The functional graph of some family of functions over finite fields

Fabio Enrique Brochero Martínez joint work with Hugo Rodrigues Teixeira

Universidade Federal de Minas Gerais

Carleton Finite Fields eSeminar

• \mathbb{F}_q denote a finite field with $q := p^s$ elements, where p is an odd prime.

- \mathbb{F}_q denote a finite field with $q := p^s$ elements, where p is an odd prime.
- For each function $f : \mathbb{F}_q \to \mathbb{F}_q$, we define the functional graph of f as the directed graph $G_f = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \mathbb{F}_q$ and $\mathcal{E} = \{(x, f(x)) \mid x \in \mathbb{F}_q\}$.

<ロト <問ト < 臣ト < 臣ト

-

- \mathbb{F}_q denote a finite field with $q := p^s$ elements, where p is an odd prime.
- For each function $f : \mathbb{F}_q \to \mathbb{F}_q$, we define the functional graph of f as the directed graph $G_f = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \mathbb{F}_q$ and $\mathcal{E} = \{(x, f(x)) \mid x \in \mathbb{F}_q\}$.
- For $a \in \mathbb{F}_q$, there are integers $0 \le i < j$, minimal, such that $f^{(i)}(a) = f^{(j)}(a)$. We call the list

$$a, f(a), x^{(2)}(a), \cdots, f^{(i-1)}(a)$$

the pre-cycle and

$$f^{(i)}(a), f^{(i+1)}(a), \cdots, f^{(j-1)}(a)$$

・ロト ・母ト ・ヨト ・ヨト

ъ

the cycle of length (j - i).

- \mathbb{F}_q denote a finite field with $q := p^s$ elements, where p is an odd prime.
- For each function $f : \mathbb{F}_q \to \mathbb{F}_q$, we define the functional graph of f as the directed graph $G_f = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \mathbb{F}_q$ and $\mathcal{E} = \{(x, f(x)) \mid x \in \mathbb{F}_q\}$.
- For $a \in \mathbb{F}_q$, there are integers $0 \le i < j$, minimal, such that $f^{(i)}(a) = f^{(j)}(a)$. We call the list

$$a, f(a), x^{(2)}(a), \cdots, f^{(i-1)}(a)$$

the pre-cycle and

$$f^{(i)}(a), f^{(i+1)}(a), \cdots, f^{(j-1)}(a)$$

イロト イヨト イヨト イヨト

ъ

the cycle of length (j - i).

• If i = 0 we say that a is a period point of f.

- \mathbb{F}_q denote a finite field with $q := p^s$ elements, where p is an odd prime.
- For each function $f : \mathbb{F}_q \to \mathbb{F}_q$, we define the functional graph of f as the directed graph $G_f = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \mathbb{F}_q$ and $\mathcal{E} = \{(x, f(x)) \mid x \in \mathbb{F}_q\}$.
- For $a \in \mathbb{F}_q$, there are integers $0 \le i < j$, minimal, such that $f^{(i)}(a) = f^{(j)}(a)$. We call the list

$$a, f(a), x^{(2)}(a), \cdots, f^{(i-1)}(a)$$

the pre-cycle and

$$f^{(i)}(a), f^{(i+1)}(a), \cdots, f^{(j-1)}(a)$$

・ロト ・周ト ・ヨト ・ヨト

ъ.

the cycle of length (j - i).

- If i = 0 we say that a is a period point of f.
- If f(a) = a, we say it is a fixed point of f.

If $f: \mathbb{F}_{25} \to \mathbb{F}_{25}$ is the function defined by $f(x) = x^6 + x^2 + 1$, then the functional graph of f is

If $f : \mathbb{F}_{97} \to \mathbb{F}_{97}$ is the function defined by $f(x) = 3x^{72}$, then the functional graph of f is

 \bigcirc

If $f : \mathbb{F}_{97} \to \mathbb{F}_{97}$ is the function defined by $f(x) = x^{36} - x^{12}$, then the functional graph of f is

If $f: \mathbb{F}_{121} \to \mathbb{F}_{121}$ is the function defined by $f(x) = x^{119} + x^{11} - x$, then the functional graph of f is

A (1) < A (1) < A (1) < A (1) </p>

Some results about Functional Graph

•
$$f(x) = x^2$$
, Rogers (1996)

・ロト・西ト・ヨト・ヨー もくの

Some results about Functional Graph

- $f(x) = x^2$, Rogers (1996)
- $f(x) = x^e$, Chou & Shparlinski (2004)

< ロ > < 回 > < 回 > < 回 > < 回 >

ъ

Some results about Functional Graph

- $f(x) = x^2$, Rogers (1996)
- $f(x) = x^e$, Chou & Shparlinski (2004)
- $f(x) = x + x^{-1}$, where $char(\mathbb{F}_q) = 3$ or 5, Ugolini (2013)

イロト イポト イラト イラト

ъ

- $f(x) = x^2$, Rogers (1996)
- $f(x) = x^e$, Chou & Shparlinski (2004)
- $f(x) = x + x^{-1}$, where $char(\mathbb{F}_q) = 3$ or 5, Ugolini (2013)
- Redei Funciton, Qureshi & Panario (2015)

イロト イヨト イヨト イヨト

- $f(x) = x^2$, Rogers (1996)
- $f(x) = x^e$, Chou & Shparlinski (2004)
- $f(x) = x + x^{-1}$, where $char(\mathbb{F}_q) = 3$ or 5, Ugolini (2013)
- Redei Funciton, Qureshi & Panario (2015)
- Elliptic curves, Ugolini (2018)

イロト イヨト イヨト イヨト

- $f(x) = x^2$, Rogers (1996)
- $f(x) = x^e$, Chou & Shparlinski (2004)
- $f(x) = x + x^{-1}$, where $char(\mathbb{F}_q) = 3$ or 5, Ugolini (2013)
- Redei Funciton, Qureshi & Panario (2015)
- Elliptic curves, Ugolini (2018)
- Chebyshev Functions, Qureshi & Panario (2019)

- $f(x) = x^2$, Rogers (1996)
- $f(x) = x^e$, Chou & Shparlinski (2004)
- $f(x) = x + x^{-1}$, where $char(\mathbb{F}_q) = 3$ or 5, Ugolini (2013)
- Redei Funciton, Qureshi & Panario (2015)
- Elliptic curves, Ugolini (2018)
- Chebyshev Functions, Qureshi & Panario (2019)
- Linearized Polynomials, Panario & Reis (2019)

- $f(x) = x^2$, Rogers (1996)
- $f(x) = x^e$, Chou & Shparlinski (2004)
- $f(x) = x + x^{-1}$, where $char(\mathbb{F}_q) = 3$ or 5, Ugolini (2013)
- Redei Funciton, Qureshi & Panario (2015)
- Elliptic curves, Ugolini (2018)
- Chebyshev Functions, Qureshi & Panario (2019)
- Linearized Polynomials, Panario & Reis (2019)
- Survey about iteration mappings, Martins, Panario & Qureshi (2019)

• Fixed Point.

イロト イヨト イヨト イヨト

æ

- Fixed Point.
- Number of cycles and lengths.

< ロ > < 回 > < 回 > < 回 > < 回 >

ъ

- Fixed Point.
- Number of cycles and lengths.
- Precycle lengths

イロト イポト イラト イラト

ъ

- Fixed Point.
- Number of cycles and lengths.
- Precycle lengths
- Number of connected components

<ロト <問ト < 臣ト < 臣ト

Classify the functions $f: \mathbb{F}_q \to \mathbb{F}_q$ such that

• They have the same functional graph.

イロト イポト イヨト イヨ

ъ

Classify the functions $f : \mathbb{F}_q \to \mathbb{F}_q$ such that

• They have the same functional graph. In fact, $f, g: \mathbb{F}_q \to \mathbb{F}_q$ have the same functional graph if and only if there exists a permutation function $h: \mathbb{F}_q \to \mathbb{F}_q$ such that $f \circ h = h \circ g$.

イロト イヨト イヨト イヨト

-

Classify the functions $f : \mathbb{F}_q \to \mathbb{F}_q$ such that

- They have the same functional graph. In fact, $f, g: \mathbb{F}_q \to \mathbb{F}_q$ have the same functional graph if and only if there exists a permutation function $h: \mathbb{F}_q \to \mathbb{F}_q$ such that $f \circ h = h \circ g$.
- Any pre-periodic tree of the graph is the same.

イロト イヨト イヨト イヨト

-

Classify the functions $f : \mathbb{F}_q \to \mathbb{F}_q$ such that

- They have the same functional graph. In fact, $f, g: \mathbb{F}_q \to \mathbb{F}_q$ have the same functional graph if and only if there exists a permutation function $h: \mathbb{F}_q \to \mathbb{F}_q$ such that $f \circ h = h \circ g$.
- Any pre-periodic tree of the graph is the same. For example for any $n \in \mathbb{N}$, pre-periodic tree of a monomial function $f: \mathbb{F}_q^* \to \mathbb{F}_q^*$ defines as $x \mapsto x^n$ with root a periodic point is the same.

イロト イポト イヨト イヨト

ъ.

The functional graph of $a(x^{q+1} - x^2)$ over \mathbb{F}_{q^2}

Since $x \mapsto a(x^{q+1} - x^2)$ has the same functional graph for any $a \in \mathbb{F}_{q^2}^*$, we can suppose that a = 1.

The functional graph of $a(x^{q+1} - x^2)$ over \mathbb{F}_{q^2}

The functional graph of $x^{q+1} - \underline{x}^2$ over \mathbb{F}_{q^2}

The functional graph of $x^{q+1} - \underline{x}^2$ over \mathbb{F}_{q^2}

The functional graph of $x^{q+1} - x^2$ over \mathbb{F}_{q^2}

If $c \in \mathbb{F}_q$, then

イロト イヨト イヨト イヨト

If $c \in \mathbb{F}_q$, then

イロト イヨト イヨト イヨト

The functional graph of $f(x) = x^{q+1} - x^2$ over \mathbb{F}_{q^2} has the following proprieties

• The unique fixed point of the function is x = 0.

化口压 化固压 化医压 化医

The functional graph of $f(x) = x^{q+1} - x^2$ over \mathbb{F}_{q^2} has the following proprieties

- The unique fixed point of the function is x = 0.
- 2 Every cycle has even length.
Theorem

The functional graph of $f(x) = x^{q+1} - x^2$ over \mathbb{F}_{q^2} has the following proprieties

• The unique fixed point of the function is x = 0.

2 Every cycle has even length.

• There are
$$\frac{q-1}{2}$$
 cycles of length two.

• • • • • • • • • • • • • •

Theorem

Let $q-1 = 2^k r$, with r odd. Then for every d divisor of r, there are $\frac{\varphi(d)(q-1)}{2 \operatorname{ord}_{3d}(4)}$ cycles of length $2 \operatorname{ord}_{3d}(4)$, and those are the only cycles.

・ロト ・ 理ト ・ ヨト ・ ヨ

• $\mathscr{T}(1)$, the tree composed by two points, P_1 and P, where P_1 is directed to P. For $m \ge 1$, $\mathscr{T}(m+1)$ is the tree obtained after attaching 2 points directed to each point in the last level of $\mathscr{T}(m)$;

・ロト ・周ト ・ヨト ・ヨト

ъ

- **2** $\mathscr{T}(1)$, the tree composed by two points, P_1 and P, where P_1 is directed to P. For $m \ge 1$, $\mathscr{T}(m+1)$ is the tree obtained after attaching 2 points directed to each point in the last level of $\mathscr{T}(m)$;
- **(a)** Given a graph \mathcal{H} , $(\mathcal{H}, \mathscr{T}(m))$ denotes the graph obtained after replacing each point of \mathcal{H} by a tree isomorphic to $\mathscr{T}(m)$.

イロト イヨト イヨト イヨト

• $\mathscr{T}(1)$, the tree composed by two points, P_1 and P, where P_1 is directed to P. For $m \ge 1$, $\mathscr{T}(m+1)$ is the tree obtained after attaching 2 points directed to each point in the last level of $\mathscr{T}(m)$;

(a) Given a graph \mathcal{H} , $(\mathcal{H}, \mathscr{T}(m))$ denotes the graph obtained after replacing each point of \mathcal{H} by a tree isomorphic to $\mathscr{T}(m)$.

Definition

Given the functional graph \mathcal{G} of $f(x) = x^{q+1} - x^2$ over \mathbb{F}_{q^2} , let denote by

(a) \mathcal{TC}_0 the connected component of zero.

・ロト ・周ト ・ヨト ・ヨト

(a) Given a graph \mathcal{H} , $(\mathcal{H}, \mathscr{T}(m))$ denotes the graph obtained after replacing each point of \mathcal{H} by a tree isomorphic to $\mathscr{T}(m)$.

Definition

Given the functional graph \mathcal{G} of $f(x) = x^{q+1} - x^2$ over \mathbb{F}_{q^2} , let denote by

(a) \mathcal{TC}_0 the connected component of zero.

(a) $Cyc(\mathcal{G})$ the sub-graph of \mathcal{G} of every periodic point different of 0.

・ロト ・周ト ・ヨト ・ヨト

Theorem

Let \mathcal{G} be the functional graph of $f(x) = x^{q+1} - x^2$ over \mathbb{F}_{q^2} . If $q-1 = 2^k r$, then the graph \mathcal{G} is isomorphic to $\mathcal{TC}_0 \oplus (Cyc(\mathcal{G}), \mathcal{T}(k)).$

F. E. Brochero Martínez Functional graph

(日)

The graph of $f(x) = x^{q+1} + x^2$ over \mathbb{F}_{q^2}

Using the same technique we obtain the following result

Theorem

Let q be a power of a odd prime, such that $q-1 = 2^s r$ and r is odd. The functional graph of the function $f(x) = a(x^{q+1} + x^2)$ over \mathbb{F}^{q^2} is isomorphic to

$$\mathscr{Z}^*(q) \bigoplus_{d|r} \frac{q \cdot \varphi(d)}{\operatorname{ord}_d(2)} \times \left(Cyc(\operatorname{ord}_d(2)), \mathscr{T}(s) \right)$$

where $\mathscr{Z}^*(q)$ is the directed graph Cyc(1) with q-1 trees isomorphic to $\mathscr{T}(1)$ attached to it.

<ロト <問ト < 臣ト < 臣ト

One component isomorphic to

(日本) (日本) (日本)

One component isomorphic to

for d = 1, we have 13 components isomorphic to

A (1) > A (1) > A

We can see \mathbb{F}_{q^2} as a vector space over \mathbb{F}_q with base $\{1, \beta\}$, where $\beta^2 = b \in \mathbb{F}_q$ is not a square in \mathbb{F}_q ,

(日)

ъ

Idea of the proof

We can see \mathbb{F}_{q^2} as a vector space over \mathbb{F}_q with base $\{1, \beta\}$, where $\beta^2 = b \in \mathbb{F}_q$ is not a square in \mathbb{F}_q , then the function $f(x) = x^{q+1} - dx^2$ (where $d = \pm 1$) over \mathbb{F}_{q^2} is equivalent to the function $F : \mathbb{F}_q \times \mathbb{F}_q \to \mathbb{F}_q \times \mathbb{F}_q$,

$$\mathbb{F}_q \times \mathbb{F}_q \to \mathbb{F}_q \times \mathbb{F}_q \\
\langle x, y \rangle \mapsto \langle (d+1)x^2 + (d-1)by^2, 2dxy \rangle.$$
(1)

化口下 化固下 化压下 化压下

ъ

Idea of the proof

We can see \mathbb{F}_{q^2} as a vector space over \mathbb{F}_q with base $\{1, \beta\}$, where $\beta^2 = b \in \mathbb{F}_q$ is not a square in \mathbb{F}_q , then the function $f(x) = x^{q+1} - dx^2$ (where $d = \pm 1$) over \mathbb{F}_{q^2} is equivalent to the function $F : \mathbb{F}_q \times \mathbb{F}_q \to \mathbb{F}_q \times \mathbb{F}_q$,

$$\mathbb{F}_q \times \mathbb{F}_q \to \mathbb{F}_q \times \mathbb{F}_q
\langle x, y \rangle \mapsto \langle (d+1)x^2 + (d-1)by^2, 2dxy \rangle.$$
(1)

イロト イヨト イヨト イヨト

In the case d = 1, we obtain

$$F(x,y) = -2y\langle by, x \rangle$$

Idea of the proof

We can see \mathbb{F}_{q^2} as a vector space over \mathbb{F}_q with base $\{1, \beta\}$, where $\beta^2 = b \in \mathbb{F}_q$ is not a square in \mathbb{F}_q , then the function $f(x) = x^{q+1} - dx^2$ (where $d = \pm 1$) over \mathbb{F}_{q^2} is equivalent to the function $F : \mathbb{F}_q \times \mathbb{F}_q \to \mathbb{F}_q \times \mathbb{F}_q$,

$$\mathbb{F}_q \times \mathbb{F}_q \to \mathbb{F}_q \times \mathbb{F}_q
\langle x, y \rangle \mapsto \langle (d+1)x^2 + (d-1)by^2, 2dxy \rangle.$$
(1)

・ロト ・母ト ・ヨト ・ヨト

In the case d = 1, we obtain

$$F(x,y) = -2y\langle by, x \rangle$$

and, applying f again,

$$F^{(2)}(x,y) = -8bxy^2 \langle x,y \rangle.$$

By induction, we conclude that

$$F^{(2n)}(x,y) = g(x,y)^{\frac{4^n-1}{3}} \langle x,y \rangle,$$

where $g(x, y) = -8bxy^2$.

イロト イヨト イヨト イヨト

By induction, we conclude that

$$F^{(2n)}(x,y) = g(x,y)^{\frac{4^n-1}{3}} \langle x,y \rangle,$$

where $g(x, y) = -8bxy^2$. Therefore $\langle x, y \rangle$ is a periodic point if and only if $gcd(4, 3 \cdot ord_{\mathbb{F}_q}(g(x, y))) = 1$

・ロト ・周ト ・ヨト ・ヨト

ъ

$$f(x_i, y_i) = \langle x_{i-1}, y_{i-1} \rangle.$$

$$f(x_i, y_i) = \langle x_{i-1}, y_{i-1} \rangle.$$

Observe that $f(-x_i, -y_i) = f(x_i, y_i) = \langle x_{i-1}, y_{i-1} \rangle$ and $\langle -x_i, -y_i \rangle$ is not a periodic point.

$$f(x_i, y_i) = \langle x_{i-1}, y_{i-1} \rangle.$$

Observe that $f(-x_i, -y_i) = f(x_i, y_i) = \langle x_{i-1}, y_{i-1} \rangle$ and $\langle -x_i, -y_i \rangle$ is not a periodic point.

Now suppose by induction that $\langle \zeta_{2^{k-1}} x_{k-1}, \zeta_{2^{k-1}} y_{k-1} \rangle$ is a non periodic element that satisfies

$$f^{(k-1)}(\zeta_{2^{k-1}}x_{k-1},\zeta_{2^{k-1}}y_{k-1}) = \langle x_0, y_0 \rangle.$$

$$f(x_i, y_i) = \langle x_{i-1}, y_{i-1} \rangle.$$

Observe that $f(-x_i, -y_i) = f(x_i, y_i) = \langle x_{i-1}, y_{i-1} \rangle$ and $\langle -x_i, -y_i \rangle$ is not a periodic point.

Now suppose by induction that $\langle \zeta_{2^{k-1}} x_{k-1}, \zeta_{2^{k-1}} y_{k-1} \rangle$ is a non periodic element that satisfies

$$f^{(k-1)}(\zeta_{2^{k-1}}x_{k-1},\zeta_{2^{k-1}}y_{k-1}) = \langle x_0, y_0 \rangle.$$

If $\langle x, y \rangle \in f^{-1}(\zeta_{2^{k-1}}x_{k-1}, \zeta_{2^{k-1}}y_{k-1})$, then

$$y^2 = \zeta_{2^{k-1}} y_k^2$$

and, consequently, $f^{-1}(\zeta_{2^{k-1}}x_{k-1}, \zeta_{2^{k-1}}y_{k-1}) \neq \emptyset$ if, and only if, $\zeta_{2^{k-1}}$ is an square in \mathbb{F}_q , that is equivalent to $q \equiv 1 \pmod{2^k}$.

化白豆 化硼医化合豆 医白白白 医白

• $f(x) = ax^{q+1} + bx^2$ over \mathbb{F}_{q^2} .

イロト イヨト イヨト イヨト

- $f(x) = ax^{q+1} + bx^2$ over \mathbb{F}_{q^2} .
- $f(x) = a(x^q + bx)^2$ over \mathbb{F}_{q^2} .

< ロ > < 回 > < 回 > < 回 > < 回 >

- $f(x) = ax^{q+1} + bx^2$ over \mathbb{F}_{q^2} .
- $f(x) = a(x^q + bx)^2$ over \mathbb{F}_{q^2} .

•
$$f(x) = a(x^q + bx)(x^q + cx)$$
 over \mathbb{F}_{q^2} .

< ロ > < 回 > < 回 > < 回 > < 回 >

•
$$f(x) = ax^{q+1} + bx^2$$
 over \mathbb{F}_{q^2} .

•
$$f(x) = a(x^q + bx)^2$$
 over \mathbb{F}_{q^2} .

•
$$f(x) = a(x^q + bx)(x^q + cx)$$
 over \mathbb{F}_{q^2} .

•
$$f(x) = x^{q+1} - x^2$$
 over \mathbb{F}_{q^3} .

イロト イヨト イヨト イヨト

æ

In general, the dynamic of $f(x) = x^{q+1} - dx^2 \in \mathbb{F}_q[x]$ over \mathbb{F}_{q^2} is "quasi-chaotic".

In general, the dynamic of $f(x) = x^{q+1} - dx^2 \in \mathbb{F}_q[x]$ over \mathbb{F}_{q^2} is "quasi-chaotic". We have some partial results

Theorem

In general, the dynamic of $f(x) = x^{q+1} - dx^2 \in \mathbb{F}_q[x]$ over \mathbb{F}_{q^2} is "quasi-chaotic". We have some partial results

Theorem

For $a \in \mathbb{F}_q^*$, • $\#f^{-1}(a) = \begin{cases} 0, & \text{if } \chi_2(a(d-1)) = 1 \text{ and } \chi_2(a(d+1)) = -1 \\ 4, & \text{if } \chi_2(a(d-1)) = -1 \text{ and } \chi_2(a(d+1)) = 1 \\ 2, & \text{otherwise} \end{cases}$

• if
$$q \equiv 3 \pmod{4}$$
, then $\#f^{-1}(a\beta) = \begin{cases} 0, & \text{if } \chi_2(-d^2+1) = 1\\ 2, & \text{if } \chi_2(-d^2+1) = -1 \end{cases}$

In general, the dynamic of $f(x) = x^{q+1} - dx^2 \in \mathbb{F}_q[x]$ over \mathbb{F}_{q^2} is "quasi-chaotic". We have some partial results

Theorem

For $a \in \mathbb{F}_a^*$, • $\#f^{-1}(a) = \begin{cases} 0, & \text{if } \chi_2(a(d-1)) = 1 \text{ and } \chi_2(a(d+1)) = -1 \\ 4, & \text{if } \chi_2(a(d-1)) = -1 \text{ and } \chi_2(a(d+1)) = 1 \\ 2, & \text{otherwise} \end{cases}$ • if $q \equiv 3 \pmod{4}$, then $\#f^{-1}(a\beta) = \begin{cases} 0, & \text{if } \chi_2(-d^2+1) = 1\\ 2, & \text{if } \chi_2(-d^2+1) = -1 \end{cases}$ **3** if $q \equiv 1 \pmod{4}$ and $\gamma_d^2 := -\frac{(d-1)b}{d+1}$, then $#f^{-1}(a\beta) = \begin{cases} 4, & \text{if } \chi_2(-d^2+1) = -1 \text{ and } \chi_2(2\gamma_d ad) = -1 \\ 0, & \text{otherwise.} \end{cases}$

Theorem

Let $q-1 = 2^s r$, with r odd, and $f(X) = X^{q+1} + dX^2$, where $d \neq \{\pm 1\}$. If $\chi_2(1-d^2) = 1$, then the connected components that contain the elements of \mathbb{F}_q can be obtained by attaching two nodes to every point $a \in \mathscr{G}(f|_{\mathbb{F}_q})$ that satisfies $\chi_2(a(d-1)) = -1$.

・ロト ・周ト ・ヨト ・ヨト

-

Theorem

Let $q-1 = 2^s r$, with r odd, and $f(X) = X^{q+1} + dX^2$, where $d \neq \{\pm 1\}$. If $\chi_2(1-d^2) = 1$, then the connected components that contain the elements of \mathbb{F}_q can be obtained by attaching two nodes to every point $a \in \mathscr{G}(f|_{\mathbb{F}_q})$ that satisfies $\chi_2(a(d-1)) = -1$. In particular, 0 is an isolated fixed point and $\frac{1}{d+1}$ is a fixed point with connected component isomorphic to

•
$$\mathscr{Z}(4), if s = 1,$$

•
$$(Cyc(1), \mathscr{T}(s+1)), \text{ if } s \geq 2.$$

イロト イヨト イヨト イヨト

For q = 13 and d = 2, notice that s = 2 and that $\chi_2(1 - 2^2) = \chi_2(10) = 1$.

For q = 13 and d = 2, notice that s = 2 and that $\chi_2(1 - 2^2) = \chi_2(10) = 1$. Then the connected components of the elements in \mathbb{F}_q are

For q = 13 and d = 2, notice that s = 2 and that $\chi_2(1 - 2^2) = \chi_2(10) = 1$. Then the connected components of the elements in \mathbb{F}_q are

・ロト ・周ト ・ヨト ・ヨト

ъ

For q = 13 and d = 2, notice that s = 2 and that $\chi_2(1 - 2^2) = \chi_2(10) = 1$. Then the connected components of the elements in \mathbb{F}_q are

(日本) (日本) (日本)
- Chou, W.S., Shparlinski, I.E. on the cycle structure of repeated exponentiation modulo prime. Jour. of Number Theory **107** (2004) 345-356
- Martins, R., Panario, D., Qureshi, C. A survey on iterations of mappings over finite fields Radon Series on Computational and Applied Mathematics 23 (2019) 135-172
- Panario, D., Reis. L. The functional graph of linear maps over finite fields and applications, Designs, Codes and Cryptography 87 (2019) 437-453
- Quareshi, C., Panario, D. The graph structure of the Chebyshev polynomial over finite fields and applications, Designs, Codes and Cryptography 87 (2019) 393-416
- Rogers, T. The Graph of the square mapping on the prime fields, Disc Math.
 148 (1996) 317-324
- Ugolini, S. Graphs associated with the math $x \mapsto x + x^{-1}$ in finite fields of characteristic three and five. Jour. of Number Theory **133** (2013)1207-1228

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 のへで