right| \leq q .
$$

$\Rightarrow\left|\sum_{c \in C} \sum_{d \in D} \psi(c d)\right| \leq q$ for any $C \subseteq \mathbb{F}_{q}$. This is better than the classical bound.

- Bourgain, Glibichuk, Konyagin (2006): If $q=p$ then for any multiplicative subgroup D of \mathbb{F}_{p}^{*} with $|D| \gg p^{\varepsilon}$ and for any $c \in \mathbb{F}_{p}^{*}$,

$$
\left|\sum_{d \in D} \psi(c d)\right| \leq \frac{|D|}{p^{\gamma_{\varepsilon}}} \quad\left(\gamma_{\varepsilon}>0\right)
$$

\Rightarrow non-trivial bound on $\left|\sum_{c \in C} \sum_{d \in D} \psi(c d)\right|$ for arbitrary $C \subseteq \mathbb{F}_{p}^{*}$ and very small subgroups D of \mathbb{F}_{p}^{*}.

We will assume that there is a rational function $f(X) \in \mathbb{F}_{q}(X)$ satisfying a certain property of nonlinearity:

$$
\begin{equation*}
f(X) \notin\left\{a\left(g(X)^{p}-g(X)\right)+b X+c: g(X) \in \mathbb{F}_{q}(X), a, b, c \in \mathbb{F}_{q}\right\} \tag{2}
\end{equation*}
$$

such that

$$
f(D) \subseteq D
$$

Examples of $f(X) \in \mathbb{F}_{q}(X)$ satisfying (2) are $f(X)=X^{-1}$ and $f(X)=X^{2}$ for odd q.
Examples of sets D with the required structure are $D=S \cup S^{-1}$ for $S \subseteq \mathbb{F}_{q}^{*}$.

Theorem 1 (S. and Winterhof, 2021)

Let $D \subseteq \mathbb{F}_{q}$ and assume that there exists $f(X) \in \mathbb{F}_{q}(X)$ of degree k satisfying (2) such that $f(D) \subseteq D$. Then there exists $U \subseteq D$ with

$$
|U| \geq \frac{|D|}{k+1}
$$

such that for any $C \subseteq \mathbb{F}_{q}$ and any non-trivial additive character ψ of \mathbb{F}_{q},

$$
\begin{equation*}
\left|\sum_{c \in C} \sum_{u \in U} \psi(c u)\right| \ll_{k}\left(\frac{|C|^{3}|D|^{3} q}{M(|D|)}\right)^{1 / 4} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
M(|D|)=\min \left\{\frac{q^{1 / 2}}{|D|^{1 / 2}(\log |D|)^{11 / 4}}, \frac{|D|^{4 / 5}}{q^{2 / 5}(\log |D|)^{31 / 10}}\right\} \tag{4}
\end{equation*}
$$

There exists a constant $\lambda>0$ (depending only on k) such that (3) is non-trivial and improves the classical bound if
$\lambda \max \left\{\frac{q^{\frac{1}{2}}(\log q)^{\frac{11}{4}}}{|D|^{\frac{1}{2}}}, \frac{q^{\frac{7}{5}}(\log q)^{\frac{31}{10}}}{|D|^{\frac{9}{5}}}\right\}<|C|<\lambda^{-1} \min \left\{\frac{q^{\frac{3}{2}}}{|D|^{\frac{3}{2}}(\log q)^{\frac{11}{4}}}, \frac{q^{\frac{3}{5}}}{|D|^{\frac{1}{5}}(\log q)^{\frac{31}{10}}}\right\}$
(see next slide).

- If $|D| \asymp q^{\frac{9}{13}+\varepsilon}$ and $|C| \asymp q^{\frac{2}{13}}$ then (3) is non-trivial (while the classical bound is trivial).
- If $|D| \asymp q^{\frac{9}{13}}$ and $|C| \asymp q /|D|$ then (3) improves the classical bound by a factor $q^{-\frac{1}{26}}$ (up to logarithmic factors).

Strength of (3)
(3) is non-trivial and improves the classical bound if the point $(|D|,|C|)$ is in the surface bounded by the four colored curves:

Here $\mathcal{L}=\log q$ and the black curve corresponds to $|C||D|=q$.

Without this condition, we could take

$$
C=\left\{0,1,2, \ldots,\left\lfloor 0.1 p^{1 / 2}\right\rfloor\right\}, D=\left\{x \in \mathbb{F}_{q}: \operatorname{Tr}(x) \in C\right\}, f(X)=X, \psi(x)=\exp \left(\frac{2 \pi i \operatorname{Tr}(x)}{p}\right)
$$

Then for any $U \subseteq D$,

$$
\left|\sum_{c \in C} \sum_{u \in U} \psi(c u)\right| \geq|C||U| \cos (0.02 \pi) \geq 0.99|C||U|
$$

Moreover, there exist absolute constants $\lambda_{1}, \lambda_{2}>0$ such that if

$$
\lambda_{1}(\log q)^{11}<p<\lambda_{2} q(\log q)^{-31 / 4}
$$

then the right-hand side of (3) is $<0.99|C||D| / 2$.
Therefore, (3) holds for no U with $|U| \geq|D| / 2$.

Additive energy of $S \subseteq \mathbb{F}_{q}$:

$$
E(S)=\left|\left\{\left(s_{1}, s_{2}, s_{3}, s_{4}\right) \in S^{4}: s_{1}+s_{2}=s_{3}+s_{4}\right\}\right| .
$$

The proof is a combination of:

1. a bound on additive double character sums in terms of additive energy,
2. an existence result of a large subset of small additive energy.

Bound on character sums in terms of additive energy

Lemma 1

For any $C, U \subseteq \mathbb{F}_{q}$ and any non-trivial additive character ψ of \mathbb{F}_{q},

$$
\left|\sum_{c \in C} \sum_{u \in U} \psi(c u)\right| \leq\left(|C|^{3} E(U) q\right)^{1 / 4}
$$

Non-trivial and better than the classical bound if $\frac{q E(U)}{\mid U\left[^{4}\right.}<|C|<\frac{q|U|^{2}}{E(U)}$.
Proof:

$$
\begin{aligned}
\left|\sum_{c \in C} \sum_{u \in U} \psi(c u)\right|^{4} \leq & \left(\sum_{c \in C}\left|\sum_{u \in U} \psi(c u)\right|\right)^{4} \leq|C|^{3} \sum_{c \in \mathbb{F}_{q}}\left|\sum_{u \in U} \psi(c u)\right|^{4} \quad \text { (by Hölder's inequality) } \\
& =|C|^{3} \sum_{u_{1}, u_{2}, u_{3}, u_{4} \in U} \sum_{c \in \mathbb{F}_{q}} \psi\left(c\left(u_{1}+u_{2}-u_{3}-u_{4}\right)\right)=|C|^{3} E(U) q .
\end{aligned}
$$

Existence of a large subset of small additive energy

Goal: If D is as in Theorem 1 then there is a large $U \subseteq D$ of small additive energy. To prove this, we use:

Theorem (Roche-Newton, Shparlinski, Winterhof, 2019)

For any $D \subseteq \mathbb{F}_{q}$ and any rational function $f(X) \in \mathbb{F}_{q}(X)$ of degree k satisfying (2), there exist disjoint sets $S, T \subseteq D$ such that $D=S \cup T$ and

$$
\max \{E(S), E(f(T))\}<_{k} \frac{|D|^{3}}{M(|D|)}
$$

where $M(|D|)$ is defined by (4).

- If $|S| \geq \frac{|D|}{k+1}$ then we take $U=S$. Otherwise, $|T| \geq \frac{k|D|}{k+1}$ and we take $U=f(T)$.
- In both cases, $|U| \geq \frac{|D|}{k+1}$ and $E(U) \ll_{k} \frac{|D|^{3}}{M(|D|)}$.
- Moreover, if $f(D) \subseteq D$ then $U \subseteq D$.

To sum up, we have proved:

Lemma 2

Let $D \subseteq \mathbb{F}_{q}$ and assume that there exists $f(X) \in \mathbb{F}_{q}(X)$ of degree k satisfying (2) such that $f(D) \subseteq D$. Then there exists $U \subseteq D$ such that

$$
|U| \geq \frac{|D|}{k+1}
$$

and

$$
\begin{equation*}
E(U)<_{k} \frac{|D|^{3}}{M(|D|)} \tag{5}
\end{equation*}
$$

Remark: There are sets D with the required structure such that $E(D) \gg|D|^{3}$ and $M(|D|) \geq \log q$.

Theorem 1 follows from Lemmas 1 and 2.

- Mohammadi and Stevens recently improved the decomposition theorem of Roche-Newton, Shparlinski and Winterhof (2019) by obtaining a larger $M(|D|)$.
- As they noted, this automatically leads to an improvement of Theorem 1.

We apply Theorem 1 to the following problem:
for $C, D \subseteq \mathbb{F}_{q}$, find conditions on $|C|$ and $|D|$ such that $\operatorname{Tr}(C D)=\mathbb{F}_{p}$.

First application of Theorem 1
For arbitrary sets (according to the first part of the talk):

Theorem (S. 2018)

Let $C, D \subseteq \mathbb{F}_{q}^{*}$. If $|C||D| \geq p^{2} q$ then $\operatorname{Tr}(C D)=\mathbb{F}_{p}$.
In general, the condition $|C||D| \geq p^{2} q$ is optimal up to an absolute constant factor.
For (mildly) structured sets:
Theorem 2 (S. and Winterhof, 2021)
Let $C, D \subseteq \mathbb{F}_{q}$ and assume that there exists $f(X) \in \mathbb{F}_{q}(X)$ of degree k satisfying (2) such that $f(D) \subseteq D$. There exists a constant $\lambda>0$ depending only on k such that if

$$
\begin{equation*}
|C||D| M(|D|)>\lambda p^{4} q \tag{6}
\end{equation*}
$$

then $\operatorname{Tr}(C D)=\mathbb{F}_{p}$.
The condition (2) on $f(X)$ cannot be removed from Theorem 2.

If

$$
\lambda^{5 / 4} p^{5 / 2} q^{1 / 2}(\log q)^{31 / 8}<|D|<\frac{q}{\lambda^{2} p^{4}(\log q)^{11 / 2}}
$$

(with λ as in Theorem 2) then the lower bound (6) defines a larger range of $|C|$ with $\operatorname{Tr}(C D)=\mathbb{F}_{p}$ than the lower bound for arbitrary sets.

This range for $|D|$ is non-trivial if $q=p^{r}$ with $r \geq 14$ and q is sufficiently large (provided that λ is bounded by an absolute constant)

It follows from Theorem 2 that $\operatorname{Tr}(C D)=\mathbb{F}_{p}$ for any D with $|D| \asymp q^{9 / 13+\varepsilon}$ such that D is closed under inversion and for any C with $|C| \gg p^{4} q^{2 / 13}$. Notice that we can choose $|C|$ such that $|C||D| \asymp p^{4} q^{11 / 13+\varepsilon}$ which may be much smaller than $p^{2} q$.

Proof of Theorem 2

Let U be as in Theorem 1. For $s \in \mathbb{F}_{p}$, let $N_{s}=|\{(c, u) \in C \times U: \operatorname{Tr}(c u)=s\}|$. For any $s \in \mathbb{F}_{p}$,

$$
N_{s}=\frac{1}{p} \sum_{j=0}^{p-1} \mathrm{e}_{p}(-j s) \sum_{(c, u) \in C \times U} \mathrm{e}_{p}(j \operatorname{Tr}(c u)) \quad \text { where } \mathrm{e}_{p}(x)=\exp (2 i \pi x / p)
$$

hence

$$
\left|N_{s}-\frac{|C||U|}{p}\right| \leq \max _{1 \leq j \leq p-1}\left|\sum_{(c, u) \in C \times U} \mathrm{e}_{p}(j \operatorname{Tr}(c u))\right| \leq \lambda_{k}\left(\frac{|C|^{3}|D|^{3} q}{M(|D|)}\right)^{1 / 4} .
$$

If $\frac{|C||D|}{(k+1) p}>\lambda_{k}\left(\frac{\left.\left|C C^{3}\right| D\right|^{3} q}{M(|D|)}\right)^{\frac{1}{4}}$ then, since $|U| \geq \frac{|D|}{k+1}$, we have $N_{s} \neq 0$ for any $s \in \mathbb{F}_{p}$, thus

$$
\mathbb{F}_{p}=\operatorname{Tr}(C U) \subseteq \operatorname{Tr}(C D) .
$$

We apply Theorem 1 to the following problem:
for $A, B, C, D \subseteq \mathbb{F}_{q}$, find conditions on $|A|,|B|,|C|,|D|$ such that there is a solution $(a, b, c, d) \in A \times B \times C \times D$ of the sum-product equation

$$
a+b=c d
$$

Let $A, B, C, D \subseteq \mathbb{F}_{q}$ and denote $N=\{(a, b, c, d) \in A \times B \times C \times D: a+b=c d\}$. For arbitrary sets:

Theorem (Gyarmati and Sárközy, 2008)

If $|A||B||C||D|>q^{3}$ then $N>0$.
In general, this condition is optimal up to an absolute constant factor.
For (mildly) structured sets:

Theorem 3 (S. and Winterhof, 2021)

Assume that there exists $f(X) \in \mathbb{F}_{q}(X)$ of degree k satisfying (2) such that $f(D) \subseteq D$. Then there exists a constant $\lambda>0$ depending only on k such that if

$$
|A|^{2}|B|^{2}|C||D| M(|D|)>\lambda q^{5}
$$

[^0]- We give (almost optimal) conditions on C and D to ensure that $\operatorname{Tr}(C D) \cap A \neq \emptyset$ for some interesting subsets A of \mathbb{F}_{p}.
- We prove that if D has some desirable structure then there is a large subset U of D for which the classical upper bound on $\left|\sum_{c \in C} \sum_{u \in U} \psi(c u)\right|$ can be improved.
- We apply this new bound to trace products and sum-product equations and improve previous results (provided that one of the involved sets has some structure).
- We give (almost optimal) conditions on C and D to ensure that $\operatorname{Tr}(C D) \cap A \neq \emptyset$ for some interesting subsets A of \mathbb{F}_{p}.
- We prove that if D has some desirable structure then there is a large subset U of D for which the classical upper bound on $\left|\sum_{c \in C} \sum_{u \in U} \psi(c u)\right|$ can be improved.
- We apply this new bound to trace products and sum-product equations and improve previous results (provided that one of the involved sets has some structure).

Thank you for your attention!

[^0]: then $N>0$.

