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Distributed Service Model

There are n nodes providing service to multiple concurrent users,
e.g., cloud edge nodes providing streaming, download, computing.

We distinguish between two functional components at each node:

one for data storage and the other for service request processing.
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Data Storage Model

Simple Redundant Storage
> k equal size data objects are stored across n nodes (k < n).
» Data objects are represented as strings of bits.

» All servers have a storage capacity of one data object.

» Each server stores an object or an XOR of two or more objects.

v

— A data object can be recovered from multiple sets of coded objects.
Example: Data objects a, b, and ¢ stored across n = 7 nodes:
a b a+b c a+c b+c a+b+c

Ral L RaZ - L RaB - L Ra4 -
= a can be recovered from any of the sets Rq1, Ra2, Ra3, Ras.
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Data Service and Request Models

Different practical service models are mathematically equivalent.

We consider the bandwidth and the queuing model:

stores one data object stores one data object
K 4 3 4

Users queue for download.

— —

w Server’s bandwidth W can
accomodate up to p users.

Requests for objects 1, i € {1, ..., k}:
» In the queuing model, requests for object 1 arrive at rate A;.

» In the bandwidth model, the number of requests for object 1 is Ay

Download is done at rate p.
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Distributed Service Model — An Example

Aq is the request rate (demand) for object a

Aqj s the portion of A, assigned to the recovery set Ry, j € {1,2,3,4}.

Ral hRa2j hRa3j hRa4j
a_ b atb e atc b+c atbtc

7\<12 )\u3 }\a4

-
RN

3 4 5 6 7

_4 L » < 4

{Aa1, A2, Aa3, Aas} is a request allocation for Ag.

Which request vectors (Ag, Ap, Ac) can be serviced by the system? J

5/35



Service Rate Region

Set of vectors (Aq, ..., A ) that can be served by the system

A; is the request rate (demand) for object i, i=1,... k.

Aij is the portion of A; assigned to the recovery set Ri; ,j=1,..., 1.

The request vector (A1, ...,Ax) can be serviced by the system

iff there exist Ay; satisfying the following constraints:

1. No server is assigned requests in excess of its service rate:

k
Z Z Ay < for 1<K

i=1 1<ty
CERY;

2. All objects’ requests are served: 3 ;i) Ai; =A; for 1<i<k

Ay :1<i<k 1<j<ti}asa request allocation for (Ay, ..., Ax).

If we require that Ay; be either 0 or p, we speak of integral service rates.
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Service Rates for Storage Scheme [a D]

How can requests A, be served when A, = 07

Ao =T Ao | |
Aao Aa1 Aa1

3 3 3

a a+b b

= Aq < 2uis achevable.

Converse:

a

) )

<> —a

o

M)
)

= Aq+Ap <2p

—[a b a+b]

Service rate region

Aa
2u

2u
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Three Storage Schemes and Their Service Rates

k = 3 data objects stored across n = 4 nodes

a) Ac abcee b) Ac abeb+e

Many (kinds of) questions are of interest.

c) Ac abca+b+c

Ab
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“Covering”’ a Request Region
Requests: Aq ~NT(4,4) and Ap ~NT(8,8) and vice versa.
Two systems with equal total service bandwidth, storing k = 2 objects.

)\a
abatba—b
16
15
System 1: n =3 with u =8 agb
with codes 12 |
la, a,b] [a,b,b] [a,b, at+b] aabb
System 2: n =4 with u =16 8 |
with codes ape
[a,a,b,b] [a,b,atb, a—b]
ab atb
8 5 1516

Request coverage: 0.7366 for [a, a, b] & [a, b, b], 0.8727 for [a, b, a+Db]
0.9211 for [a, a, b, b], and 0.9434 [a, b, a+b, a—b].

9/35



Service allocation for (Aq, Ap) = (15, 0)

Nag =3
Aas =3
Nap =3
O —) l l
! & & & &

Aa=15 LIiiid: JIIrilEr L .t.t.*;.t FXEXEF XA
A =0 a b a+b a—b
)\0
aba+ba-b
16
15 aab
Code: 12 |
bb
a b a+b a—b aa
«y L ey «y ] |
. . abb
with node capacity pn = 6.
abatb
Ab
8 12 1516
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Service Rate Region Problem(s) Formulation
System Model:
> k data objects are stored redundantly across n nodes.
» Data objects are represented as elements of some finite field.

» Each server stores a linear combination of data objects,

i.e., a coded object of the same size (same field).
» Requests for object i, 1 € {1, ..., k} arrive to the system at rate A .

» At each node, requests are serviced at rate p=1.

SOME OBJECTIVES:
1. Determine the set of rates (Ag,...,Ax) that can be supported by
the system implementing some common redundancy scheme.
2. Design a redundancy scheme in order to maximize and/or shape the
of region of supported arrival rates under some limited resources.
3. Evaluate the system’s performance for a given stochastic model of
(A, n, Ax) (e.g., probability of supported rates, load imbalance).
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Codes and Matrices

We define a code by a k x n generator matrix G over I

k <n & columns of G include all standard bases vectors of IFE.

Example: Storage scheme

i

a b a+b c a+c b+c a+b+c
« «y .y «y « ey «
Ral L RuZ J L Ru3 J L RC[4 J

0 1
is defined by matrix =10 1 0o 1 1 0 1| in the sense that
100 1 0 1 1

[abec-G=[abc at+b b+c at+ec a+b+c]

This redundancy scheme is known as [7, 3] Simplex code.
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Recovery Sets

Subset R of columns in G is a recovery set of basis vector a if

» a € span(R)
» SCR = a ¢ span(S)

Example:

Recovery sets of size one and two for a in G = { 1 0 1 1 0 1

= O O
o -
-

=
= =
= =

A ]
0 0 1 1
0 1 0 1
a b a+b c a+c b+c a+b+c

Ral L RuZ — L Ru.‘i — L Ra4 —

Coding theorists refer to a, b, ¢ as systematic columns or data symbols.
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A Recovery Graph for [n, k] Code

Consider a code with the generator matrix G and size 2 recovery sets.
(e.g., simplex and k = 2 codes; generalization to any linear code is straightforward)
We define recovery graph T as follows:

» T has n nodes corresponding to the columns of G, and
an additional node is added for each systematic column.

» If two nodes correspond to a recovery set of data symbol x,

they are connected by an edge which is given label x.

Example:
The nodes and some edges in the [7, 4] Simplex code recovery graph

L I I |

0
a b a+b c a+c b+c a+b+c

Ral L Ra‘z - L RaS - L Ra4 -
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The Recovery Graph for the [7, 3] Simplex Code
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Matching Notions & Service Rates on Recovery Graphs

A fractional matching of I'g assigns non-negative weights to its edges s.t.

for each node, the sum of weights of its incident edges does not exceed 1.

An integral matching of I'g assigns 0 or 1 weights to its edges s.t. for

each node, the sum of weights of its incident edges does not exceed 1.

We define AM, the service rate for data symbol x in matching M ,
as the sum of the weights that M assigns to x-labeled edges in Tg.

Claim: (A1, Az, ..., Ak) is in the service rate region of G iff there is a
matching M in T'g s.t. (Ag,Ag, ..., A) = (AMAM AM)

How is this claim helpful in characterize the set of all (A, Az, ..., Ax)? J

Observe that max Z]le Ai is the (fractional) matching number of I'g.
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Serving (Aa,Av,Ac) = (1,3,0) with the [7, 3] Simplex Code

a b a+b c a+c b+c a+b+c
I _ I L y q » < » < » 1 »

Consider two matchings with identical service rates:

recovery graph fractional matching integral matching

o(,

°a+b

ea+c

“ebtc
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Fractional vs. Integral Service

/ *0p Consider a fractional matching s.t.

» A is the sum of ¢ edge weights.
- }\a + Ab + )\C < 4

Q: If Aq, Ap, Ac are integers, is there always an integral matching with
Ao a-edges, Ap b-edges, A, c-edges? — a new matching problem.

> A, is the sum of a edge weights.

» Ay is the sum of b edge weights.
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A Bound on the Sum of Service Rates

by using well known graph theory results

A vertex cover of a graph I is a set of vertices in I" such that each edge

in T is incident to at least one vertex in the set.

» Consider a system using an [n, k] code with a generator matrix G.

» Let I'g be the recovery graph of G.

—
The sum of rates in any request vector (Ag, - -+, Ax) that can be served by
the system cannot exceed the number of vertices in a vertex cover of I'g.
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Binary Simplex Codes and their Recovery Graphs

aka Hadamard Codes is CS literature

Gy consist of all distinct nonzero vectors of F.
= T vertices are labeled by k-bit stings.

Lemma: Structure of the recovery graph T:
1. Ty is bipartite.
2. Each vertex of T has degree k where each edge is labeled by a
different data symbol.

3. The 21 vertices of I'c that correspond to the odd weight columns

of Gy form a minimum vertex cover of T.
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Service Rate Region [2% — 1, k] Simplex Code

Theorem: Simplex, again!

A1, As. .., Ax can be service rates for the [2X — 1, k] Simplex code iff
AL Ao+ A <28

Proof Sketch for the Achevability:

Rates Aq, ..., Ak s.t. Ay 4 - + A < 2571 can be achieved by the
fractional matching that assigns weight A; /21 to each i labeled edge.
Proof Sketch for the Converse:

For bipartite graphs, the size of the minimum vertex cover (here 2571) is
equal to the (fractional) matching number.
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Asynchronous Service Rate Region

Asynchronous Batch Codes by Riet, Skachek, and Thomas

Consider the simplex code and two ways to satisfy demand (1, 3,0):

a b a+b c a-+c b+c a+b+c
recovery graph fractional matching integral matching

o0, o0, o0

/ *0p / o0 ()

o(, . o(.
, *a+b ea+b

¢ e
\ ea+c . ea+c
: b,

\.b+c “eb+c “eb+c

Q: If some users leave the system, can others use the freed resources?
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We started with a matrix ...

G is a k x n matrix over [F

k <n & columns of G include all standard bases vectors of Fg.

Columns of G are a multi-set G of points in PG(k —1, q)
We refer to G as the ground set of G.

Example:

VAN

1

O = =

1 g
01 ]
| amk[&%{ac

For coding theorists, G is a generator matrix of a systematic [n, k|4 code.
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A Geometric Bound

Theorem: What is H to I'?
For an [n, k]4 code with ground set G in PG(k — 1, q) and a vector of
achievable rates (A1, Ay, -+, Ay), it holds that

MAA+- -+ A <G\ H]

where H is a hyperplane not containing any standard basis vectors.

Example: b

0
1

m/o\m
| D¢
: {@]k i >Q[é} :

= o o
O = O
o O
—= = O
O = =
=N

()
Il
| ——
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What is H to I'?

The points in § N 3 correspond to an independent set in T
— The points in G\ H constitute a vertex cover of T.

= |G\ H]| is an upper bound to v(I") (the matching number of T).
=

MAAM+F A< V() <GN\H]

How far does this similarity go?

Is there is an encompassing view, e.g., based on matroids?
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Covering a Region with Minimal Storage

We need to serve requests in the region Aq < &, Ap, < B, Aqg +Ap <.
Aa

(0’ og) (y_(x7 (X)

A
B,0) "

The columns of the generator matrix can only be [}], [9], and [{].
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Covering a Region with Minimal Storage

We need to serve requests in the region Aq < o, Ap < B, Aq +Ap <
What is the minimal number of servers n for a [binary| storage scheme?

Aa

0, (v—a, )

A
(3,0) °

The columns of the generator matrix can only be [§]. [9], and [1].
Their multiplicities satisfy the following achievable bounds:

np Ny 2 noptnpy 2B npynp >y
— n:n[}+n[]+n[%]>(fx+(3+1/)/2-
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Covering a Region with Minimal Storage — Examples

What is the minimal number of servers and the redundancy scheme
that satisfy the demand described by Ay < &, Ap < B, Aq +Ap <

Aa
aabba+ba+b

x=4,p=dy=4

Ab

aabbba+db
ax=3,p=4v=4

Ab

Aa

abbba+b

a=2p=4y=4

Ab

abbbb

toa=1p=4y=4

Ab
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Maximizing Service Rate Region with Fixed Resources

How should we store k objects on n servers?

For k = 2, we can have . nodes storing a, . storing b, and . coded nodes.

b
» L

a a a a

b b
L L L €9 € €

y

a+b atab at+a’b ato’b atolb at+o’b at+a’b a+a’b
€99 € © €& €& €& & v -

a+b  atab at+o’b a+a’b at+a'b a+a’d b

€9 €9 &9 €9 €9 €9 €& €

a+b a+ab a a a b b b

€9 €9 &9 €9 €9 &9 €& €5 — Ab

» Combining coding and replication is beneficial in multiple ways.

» Service rate region depends on the generator matrix of the code.
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An Early Theorem for any Two-Object System

k = 2, data objects a and b - nodes storing a, . storing b, & . coded nodes (MDS)

[8]...[4]and [9]...[9and [ 5] j=0,...,C—1
A B

Then the service rate region is bounded by

Aa=0, A =0, A, = min{(AJrC)p., (A+ % + %)u} and

(B+C)u ifA>Cand0<A, < (A—C)u
e+ (4 +B+$)n ifA>Cand (A—Clu<Ag <Ap
A+ (5 +B+5)n ifA<Cand 0< A, <Ap
Aat+A+B+S)n fAR<AL < (A+ S

—2A +(2A+B+C)u ifB>Cand (A+$)u<A, <A+C
~22a+(2A+B+Clp ifB<Cand (A+ S u<Ae <(A+E+ 5

We only have an algorithm for k = 3.
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Covered Requests, Server Utilization, Load (Im)balance

Requests: Aq ~NT(4,4) and Ap ~NT(8,8) and vice versa.
Two systems with equal total service bandwidth, storing k = 2 objects.

)\a
abatba—b
16
15
System 1: n =3 with u =8 agb
with codes 12 |
la, a,b] [a,b,b] [a,b, at+b] aabb
System 2: n =4 with u =16 8 |
with codes ape
[a,a,b,b] [a,b,atb, a—b]
ab atb
8 5 1516

Request coverage: 0.7366 for [a, a, b] & [a, b, b], 0.8727 for [a, b, a+Db]
0.9211 for [a, a, b, b], and 0.9434 [a, b, a+b, a—b].
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Service Rates of Codes

New applications create new performance metrics for codes,
and we need to design new codes and solve new problems.

/‘u: collects b

Av

collects a
‘Cl' «a» \b) «b’ 25
« 9 €9 €9 € 2

VS.
a b atb a-b
9 &9 €5 &€ \

vs. 2 25 3 ¢
e _a b oathb
9 €9 €9 €
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Needs for Services of Coding Theorists Go On

For more info, see https://arxiv.org/abs/2009.01598.
NSF Award # 2122400: Service Rates of Codes
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