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Plan

1 “Distribution“ of the trace of products in Fq:

Tr(cd), (c, d) ∈ C ×D.

2 Additive double character sums over some structured sets and applications:∑
c∈C

∑
d∈D

ψ(cd).

Joint work with Arne Winterhof.
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Trace
q = pr, p prime, r ≥ 2.

Trace function from Fq to Fp:

Tr : Fq → Fp, Tr(x) =
r−1∑
j=0

xp
j
.

Tr is a linear transformation of basic importance in finite fields.

For any linear transformation L : Fq → Fp, there is a unique b ∈ Fq such that:

∀x ∈ Fq, L(x) = Tr(bx).

For any additive character ψ of Fq, there is a unique b ∈ Fq such that:

∀x ∈ Fq, ψ(x) = exp
(2πiTr(bx)

p

)
.
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Products in Fq

Let C ⊆ F∗q and D ⊆ F∗q . We study the products:

cd, (c, d) ∈ C ×D.

If C and D are large enough then these products are expected to be ”well distributed”.

Challenge: find a lower bound on |C| and |D| to ensure this behavior for a given
randomness criterion.

Sárközy and co-authors have studied many problems in this spirit.
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Trace of products in Fq

Given A ⊆ Fp, let
E = {(c, d) ∈ C ×D : Tr(cd) ∈ A}.

Problem (Sárközy): Find a sharp lower bound on |C| and |D| to ensure that E 6= ∅.

Interesting subsets A of Fp include:
{s} for s ∈ Fp,
subgroups of F∗p (for instance squares),
set of all generators of F∗p.
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Expected value for |E|

Recall that E = {(c, d) ∈ C ×D : Tr(cd) ∈ A} and assume that A ⊆ F∗p.

Observe first that:
for any s ∈ F∗p, |{x ∈ F∗q : Tr(x) = s}| = pr−1 = q/p,
the proportion of x ∈ F∗q such that Tr(x) ∈ A is

1
q − 1 · |A| · q/p = |A|

p

q

q − 1 .

If the products cd were reasonably well distributed in F∗q then we would expect:

|E| ≈ |C||D| |A|
p

q

q − 1 .
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Products cd with Tr(cd) = s 6= 0

E = {(c, d) ∈ C ×D : Tr(cd) = s}

Proposition
If s ∈ F∗p then ∣∣∣∣|E| − |C||D|q(q − 1)p

∣∣∣∣ ≤ ( |C||D|qp

)1/2
.

Theorem 1 (S. 2018)

If s ∈ F∗p and |C||D| ≥ pq then there exists (c, d) ∈ C ×D such that Tr(cd) = s.

Remark: This result is optimal up to a constant factor.
There are explicit sets C and D such that pq/16 < |C||D| < pq and E = ∅.
If p ≥ 3 and s is a square, take for instance

C =
{
x ∈ F∗q : Tr(x) ∈ (F∗p)2

}
and D = F∗p \ (F∗p)2.
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Products cd with Tr(cd) = 0

E = {(c, d) ∈ C ×D : Tr(cd) = 0}

Proposition (simplified form)∣∣∣∣|E| − |C||D|q − 1

(
q

p
− 1

)∣∣∣∣ ≤ p− 1
p

(|C||D|q)1/2 .

Theorem 2 (S. 2018)
If |C||D| ≥ p2q then there exists (c, d) ∈ C ×D such that Tr(cd) = 0.

Remark: This result is optimal up to a constant factor.
There are explicit sets C and D such that p2q/128 < |C||D| < p2q and E = ∅.

Remark: If lim
q→+∞

|C||D|
p2q

= +∞, the traces Tr(cd) are well distributed in Fp.
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Products cd with Tr(cd) ∈ A (A subgroup)

Let A be a nontrivial subgroup of F∗p and m = |A|.

Remark: By Theorem 1, if |C||D| ≥ pq then there exists (c, d) ∈ C ×D such that
Tr(cd) ∈ A. This is optimal (up to constants).

Theorem 3 (S. 2018)

If C and D satisfy the two conditions:
(1) |C||D| ≥ 4pq/m2

(2) ∆A(C) ≤ 1/m and ∆A(D) ≤ 1/m
then there exists (c, d) ∈ C ×D such that Tr(cd) ∈ A.

The technical condition (2) is true with a probability close to 1 (see below).

Remark: This result is optimal up to a constant factor :
there are sets C and D satisfying (2) such that pq/(16m2) < |C||D| < pq/m2 and E = ∅.
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Products cd with Tr(cd) ∈ A (A set of squares in F∗p)

If p ≥ 3 and A is the set of squares in F∗p (thus m = |A| = p−1
2 ), this implies:

Corollary (S.)
If C and D satisfy the two conditions:

(1) |C||D| ≥ 16p
(p− 1)2 q

(2) ∆A(C) ≤ 1/m and ∆A(D) ≤ 1/m
then, there exists (c, d) ∈ C ×D such that Tr(cd) is a square in F∗p.

If |C| = |D|, it suffices to suppose |C| ≥
4√p
p− 1

√
q to ensure that (1) is satisfied.

Notice that this lower bound may be substantially below √q.

Cathy Swaenepoel Trace of products in Fq and additive double character sums 10 / 36



Study of the condition (2)

For any nonempty subset C ⊆ F∗q , let

TA(C) = 1
m

∑
t∈A\{1}

|C ∩ tC|
|C|

and
∆A(C) = TA(C)−

(
m− 1
m

) |C| − 1
q − 2 .

Recall condition (2): ∆A(C) ≤ 1/m and ∆A(D) ≤ 1/m.

Condition (2) is true “on average”:

Lemma (S.)
For any 1 ≤ d ≤ q − 1, the mean value of ∆A(C) over all C ⊆ F∗q with |C| = d is 0.
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Study of the condition (2)

Recall condition (2): ∆A(C) ≤ 1/m and ∆A(D) ≤ 1/m.

Lemma (S.)
For any 1 ≤ d ≤ q − 1, the variance of ∆A(C) over all C ⊆ F∗q with |C| = d satisfies

1(q−1
d

) ∑
|C|=d

(∆A(C))2 = O

( 1
mq

)
.

The probability that condition (2) is true is close to 1:
P
(

∆A(C) ≤ 1
m

)
= 1−O

(
m

q

)
with m

q
→ 0 as q → +∞.

Examples of subsets C such that ∆A(C) ≤ 1/m:
all subsets of affine hyperplanes of the form {x ∈ Fq : f(x) = s} where f is an
Fp-linear form and s ∈ F∗p.
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Quantity |C ∩ tC|

The study of the quantity |C ∩ tC| is of independent interest.

Green and Konyagin (2009): if C is a subset of a group G of prime order with
|C| = γ|G| then there exists x ∈ G such that∣∣∣|C ∩ xC| − γ2|G|

∣∣∣ = O(|G|(log log |G|/ log |G|)1/3).

Notice that a similar statement with G = F∗q does not hold:
if C is the set of squares then |C| = γ|G| with γ = 1/2 and C ∩ xC = ∅ or C.

Question: for G = F∗q and C such that |C| = γ|G|,
give natural conditions on C so that |C ∩ xC| is “close” to γ2|G| for at least one x ∈ G.
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Main arguments to estimate |E|
Recall E = {(c, d) ∈ C ×D : Tr(cd) ∈ A}. Assume A ⊆ F∗p.

|E| =
∑
x∈F∗

q

Tr(x)∈A

∑
(c,d)∈C×D

1
q − 1

∑
χ

χ(cd)χ(x)︸ ︷︷ ︸
1cd=x

= 1
q − 1

∑
χ

∑
x∈F∗

q

Tr(x)∈A

χ(x)

︸ ︷︷ ︸
UA(χ)

∑
c∈C

χ(c)︸ ︷︷ ︸
SC(χ)

∑
d∈D

χ(d)︸ ︷︷ ︸
SD(χ)

Contribution of χ = χ0: |C||D| |A|p
q
q−1 .

For the sum over χ 6= χ0:
rewrite UA(χ) as a product of two Gaussian sums and a character sum over A
and deduce a sharp upper bound,
apply Cauchy–Schwarz inequality,
in the case where A is a subgroup, compute

∑
χ 6=χ0
χ A=1

|SC(χ)|2

(this makes appear |C ∩ tC|).
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Conclusion

We provide (almost) optimal answers to Sárközy’s question.

For instance, we prove that if p ≥ 3 and if C and D satisfy the two conditions:
(1) |C||D| ≥ 16p

(p− 1)2 q

(2) technical condition (true with probability close to 1)
then there exists (c, d) ∈ C ×D such that Tr(cd) is a square in F∗p.

If L : Fq → Fp is a linear transformation with L 6= 0 then the previous results can
be reformulated with L in place of Tr (use L(x) = Tr(bx) for some b ∈ F∗q).

Remark: Mattheus (2019) uses an approach based on spectral graph theory with no
reference to character theory to estimate |E|. In particular, he extends some of the
previous results to trace functions Tr : Fqh → Fq.
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Additive double character sums

q = pr, p prime, r ≥ 1.

We consider character sums of the form∑
c∈C

∑
d∈D

ψ(cd)

where C,D ⊆ Fq and ψ is a non-trivial additive character of Fq.

Many results on this type of character sums (with some variants) and many applications:
Bourgain, Fouvry, Garaev, Glibichuk, Gyarmati, Konyagin, Michel, Niederreiter,
Roche-Newton, Sárközy, Shparlinski, Vinogradov, Winterhof, ... .
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Classical bound

Classical bound
For any non-trivial additive character ψ of Fq and any subsets C,D ⊆ Fq,

(1)

∣∣∣∣∣∣
∑
c∈C

∑
d∈D

ψ(cd)

∣∣∣∣∣∣ ≤ (|C||D|q)1/2 .

Proof: Cauchy–Schwarz inequality and orthogonality relations for characters.

Non-trivial if |C||D| > q.
Tight in general:
for instance, if q is a square, if C = D = Fq1/2 and ψ is any non-trivial additive
character of Fq which is trivial on the subfield Fq1/2 then (1) is an equality.
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Better bounds with structured sets
With structured sets such as additive or multiplicative subgroups, we know better bounds.

Winterhof (2001): If D is an additive subgroup of Fq then

∑
c∈Fq

∣∣∣∣∣∣
∑
d∈D

ψ(cd)

∣∣∣∣∣∣ ≤ q.
⇒ |

∑
c∈C

∑
d∈D ψ(cd)| ≤ q for any C ⊆ Fq. This is better than the classical bound.

Bourgain, Glibichuk, Konyagin (2006): If q = p then for any multiplicative subgroup D
of F∗p with |D| � pε and for any c ∈ F∗p,∣∣∣∣∣∣

∑
d∈D

ψ(cd)

∣∣∣∣∣∣ ≤ |D|pγε
(γε > 0).

⇒ non-trivial bound on |
∑
c∈C

∑
d∈D ψ(cd)| for arbitrary C ⊆ F∗p and very small

subgroups D of F∗p.
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Required structure for D

We will assume that there is a rational function f(X) ∈ Fq(X) satisfying a certain
property of nonlinearity:

(2) f(X) /∈ {a(g(X)p − g(X)) + bX + c : g(X) ∈ Fq(X), a, b, c ∈ Fq}

such that
f(D) ⊆ D.

Examples of f(X) ∈ Fq(X) satisfying (2) are f(X) = X−1 and f(X) = X2 for odd q.

Examples of sets D with the required structure are D = S ∪ S−1 for S ⊆ F∗q .
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Result
Theorem 1 (S. and Winterhof, 2021)

Let D ⊆ Fq and assume that there exists f(X) ∈ Fq(X) of degree k satisfying (2)
such that f(D) ⊆ D. Then there exists U ⊆ D with

|U | ≥ |D|
k + 1

such that for any C ⊆ Fq and any non-trivial additive character ψ of Fq,

(3)
∣∣∣∣∣∑
c∈C

∑
u∈U

ψ(cu)
∣∣∣∣∣�k

(
|C|3|D|3q
M(|D|)

)1/4

where

(4) M(|D|) = min
{

q1/2

|D|1/2(log |D|)11/4 ,
|D|4/5

q2/5(log |D|)31/10

}
.
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Strength of (3)

There exists a constant λ > 0 (depending only on k) such that (3) is non-trivial and
improves the classical bound if

λmax
{
q

1
2 (log q)

11
4

|D|
1
2

,
q

7
5 (log q)

31
10

|D|
9
5

}
< |C| < λ−1 min

{
q

3
2

|D|
3
2 (log q)

11
4
,

q
3
5

|D|
1
5 (log q)

31
10

}

(see next slide).

If |D| � q 9
13 +ε and |C| � q 2

13 then (3) is non-trivial
(while the classical bound is trivial).

If |D| � q 9
13 and |C| � q/|D| then (3) improves the classical bound by a factor q− 1

26

(up to logarithmic factors).
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Strength of (3)

(3) is non-trivial and improves the classical bound if the point (|D|, |C|) is in the
surface bounded by the four colored curves:

Here L = log q and the black curve corresponds to |C||D| = q.
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Condition (2) of f(X) cannot be removed from Theorem 1.

Without this condition, we could take

C =
{

0, 1, 2, . . . , b0.1p1/2c
}
, D = {x ∈ Fq : Tr(x) ∈ C}, f(X) = X, ψ(x) = exp

(
2πiTr(x)

p

)
.

Then for any U ⊆ D,∣∣∣∣∣∑
c∈C

∑
u∈U

ψ(cu)
∣∣∣∣∣ ≥ |C||U | cos(0.02π) ≥ 0.99|C||U |.

Moreover, there exist absolute constants λ1, λ2 > 0 such that if

λ1(log q)11 < p < λ2q(log q)−31/4

then the right-hand side of (3) is < 0.99|C||D|/2.

Therefore, (3) holds for no U with |U | ≥ |D|/2.
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Proof of Theorem 1

Additive energy of S ⊆ Fq:

E(S) = |{(s1, s2, s3, s4) ∈ S4 : s1 + s2 = s3 + s4}|.

The proof is a combination of:
1. a bound on additive double character sums in terms of additive energy,
2. an existence result of a large subset of small additive energy.
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Bound on character sums in terms of additive energy

Lemma 1

For any C,U ⊆ Fq and any non-trivial additive character ψ of Fq,∣∣∣∣∣∑
c∈C

∑
u∈U

ψ(cu)
∣∣∣∣∣ ≤ (|C|3E(U)q

)1/4
.

Non-trivial and better than the classical bound if qE(U)
|U [4 < |C| < q|U |2

E(U) .

Proof:∣∣∣∣∣∑
c∈C

∑
u∈U

ψ(cu)
∣∣∣∣∣
4

≤
(∑
c∈C

∣∣∣∣∣∑
u∈U

ψ(cu)
∣∣∣∣∣
)4

≤ |C|3
∑
c∈Fq

∣∣∣∣∣∑
u∈U

ψ(cu)
∣∣∣∣∣
4

(by Hölder’s inequality)

= |C|3
∑

u1,u2,u3,u4∈U

∑
c∈Fq

ψ(c(u1 + u2 − u3 − u4)) = |C|3E(U)q.
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Existence of a large subset of small additive energy
Goal: If D is as in Theorem 1 then there is a large U ⊆ D of small additive energy.
To prove this, we use:

Theorem (Roche-Newton, Shparlinski, Winterhof, 2019)
For any D ⊆ Fq and any rational function f(X) ∈ Fq(X) of degree k satisfying (2),
there exist disjoint sets S, T ⊆ D such that D = S ∪ T and

max{E(S), E(f(T ))} �k
|D|3

M(|D|)

where M(|D|) is defined by (4).

If |S| ≥ |D|
k+1 then we take U = S. Otherwise, |T | ≥ k|D|

k+1 and we take U = f(T ).

In both cases, |U | ≥ |D|
k+1 and E(U)�k

|D|3
M(|D|) .

Moreover, if f(D) ⊆ D then U ⊆ D.
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Existence of a large subset of small additive energy
To sum up, we have proved:
Lemma 2

Let D ⊆ Fq and assume that there exists f(X) ∈ Fq(X) of degree k satisfying (2)
such that f(D) ⊆ D. Then there exists U ⊆ D such that

|U | ≥ |D|
k + 1

and

(5) E(U)�k
|D|3

M(|D|) .

Remark: There are sets D with the required structure such that E(D)� |D|3 and
M(|D|) ≥ log q.

Theorem 1 follows from Lemmas 1 and 2.
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Remarks

Mohammadi and Stevens recently improved the decomposition theorem of
Roche-Newton, Shparlinski and Winterhof (2019) by obtaining a larger M(|D|).
As they noted, this automatically leads to an improvement of Theorem 1.
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First application of Theorem 1

We apply Theorem 1 to the following problem:

for C,D ⊆ Fq, find conditions on |C| and |D| such that Tr(CD) = Fp.
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First application of Theorem 1
For arbitrary sets (according to the first part of the talk):

Theorem (S. 2018)
Let C,D ⊆ F∗q . If |C||D| ≥ p2q then Tr(CD) = Fp.

In general, the condition |C||D| ≥ p2q is optimal up to an absolute constant factor.
For (mildly) structured sets:

Theorem 2 (S. and Winterhof, 2021)
Let C,D ⊆ Fq and assume that there exists f(X) ∈ Fq(X) of degree k satisfying (2)
such that f(D) ⊆ D. There exists a constant λ > 0 depending only on k such that if

(6) |C||D|M(|D|) > λp4q

then Tr(CD) = Fp.

The condition (2) on f(X) cannot be removed from Theorem 2.
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Lower bound (6)

If
λ5/4p5/2q1/2(log q)31/8 < |D| < q

λ2p4(log q)11/2

(with λ as in Theorem 2) then the lower bound (6) defines a larger range of |C| with
Tr(CD) = Fp than the lower bound for arbitrary sets.

This range for |D| is non-trivial if q = pr with r ≥ 14 and q is sufficiently large
(provided that λ is bounded by an absolute constant)

It follows from Theorem 2 that Tr(CD) = Fp for any D with |D| � q9/13+ε such that
D is closed under inversion and for any C with |C| � p4q2/13.
Notice that we can choose |C| such that |C||D| � p4q11/13+ε which may be much
smaller than p2q.
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Proof of Theorem 2

Let U be as in Theorem 1. For s ∈ Fp, let Ns = |{(c, u) ∈ C × U : Tr(cu) = s}|.
For any s ∈ Fp,

Ns = 1
p

p−1∑
j=0

ep(−js)
∑

(c,u)∈C×U
ep(j Tr(cu)) where ep(x) = exp(2iπx/p)

hence ∣∣∣∣Ns −
|C||U |
p

∣∣∣∣ ≤ max
1≤j≤p−1

∣∣∣∣∣∣
∑

(c,u)∈C×U
ep(j Tr(cu))

∣∣∣∣∣∣ ≤ λk
(
|C|3|D|3q
M(|D|)

)1/4

.

If |C||D|(k+1)p > λk
(
|C|3|D|3q
M(|D|)

) 1
4 then, since |U | ≥ |D|

k+1 , we have Ns 6= 0 for any s ∈ Fp, thus

Fp = Tr(CU) ⊆ Tr(CD).
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Second application of Theorem 1

We apply Theorem 1 to the following problem:

for A,B,C,D ⊆ Fq, find conditions on |A|, |B|, |C|, |D| such that there is a solution
(a, b, c, d) ∈ A×B × C ×D of the sum-product equation

a+ b = cd.
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Second application of Theorem 1
Let A,B,C,D ⊆ Fq and denote N = {(a, b, c, d) ∈ A×B × C ×D : a+ b = cd}.
For arbitrary sets:

Theorem (Gyarmati and Sárközy, 2008)
If |A||B||C||D| > q3 then N > 0.

In general, this condition is optimal up to an absolute constant factor.
For (mildly) structured sets:

Theorem 3 (S. and Winterhof, 2021)

Assume that there exists f(X) ∈ Fq(X) of degree k satisfying (2) such that
f(D) ⊆ D. Then there exists a constant λ > 0 depending only on k such that if

|A|2|B|2|C||D|M(|D|) > λq5

then N > 0.
Cathy Swaenepoel Trace of products in Fq and additive double character sums 35 / 36



Conclusion

We give (almost optimal) conditions on C and D to ensure that Tr(CD) ∩A 6= ∅
for some interesting subsets A of Fp.

We prove that if D has some desirable structure then there is a large subset U of D
for which the classical upper bound on |

∑
c∈C

∑
u∈U ψ(cu)| can be improved.

We apply this new bound to trace products and sum-product equations and improve
previous results (provided that one of the involved sets has some structure).

Thank you for your attention!
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