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Notation

Fq denote a finite field with q := ps elements, where p is an odd prime.

For each function f : Fq → Fq, we define the functional graph of f as the
directed graph Gf = (V, E), where V = Fq and E = {(x, f(x)) | x ∈ Fq}.
For a ∈ Fq, there are integers 0 ≤ i < j, minimal, such that f (i)(a) = f (j)(a).
We call the list

a, f(a), x(2)(a), · · · , f (i−1)(a)

the pre-cycle and
f (i)(a), f (i+1)(a), · · · , f (j−1)(a)

the cycle of length (j − i).
If i = 0 we say that a is a period point of f .

If f(a) = a, we say it is a fixed point of f .
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Example

If f : F25 → F25 is the function defined by f(x) = x6 + x2 + 1, then the functional
graph of f is
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Example

If f : F97 → F97 is the function defined by f(x) = 3x72, then the functional graph
of f is
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Example

If f : F97 → F97 is the function defined by f(x) = x36 − x12, then the functional
graph of f is
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Example

If f : F121 → F121 is the function defined by f(x) = x119 + x11 − x, then the
functional graph of f is
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Some results about Functional Graph

f(x) = x2, Rogers (1996)

f(x) = xe, Chou & Shparlinski (2004)

f(x) = x+ x−1, where char(Fq) = 3 or 5, Ugolini (2013)

Redei Funciton, Qureshi & Panario (2015)

Elliptic curves, Ugolini (2018)

Chebyshev Functions, Qureshi & Panario (2019)

Linearized Polynomials, Panario & Reis (2019)

Survey about iteration mappings, Martins, Panario & Qureshi (2019)
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Questions about functional graphs

Given a function f : Fq → Fq, determine

Fixed Point.

Number of cycles and lengths.

Precycle lengths

Number of connected components

F. E. Brochero Martı́nez Functional graph



Questions about functional graphs

Given a function f : Fq → Fq, determine

Fixed Point.

Number of cycles and lengths.

Precycle lengths

Number of connected components

F. E. Brochero Martı́nez Functional graph



Questions about functional graphs

Given a function f : Fq → Fq, determine

Fixed Point.

Number of cycles and lengths.

Precycle lengths

Number of connected components

F. E. Brochero Martı́nez Functional graph



Questions about functional graphs

Given a function f : Fq → Fq, determine

Fixed Point.

Number of cycles and lengths.

Precycle lengths

Number of connected components

F. E. Brochero Martı́nez Functional graph



Classify the functions f : Fq → Fq such that

They have the same functional graph.

In fact, f, g : Fq → Fq have the same functional graph if and only if there
exists a permutation function h : Fq → Fq such that f ◦ h = h ◦ g.

Any pre-periodic tree of the graph is the same.
For example for any n ∈ N, pre-periodic tree of a monomial function
f : F∗q → F∗q defines as x 7→ xn with root a periodic point is the same.
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The functional graph of a(xq+1 − x2) over Fq2
Since x 7→ a(xq+1 − x2) has the same functional graph for any a ∈ F∗q2 , we can
suppose that a = 1.

Case when q = 9
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The functional graph of xq+1 − x2 over Fq2
Case when q = 11
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The functional graph of xq+1 − x2 over Fq2
Case when q = 13
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The functional graph of xq+1 − x2 over Fq2
Case when q = 17
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Connected component of Zero

Theorem

If c ∈ Fq, then

1 #f−1(c) =


q, if c = 0

2, if χ2(−2c) = −1

0, if χ2(−2c) = 1.

2 If a ∈ f−1(c), then f−1(a) = ∅.

In particular, the connected component of 0 has 2q − 1 elements of Fq2.
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Periodic points

Theorem

The functional graph of f(x) = xq+1 − x2 over Fq2 has the following proprieties

1 The unique fixed point of the function is x = 0.

2 Every cycle has even length.

3 There are
q − 1

2
cycles of length two.
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Length of the cycles

Theorem

Let q − 1 = 2kr, with r odd. Then for every d divisor of r, there are
ϕ(d)(q − 1)

2 ord3d(4)
cycles of length 2 ord3d(4), and those are the only cycles.
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Definition

a) T (1), the tree composed by two points, P1 and P , where P1 is directed to P .
For m ≥ 1, T (m+ 1) is the tree obtained after attaching 2 points directed to
each point in the last level of T (m);

b) Given a graph H, (H,T (m)) denotes the graph obtained after replacing each
point of H by a tree isomorphic to T (m).

Definition

Given the functional graph G of f(x) = xq+1 − x2 over Fq2, let denote by

a) T C0 the connected component of zero.

b) Cyc(G) the sub-graph of G of every periodic point different of 0.
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Characterization of the pre-cycles

Theorem

Let G be the functional graph of f(x) = xq+1 − x2 over Fq2. If q− 1 = 2kr, then the
graph G is isomorphic to

T C0 ⊕ (Cyc(G),T (k)).
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The graph of f(x) = xq+1 + x2 over Fq2

Using the same technique we obtain the following result

Theorem

Let q be a power of a odd prime, such that q− 1 = 2sr and r is odd. The functional
graph of the function f(x) = a(xq+1 + x2) over Fq2 is isomorphic to

Z ∗(q)
⊕
d|r

q · ϕ(d)

ordd(2)
×
(
Cyc(ordd(2)),T (s)

)
where Z ∗(q) is the directed graph Cyc(1) with q − 1 trees isomorphic to T (1)
attached to it.
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For q = 13, we have that q − 1 = 22 × 3 and the functional graph has the following
components:

One component
isomorphic to

for d = 1, we have 13
components isomorphic to

and, for d = 3, we have
13·ϕ(3)
ord3(2

= 13 components
isomorphic to
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Idea of the proof

We can see Fq2 as a vector space over Fq with base {1, β}, where β2 = b ∈ Fq is not
a square in Fq,

then the function f(x) = xq+1 − dx2 (where d = ±1) over Fq2 is
equivalent to the function F : Fq × Fq → Fq × Fq,

Fq × Fq →Fq × Fq

〈x, y〉 7→〈(d+ 1)x2 + (d− 1)by2, 2dxy〉. (1)

In the case d = 1, we obtain

F (x, y) = −2y〈by, x〉

and, applying f again,
F (2)(x, y) = −8bxy2〈x, y〉.
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By induction, we conclude that

F (2n)(x, y) = g(x, y)
4n−1

3 〈x, y〉,

where g(x, y) = −8bxy2.

Therefore 〈x, y〉 is a periodic point if and only if gcd(4, 3 · ordFq(g(x, y))) = 1
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Suppose that 〈x0, y0〉 be a periodic element and, for all i ≥ 1, let 〈xi, yi〉 be a
periodic point such that

f(xi, yi) = 〈xi−1, yi−1〉.

Observe that f(−xi,−yi) = f(xi, yi) = 〈xi−1, yi−1〉 and 〈−xi,−yi〉 is not a periodic
point.
Now suppose by induction that 〈ζ2k−1xk−1, ζ2k−1yk−1〉 is a non periodic element
that satisfies

f (k−1)(ζ2k−1xk−1, ζ2k−1yk−1) = 〈x0, y0〉.

If 〈x, y〉 ∈ f−1(ζ2k−1xk−1, ζ2k−1yk−1), then

y2 = ζ2k−1y2k

and, consequently, f−1(ζ2k−1xk−1, ζ2k−1yk−1) 6= ∅ if, and only if, ζ2k−1 is an square
in Fq, that is equivalent to q ≡ 1 (mod 2k).
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Now suppose by induction that 〈ζ2k−1xk−1, ζ2k−1yk−1〉 is a non periodic element
that satisfies

f (k−1)(ζ2k−1xk−1, ζ2k−1yk−1) = 〈x0, y0〉.

If 〈x, y〉 ∈ f−1(ζ2k−1xk−1, ζ2k−1yk−1), then

y2 = ζ2k−1y2k

and, consequently, f−1(ζ2k−1xk−1, ζ2k−1yk−1) 6= ∅ if, and only if, ζ2k−1 is an square
in Fq, that is equivalent to q ≡ 1 (mod 2k).
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Future Works

Determine the functional graphs of

f(x) = axq+1 + bx2 over Fq2 .

f(x) = a(xq + bx)2 over Fq2 .

f(x) = a(xq + bx)(xq + cx) over Fq2 .

f(x) = xq+1 − x2 over Fq3 .
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Some partial result for d 6= ±1

In general, the dynamic of f(x) = xq+1 − dx2 ∈ Fq[x] over Fq2 is “quasi-chaotic”.

We have some partial results

Theorem

For a ∈ F∗q,

1 #f−1(a) =


0, if χ2(a(d− 1)) = 1 and χ2(a(d+ 1)) = −1

4, if χ2(a(d− 1)) = −1 and χ2(a(d+ 1)) = 1

2, otherwise

2 if q ≡ 3 (mod 4), then #f−1(aβ) =

{
0, if χ2(−d2 + 1) = 1

2, if χ2(−d2 + 1) = −1

3 if q ≡ 1 (mod 4) and γ2d := − (d−1)b
d+1 , then

#f−1(aβ) =

{
4, if χ2(−d2 + 1) = −1 and χ2(2γdad) = −1

0, otherwise,
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Theorem

Let q − 1 = 2sr, with r odd, and f(X) = Xq+1 + dX2, where d 6= {±1}. If
χ2(1− d2) = 1, then the connected components that contain the elements of Fq can
be obtained by attaching two nodes to every point a ∈ G (f |Fq) that satisfies
χ2(a(d− 1)) = −1.

In particular, 0 is an isolated fixed point and 1
d+1 is a fixed point with connected

component isomorphic to

Z (4), if s = 1,

(Cyc(1),T (s+ 1)), if s ≥ 2.
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For q = 13 and d = 2, notice that s = 2 and that χ2(1− 22) = χ2(10) = 1.

Then the
connected components of the elements in Fq are
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