Graphs and Algebra in Modern Communication.

Felice Manganiello
School of Math and Stat Sciences @ Clemson University Cybersecurity Research Lab @ Ryerson University

May 26, 2020

Joint work with
Kschischang (UofT), Ravagnani (TU/e), Savary (Clemson)
Kai (UMichigan), Pedro (UMaryland), Paige (U of Mary Washington),
Kimberly (Bowdoin College) and Nathan (Haverford College)
Partially funded by NSF Grant No. DMS:1547399.
(1) Introduction
(2) Interference Networks

- Definition
- Multiple Unicast network
- Linear Achievability and complexity
(3) Achievability bounds for Multiple Unicast Networks
- Lower Bound
- Upper Bounds
(4) Conclusions

Noisy-Channel Coding Theorem (1948)

Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

"Any channel, however affected by noise, possesses a specific channel capacity - a rate of conveying information that can never be exceeded without error, but that can always be attained with an arbitrarily small probability of error."

Noisy-Channel Coding Theorem (1948)

Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

"Any channel, however affected by noise, possesses a specific channel capacity - a rate of conveying information that can never be exceeded without error, but that can always be attained with an arbitrarily small probability of error."

Solved: Turbo codes (LTE networks), Polar \& spatially-coupled LDPC codes (5G networks)

Noisy-Channel Coding Theorem (1948)

Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

"Any channel, however affected by noise, possesses a specific channel capacity - a rate of conveying information that can never be exceeded without error, but that can always be attained with an arbitrarily small probability of error."

Solved: Turbo codes (LTE networks), Polar \& spatially-coupled LDPC codes (5G networks)

Networks - a graph perspective
A network is a directed acyclic graph $\mathcal{N}=\left(\mathcal{V}, \mathcal{E}, \mathcal{S}, \mathcal{R}, \mathbb{F}_{q}\right)$.

- Sources: nodes with no incoming edges, $\mathcal{S} \subsetneq \mathcal{V}$.
- Sinks: nodes with no outgoing edges, $\mathcal{R} \subsetneq \mathcal{V}$.
- Edges represent perfect unit capacity channels.
- each sink $R \in \mathcal{R}$ demands messages from $D_{R} \subseteq \mathcal{S}$.

Networks - a graph perspective

A network is a directed acyclic graph $\mathcal{N}=\left(\mathcal{V}, \mathcal{E}, \mathcal{S}, \mathcal{R}, \mathbb{F}_{q}\right)$.

- Unicast Problem: $|\mathcal{S}|=|\mathcal{R}|=1$ and $D_{R}=\mathcal{S}$.
- Multicast Problem: $|\mathcal{R}| \geq 1$ and $D_{R}=\mathcal{S}$ for all $R \in \mathcal{R}$.
- Multiple Unicast problem: $\mathcal{S}=\left\{S_{1}, \ldots, S_{n}\right\}$, $\mathcal{R}=\left\{R_{1}, \ldots, R_{n}\right\}$, and $D_{R_{i}}=\left\{S_{i}\right\}$.

Unicast Network

- Communication rate: $\rho \leq \operatorname{mincut}(S, R)$.

Unicast Network

- Communication rate: $\rho \leq \operatorname{mincut}(S, R)$.
- Menger's Theorem: mincut $(S, R)=$ maximum number of pairwise edge-disjoint paths.

Unicast Network

- Communication rate: $\rho \leq \operatorname{mincut}(S, R)$.
- Menger's Theorem: mincut $(S, R)=$ maximum number of pairwise edge-disjoint paths.
- Routing maximizes R.

Multicast network [Li et al., 2003, Koetter and Medard, 2003]

Multicast network [Li et al., 2003, Koetter and Medard, 2003]

Multicast network [Li et al., 2003, Koetter and Medard, 2003]

Multicast network [Li et al., 2003, Koetter and Medard, 2003]

Multicast network [Li et al., 2003, Koetter and Medard, 2003]

Theorem (Linear Network Multicasting Theorem)

Let $\mathcal{N}=\left(\mathcal{V}, \mathcal{E}, \mathcal{S}, \mathcal{R}, \mathbb{F}_{q}\right)$. A multicast rate of

$$
\min _{R \in \mathcal{R}} \operatorname{mincut}(\mathcal{S}, R)
$$

is achievable, for sufficiently large q, with linear network coding.

Multicast network [Li et al., 2003, Koetter and Medard, 2003]

Theorem (Linear Network Multicasting Theorem)

Let $\mathcal{N}=\left(\mathcal{V}, \mathcal{E}, \mathcal{S}, \mathcal{R}, \mathbb{F}_{q}\right)$. A multicast rate of

$$
\min _{R \in \mathcal{R}} \operatorname{mincut}(\mathcal{S}, R)
$$

is achievable, for sufficiently large q, with linear network coding.

Insufficiency of LNC [Dougherty et al., 2005]

Theorem

There exists an solvable network that has no linear solution over any finite field and any vector dimension.

(1) Introduction

(2) Interference Networks

- Definition
- Multiple Unicast network
- Linear Achievability and complexity
(3) Achievability bounds for Multiple Unicast Networks
- Lower Bound
- Upper Bounds

4. Conclusions

Networks and Interference

"Interference is a major impairment to the reliable communication in multi-user wireless networks, due to the broadcast and superposition nature of wireless medium." [Zhao et al., 2016]

Networks and Interference

"Interference is a major impairment to the reliable communication in multi-user wireless networks, due to the broadcast and superposition nature of wireless medium." [Zhao et al., 2016]

Let \mathcal{N} be a network with \mathcal{S} sources set and \mathcal{R} receivers set. A network has interference if

- $D_{R} \neq \mathcal{S}$ for some $R \in \mathcal{R}$
- for some $R \in \mathcal{R}$ there is a paths between $S \notin D_{R}$ and R.

Networks and Interference

"Interference is a major impairment to the reliable communication in multi-user wireless networks, due to the broadcast and superposition nature of wireless medium." [Zhao et al., 2016]

Let \mathcal{N} be a network with \mathcal{S} sources set and \mathcal{R} receivers set. A network has interference if

- $D_{R} \neq \mathcal{S}$ for some $R \in \mathcal{R}$
- for some $R \in \mathcal{R}$ there is a paths between $S \notin D_{R}$ and R.

Multiple Unicast network

Definition

A multiple unicast network is a network \mathcal{N} such that $|\mathcal{S}|=|\mathcal{R}|$ and $D_{R_{i}}=\left\{S_{i}\right\}$ for $i=1, \ldots,|\mathcal{S}|$.

Multiple Unicast network

Definition

A multiple unicast network is a network \mathcal{N} such that $|\mathcal{S}|=|\mathcal{R}|$ and $D_{R_{i}}=\left\{S_{i}\right\}$ for $i=1, \ldots,|\mathcal{S}|$.

Communication strategy:

Manganiello, SMSS@Clemson \& CRL@Ryerson

Multiple Unicast network

Definition

A multiple unicast network is a network \mathcal{N} such that $|\mathcal{S}|=|\mathcal{R}|$ and $D_{R_{i}}=\left\{S_{i}\right\}$ for $i=1, \ldots,|\mathcal{S}|$.

Communication strategy:

- 1 round

Multiple Unicast network

Definition

A multiple unicast network is a network \mathcal{N} such that $|\mathcal{S}|=|\mathcal{R}|$ and $D_{R_{i}}=\left\{S_{i}\right\}$ for $i=1, \ldots,|\mathcal{S}|$.

Communication strategy:

- 1 round \rightarrow no interference-free communication possible.

Multiple Unicast network

Definition

A multiple unicast network is a network \mathcal{N} such that $|\mathcal{S}|=|\mathcal{R}|$ and $D_{R_{i}}=\left\{S_{i}\right\}$ for $i=1, \ldots,|\mathcal{S}|$.

Communication strategy:

- 1 round \rightarrow no interference-free communication possible.
- multiple rounds \rightarrow time sharing.

Multiple Unicast network (cont'd)

Communication strategy:

Multiple Unicast network (cont'd)

Communication strategy:

- multiple rounds \rightarrow time sharing.

Multiple Unicast network (cont'd)

Communication strategy:

- multiple rounds \rightarrow time sharing.
- 1 round \rightarrow

Multiple Unicast network (cont'd)

Communication strategy:

- multiple rounds \rightarrow time sharing.
- 1 round \rightarrow interference alignment, meaning use of subspaces to communicate without interference
- original paper
[Cadambe and Jafar, 2008].

Multiple Unicast network (cont'd)

Multiple Unicast network (cont'd)

Multiple Unicast network (cont'd)

Communication strategy:

- multiple rounds \rightarrow time sharing.
- 1 round \rightarrow interference alignment, meaning use of subspaces to communicate without interference

Multiple Unicast network - Notation

- s_{i} number of antennas available to source S_{i} and $s=\sum_{i=1}^{N} s_{i}$.
- t_{i} number of antennas available to source R_{i} and $t=\sum_{i=1}^{N} t_{i}$.

Multiple Unicast network - Notation

- s_{i} number of antennas available to source S_{i} and $s=\sum_{i=1}^{N} s_{i}$.

- t_{i} number of antennas available to source R_{i} and $t=\sum_{i=1}^{N} t_{i}$.
- The adjacency matrix $H \in\{0,1\}^{t \times s}$,

$$
H=\left(\begin{array}{lll}
H_{11} & & \\
& H_{22} & \\
& & \\
& & H_{N N}
\end{array}\right)
$$

Multiple Unicast network - Notation

- s_{i} number of antennas available to source S_{i} and $s=\sum_{i=1}^{N} s_{i}$.

- t_{i} number of antennas available to source R_{i} and $t=\sum_{i=1}^{N} t_{i}$.
- The adjacency matrix $H \in\{0,1\}^{t \times s}$,

$$
H=\left(\begin{array}{cccc}
H_{11} & H_{12} & \ldots & H_{1 N} \\
H_{21} & H_{22} & \ldots & H_{2 N} \\
\vdots & \vdots & & \vdots \\
H_{N 1} & H_{N 2} & \ldots & H_{N N}
\end{array}\right)
$$

Example

Linear Encoders and Decoders

$$
E=\left(\begin{array}{cccc}
E_{1} & 0 & \ldots & 0 \\
0 & E_{2} & \ldots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \ldots & E_{N}
\end{array}\right)
$$

Linear Encoders and Decoders

$$
E=\left(\begin{array}{cccc}
E_{1} & 0 & \ldots & 0 \\
0 & E_{2} & \ldots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \ldots & E_{N}
\end{array}\right)
$$

$$
D=\left(\begin{array}{cccc}
D_{1} & 0 & \ldots & 0 \\
0 & D_{2} & \ldots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \ldots & D_{N}
\end{array}\right)
$$

Linear Network Communication

$$
\left(\begin{array}{c}
m_{i, 1} \\
\vdots \\
m_{i, \ell_{i}}
\end{array}\right) \quad j \neq i \quad\left(\begin{array}{c}
m_{j, 1} \\
\vdots \\
m_{j, \ell_{j}}
\end{array}\right)
$$

[R_{1}

$\square R_{2}$

- R_{3}

Linear Network Communication

$$
E_{i}\left(\begin{array}{c}
m_{i, 1} \\
\vdots \\
m_{i, \ell_{i}}
\end{array}\right) \quad j \neq i
$$

$$
E_{j}\left(\begin{array}{c}
m_{j, 1} \\
\vdots \\
m_{j, \ell_{j}}
\end{array}\right)
$$

■ R_{1}

$\square R_{2}$

$\square R_{3}$

Linear Network Communication

$$
H_{i i} E_{i}\left(\begin{array}{c}
m_{i, 1} \\
\vdots \\
m_{i, \ell_{i}}
\end{array}\right)+\sum_{j \neq i} \quad H_{i j} E_{j}\left(\begin{array}{c}
m_{j, 1} \\
\vdots \\
m_{j, \ell_{j}}
\end{array}\right)
$$

Linear Network Communication

$$
D_{i} H_{i i} E_{i}\left(\begin{array}{c}
m_{i, 1} \\
\vdots \\
m_{i, \ell_{i}}
\end{array}\right)+\sum_{j \neq i} D_{i} H_{i j} E_{j}\left(\begin{array}{c}
m_{j, 1} \\
\vdots \\
m_{j, \ell_{j}}
\end{array}\right)
$$

Linear Network Communication

$$
\left(\begin{array}{c}
\hat{m}_{i, 1} \\
\vdots \\
\hat{m}_{i, \ell_{i}}
\end{array}\right)=D_{i} H_{i i} E_{i}\left(\begin{array}{c}
m_{i, 1} \\
\vdots \\
m_{i, \ell_{i}}
\end{array}\right)+\sum_{j \neq i} D_{i} H_{i j} E_{j}\left(\begin{array}{c}
m_{j, 1} \\
\vdots \\
m_{j, \ell_{j}}
\end{array}\right)
$$

Linear Network Communication

$$
\left(\begin{array}{c}
\hat{m}_{i, 1} \\
\vdots \\
\hat{m}_{i, \ell_{i}}
\end{array}\right)=D_{i} H_{i j} E_{i}\left(\begin{array}{c}
m_{i, 1} \\
\vdots \\
m_{i, \ell_{i}}
\end{array}\right)+\sum_{j \neq i} D_{i} H_{i j} E_{j}\left(\begin{array}{c}
m_{j, 1} \\
\vdots \\
m_{j, \ell_{j}}
\end{array}\right)=\left(\begin{array}{c}
m_{i, 1} \\
\vdots \\
m_{i, \ell_{i}}
\end{array}\right)
$$

Linear Achievability of Multiple Unicast networks

Definition

A network \mathcal{N} is linearly achievable for $\rho=\left(\rho_{1}, \ldots, \rho_{N}\right) \in \mathbb{Z}^{N}$, or simply ρ-linearly achievable, if there exist two matrices D, E (with entries in \mathbb{F}_{q}) such that

$$
D_{i} H_{i j} E_{j}=0 \text { and } \operatorname{rank}\left(D_{i} H_{i i} E_{i}\right)=\rho_{i} .
$$

- $D_{i} H_{i i} E_{i}$ is a $\ell_{i} \times \ell_{i}$ matrix.
- wlog D_{i} can be chosen to be in RCEF and messages are sent at pivot positions.

Linear Achievability Region

Definition

The linear achievability region of network \mathcal{N}, denoted $\operatorname{Lin}(\mathcal{N})$, is the subset of \mathbb{R}^{N} for which \mathcal{N} is ρ-linearly achievable.

$$
H=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

messages from δ,

Algebraic model

We represent a network \mathcal{N} by matrices with

$$
D H E=\left(\begin{array}{ccc}
D_{1} H_{11} E_{1} & \ldots & D_{1} H_{1 N} E_{N} \\
D_{2} H_{21} E_{1} & \ldots & D_{2} H_{2 N} E_{N} \\
\vdots & \ddots & \vdots \\
D_{N} H_{N 1} E_{1} & \ldots & D_{N} H_{N N} E_{N}
\end{array}\right)
$$

where $E \in \mathbb{F}_{q}[\underline{e}, \underline{d}]^{\{s \times \ell\}}$ and $D \in \mathbb{F}_{q}[\underline{e}, \underline{d}]^{\{\ell \times t\}}$.

Algebraic model

We represent a network \mathcal{N} by matrices with

$$
D H E=\left(\begin{array}{ccc}
D_{1} H_{11} E_{1} & \ldots & D_{1} H_{1 N} E_{N} \\
D_{2} H_{21} E_{1} & \ldots & D_{2} H_{2 N} E_{N} \\
\vdots & \ddots & \vdots \\
D_{N} H_{N 1} E_{1} & \ldots & D_{N} H_{N N} E_{N}
\end{array}\right)
$$

where $E \in \mathbb{F}_{q}[\underline{e}, \underline{d}]^{\{s \times \ell\}}$ and $D \in \mathbb{F}_{q}[\underline{e}, \underline{d}]^{\{\ell \times t\}}$.

Optimization problem. Find matrices E, D such that

Algebraic model

We represent a network \mathcal{N} by matrices with

$$
D H E=\left(\begin{array}{ccc}
D_{1} H_{11} E_{1} & \ldots & D_{1} H_{1 N} E_{N} \\
D_{2} H_{21} E_{1} & \ldots & D_{2} H_{2 N} E_{N} \\
\vdots & \ddots & \vdots \\
D_{N} H_{N 1} E_{1} & \ldots & D_{N} H_{N N} E_{N}
\end{array}\right)
$$

where $E \in \mathbb{F}_{q}[\underline{e}, \underline{d}]^{\{s \times \ell\}}$ and $D \in \mathbb{F}_{q}[\underline{e}, \underline{d}]^{\{\ell \times t\}}$.

Optimization problem. Find matrices E, D such that

- $D_{i} H_{i j} E_{j}=0$

Algebraic model

We represent a network \mathcal{N} by matrices with

$$
D H E=\left(\begin{array}{ccc}
D_{1} H_{11} E_{1} & \ldots & D_{1} H_{1 N} E_{N} \\
D_{2} H_{21} E_{1} & \ldots & D_{2} H_{2 N} E_{N} \\
\vdots & \ddots & \vdots \\
D_{N} H_{N 1} E_{1} & \ldots & D_{N} H_{N N} E_{N}
\end{array}\right)
$$

where $E \in \mathbb{F}_{q}[\underline{e}, \underline{d}]^{\{s \times \ell\}}$ and $D \in \mathbb{F}_{q}[\underline{e}, \underline{d}]^{\{\ell \times t\}}$.

Optimization problem. Find matrices E, D such that

- $D_{i} H_{i j} E_{j}=0 \longrightarrow$ homogeneous bilinear system.

Algebraic model

We represent a network \mathcal{N} by matrices with

$$
D H E=\left(\begin{array}{ccc}
D_{1} H_{11} E_{1} & \ldots & D_{1} H_{1 N} E_{N} \\
D_{2} H_{21} E_{1} & \ldots & D_{2} H_{2 N} E_{N} \\
\vdots & \ddots & \vdots \\
D_{N} H_{N 1} E_{1} & \ldots & D_{N} H_{N N} E_{N}
\end{array}\right)
$$

where $E \in \mathbb{F}_{q}[\underline{e}, \underline{d}]^{\{s \times \ell\}}$ and $D \in \mathbb{F}_{q}[\underline{e}, \underline{d}]^{\{\ell \times t\}}$.

Optimization problem. Find matrices E, D such that

- $D_{i} H_{i j} E_{j}=0 \longrightarrow$ homogeneous bilinear system.
- rank $D_{i} H_{i i} E_{i}$ is maximal.

(1) Introduction

(2) Interference Networks

- Definition
- Multiple Unicast network
- Linear Achievability and complexity
(3) Achievability bounds for Multiple Unicast Networks
- Lower Bound
- Upper Bounds
(4) Conclusions

Some preliminary results

Lemma

If \mathcal{N} is ρ-linearly achievable then $\rho_{i} \leq \operatorname{rank} H_{i i}=r_{i}$.

Some preliminary results

Lemma

If \mathcal{N} is ρ-linearly achievable then $\rho_{i} \leq \operatorname{rank} H_{i i}=r_{i}$.

Lemma

Let \mathcal{N} be such that $t_{i}=s_{i}=r_{i}=\ell_{i}$ for all $1 \leq i \leq N$. Then \mathcal{N} is ℓ-linearly achievable for $\ell=\left(\ell_{1}, \ldots, \ell_{N}\right)$ only if D, Hand E are fullrank.

Some preliminary results

Lemma

If \mathcal{N} is ρ-linearly achievable then $\rho_{i} \leq \operatorname{rank} H_{i i}=r_{i}$.

Lemma

Let \mathcal{N} be such that $t_{i}=s_{i}=r_{i}=\ell_{i}$ for all $1 \leq i \leq N$. Then \mathcal{N} is ℓ-linearly achievable for $\ell=\left(\ell_{1}, \ldots, \ell_{N}\right)$ only if D, Hand E are fullrank.

Theorem

Let \mathcal{N} be such that $t_{i}=s_{i}=r_{i}=\ell_{i}$ for all $1 \leq i \leq N$. If \mathcal{N} has interference then \mathcal{N} is not linearly achievable for ℓ (for all finite fields).

Lower achievability bound

Lower achievability bound

Manganiello, SMSS@Clemson \& CRL@Ryerson

Lower achievability bound

Sufficient condition for solvability

$$
H=\left(\begin{array}{cccc}
H_{11} & H_{12} & \ldots & H_{1 N} \\
H_{21} & H_{22} & \ldots & H_{2 N} \\
\vdots & & & \vdots \\
H_{N 1} & H_{N 2} & \ldots & H_{N N}
\end{array}\right)
$$

Definition

We call rank of interference the value $o_{i}:=\operatorname{rank}\left(H_{i j} \mid j \neq i\right)$.

Sufficient condition for solvability

$$
H=\left(\begin{array}{cccc}
H_{11} & H_{12} & \ldots & H_{1 N} \\
H_{21} & H_{22} & \ldots & H_{2 N} \\
\vdots & & & \vdots \\
H_{N 1} & H_{N 2} & \ldots & H_{N N}
\end{array}\right) \quad H=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Definition

We call rank of interference the value $o_{i}:=\operatorname{rank}\left(H_{i j} \mid j \neq i\right)$.

$$
o_{1}=1, o_{2}=1, o_{3}=2
$$

Theorem

A network \mathcal{N} is $\left(r_{1}-o_{1}, \ldots, r_{N}-o_{N}\right)$-linearly achievable and matrices E and D can be computed using Gaussian elimination 2 N times.
\mathcal{N} is $(1,1,0)$-linearly achievable.

Proof of the lower bound

Denote by $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$ be the left kernel of $\left(H_{i j} \mid j \neq i\right)$.

- $D_{i} H_{i j}=0$ if and only if the rows of D_{i} are contained in $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$.

Proof of the lower bound

Denote by $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$ be the left kernel of $\left(H_{i j} \mid j \neq i\right)$.

- $D_{i} H_{i j}=0$ if and only if the rows of D_{i} are contained in $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$.
- $\left(H_{i j} \mid j \neq i\right)$ is a matrix with t_{i} rows and rank o_{i}.

Proof of the lower bound

Denote by $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$ be the left kernel of $\left(H_{i j} \mid j \neq i\right)$.

- $D_{i} H_{i j}=0$ if and only if the rows of D_{i} are contained in $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$.
- $\left(H_{i j} \mid j \neq i\right)$ is a matrix with t_{i} rows and rank o_{i}.
- dim ℓ ker $\left(H_{i j} \mid j \neq i\right)$ is $t_{i}-o_{i}$.

Proof of the lower bound

Denote by $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$ be the left kernel of $\left(H_{i j} \mid j \neq i\right)$.

- $D_{i} H_{i j}=0$ if and only if the rows of D_{i} are contained in $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$.
- $\left(H_{i j} \mid j \neq i\right)$ is a matrix with t_{i} rows and rank o_{i}.
- dim ℓ ker $\left(H_{i j} \mid j \neq i\right)$ is $t_{i}-o_{i}$.
- Choose the rows of D_{i} to span the $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$.

Proof of the lower bound

Denote by $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$ be the left kernel of $\left(H_{i j} \mid j \neq i\right)$.

- $D_{i} H_{i j}=0$ if and only if the rows of D_{i} are contained in $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$.
- $\left(H_{i j} \mid j \neq i\right)$ is a matrix with t_{i} rows and rank o_{i}.
- dim ℓ ker $\left(H_{i j} \mid j \neq i\right)$ is $t_{i}-o_{i}$.
- Choose the rows of D_{i} to span the $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$.
- Without loss of generality $H_{i i}$ is a partial identity of rank r_{i}.

Proof of the lower bound

Denote by $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$ be the left kernel of $\left(H_{i j} \mid j \neq i\right)$.

- $D_{i} H_{i j}=0$ if and only if the rows of D_{i} are contained in $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$.
- $\left(H_{i j} \mid j \neq i\right)$ is a matrix with t_{i} rows and rank o_{i}.
- dim ℓ ker $\left(H_{i j} \mid j \neq i\right)$ is $t_{i}-o_{i}$.
- Choose the rows of D_{i} to span the $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$.
- Without loss of generality $H_{i i}$ is a partial identity of rank r_{i}.
- $\operatorname{rank} D_{i} H_{i i} \geq\left(t_{i}-o_{i}\right)-\left(t_{i}-r_{i}\right)=r_{i}-o_{i}$.

Proof of the lower bound

Denote by $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$ be the left kernel of $\left(H_{i j} \mid j \neq i\right)$.

- $D_{i} H_{i j}=0$ if and only if the rows of D_{i} are contained in $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$.
- $\left(H_{i j} \mid j \neq i\right)$ is a matrix with t_{i} rows and rank o_{i}.
- dim ℓ ker $\left(H_{i j} \mid j \neq i\right)$ is $t_{i}-o_{i}$.
- Choose the rows of D_{i} to span the $\ell \operatorname{ker}\left(H_{i j} \mid j \neq i\right)$.
- Without loss of generality $H_{i i}$ is a partial identity of rank r_{i}.
- rank $D_{i} H_{i i} \geq\left(t_{i}-o_{i}\right)-\left(t_{i}-r_{i}\right)=r_{i}-o_{i}$.
- Let E_{i} be any invertible matrix, then rank $D_{i} H_{i i} E_{i} \geq r_{i}-o_{i}$.

Encoding-Dependent Linear Achievability

Theorem

A network \mathcal{N} is $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$-linearly achievable if and only if there exist E_{1}, \ldots, E_{n} such that for all $i \in[N]$ if holds that

$$
\rho_{i} \leq \operatorname{dim} \ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right) / \ell \operatorname{ker}\left(H_{i j} E_{j} \mid \forall j\right)
$$

Moreover the bound is always tight.

Encoding-Dependent Linear Achievability

Theorem

A network \mathcal{N} is $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$-linearly achievable if and only if there exist E_{1}, \ldots, E_{n} such that for all $i \in[N]$ if holds that

$$
\rho_{i} \leq \operatorname{dim} \ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right) / \ell \operatorname{ker}\left(H_{i j} E_{j} \mid \forall j\right)
$$

Moreover the bound is always tight.

- Let $V_{i}=\ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right) / \ell \operatorname{ker}\left(H_{i j} E_{j} \mid \forall j\right)$

Encoding-Dependent Linear Achievability

Theorem

A network \mathcal{N} is $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$-linearly achievable if and only if there exist E_{1}, \ldots, E_{n} such that for all $i \in[N]$ if holds that

$$
\rho_{i} \leq \operatorname{dim} \ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right) / \ell \operatorname{ker}\left(H_{i j} E_{j} \mid \forall j\right)
$$

Moreover the bound is always tight.

- Let $V_{i}=\ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right) / \ell \operatorname{ker}\left(H_{i j} E_{j} \mid \forall j\right)$
- If D_{i} is such that $D_{i} H_{i j} E_{j}=0$, then the rows of D_{i} belong to $\ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right)$.

Encoding-Dependent Linear Achievability

Theorem

A network \mathcal{N} is $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$-linearly achievable if and only if there exist E_{1}, \ldots, E_{n} such that for all $i \in[N]$ if holds that

$$
\rho_{i} \leq \operatorname{dim} \ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right) / \ell \operatorname{ker}\left(H_{i j} E_{j} \mid \forall j\right)
$$

Moreover the bound is always tight.

- Let $V_{i}=\ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right) / \ell \operatorname{ker}\left(H_{i j} E_{j} \mid \forall j\right)$
- If D_{i} is such that $D_{i} H_{i j} E_{j}=0$, then the rows of D_{i} belong to $\ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right)$.
- Let $v_{i, 1}, \ldots, v_{i, \ell_{i}}$ be the rows of D_{i}, then

$$
\begin{aligned}
\operatorname{rank} D_{i} H_{i i} E_{i} & =\operatorname{dim}\left\langle v_{i, 1} H_{i i} E_{i}, \ldots, v_{i, \ell_{i}} H_{i i} E_{i}\right\rangle \\
& \leq \operatorname{dim} \ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right) / \ell \operatorname{ker}\left(H_{i j} E_{j} \mid \forall j\right)
\end{aligned}
$$

Encoding-Dependent Linear Achievability

Theorem

A network \mathcal{N} is $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$-linearly achievable if and only if there exist E_{1}, \ldots, E_{n} such that for all $i \in[N]$ if holds that

$$
\rho_{i} \leq \operatorname{dim} \ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right) / \ell \operatorname{ker}\left(H_{i j} E_{j} \mid \forall j\right)
$$

Moreover the bound is always tight.

- Let $V_{i}=\ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right) / \ell \operatorname{ker}\left(H_{i j} E_{j} \mid \forall j\right)$
- If D_{i} is such that $D_{i} H_{i j} E_{j}=0$, then the rows of D_{i} belong to $\ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right)$.
- Let $v_{i, 1}, \ldots, v_{i, \ell_{i}}$ be the rows of D_{i}, then

$$
\begin{aligned}
\operatorname{rank} D_{i} H_{i i} E_{i} & =\operatorname{dim}\left\langle v_{i, 1} H_{i i} E_{i}, \ldots, v_{i, \ell_{i}} H_{i i} E_{i}\right\rangle \\
& \leq \operatorname{dim} \ell \underline{\ell \operatorname{ker}\left(H_{i j} E_{j} \mid j \neq i\right) / \ell \operatorname{ker}\left(H_{i j} E_{j} \mid \forall j\right)}
\end{aligned}
$$

- $\operatorname{rank} D_{i} H_{i i} E_{i}=\operatorname{dim} V_{i} \operatorname{iff}\left\{\left[v_{i, 1}\right], \ldots,\left[v_{i, \ell_{i}}\right]\right\}$ spans V_{i}.

Example

$$
H=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Example

$$
H=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), E_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Example

$$
\begin{gathered}
H=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right), \\
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), E_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
H_{31} E_{1}=0
\end{gathered} \quad H_{32} E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad H_{33} E_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Manganiello, SMSS@Clemson \& CRL@Ryerson

Example

$$
\begin{gathered}
H=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right), \quad E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), E_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
H_{31} E_{1}=0 \\
\begin{array}{l}
H_{32} E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
\ell \text { ker } H_{31} E_{1}=\mathbb{F}_{q}^{2} \\
\rho_{3}=\operatorname{dim} \ell \operatorname{ker}\left(H_{3 j} E_{j} \mid j \neq 3\right) / \ell \operatorname{ker}\left(H_{3 j} E_{j} \mid \forall j\right)=\operatorname{dim}\langle(0,1)\rangle /\{0\}=1
\end{array} \quad H_{33} E_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
\ell \text { ker } H_{33} E_{2}=\langle(1,0)\rangle
\end{gathered}
$$

Example

$$
\left.\begin{array}{c}
H=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right), \quad E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), E_{3}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
H_{31} E_{1}=0 \\
\ell \operatorname{lker} H_{31} E_{1}=\mathbb{F}_{q}^{2} \\
\rho_{3}=\operatorname{dim} \ell \operatorname{ker}\left(H_{3 j} E_{j} \mid j \neq 3\right) / \ell \operatorname{ker}\left(H_{3 j} E_{j} \mid \forall j\right)=\operatorname{dim}\langle(0,1)\rangle /\{0\}=1
\end{array} \quad H_{33} E_{3}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Conclusions

Future projects

- Find $\operatorname{Lin}(\mathcal{N})$ for all multiple unicast networks.
- Find good algorithmic methods to solve the optimization problem.
- Prove that linearity is actually optimal for the explained multiple unicast networks.
- Generalize these results to other interference networks

Conclusions

Future projects

- Find $\operatorname{Lin}(\mathcal{N})$ for all multiple unicast networks.
- Find good algorithmic methods to solve the optimization problem.
- Prove that linearity is actually optimal for the explained multiple unicast networks.
- Generalize these results to other interference networks

Thank you.

References

Cadambe, V. R. and Jafar, S. A. (2008).
Interference alignment and degrees of freedom of the k-user interference channel.
IEEE Transactions on Information Theory, 54(8):3425-3441.

Dougherty, R., Freiling, C., and Zeger, K. (2005).
Insufficiency of linear coding in network information flow.
IEEE Transactions on Information Theory, 51(8):2745-2759.
Koetter, R. and Medard, M. (2003).
An algebraic approach to network coding.
IEEE/ACM Transactions on Networking, 11(5):782-795.Li, S. . R., Yeung, R. W., and Ning Cai (2003).
Linear network coding.
IEEE Transactions on Information Theory, 49(2):371-381.

Zhao, N., Yu, F. R., Jin, M., Yan, Q., and Leung, V. C. M. (2016).
Interference alignment and its applications: A survey, research issues, and challenges.
IEEE Communications Surveys Tutorials, 18(3):1779-1803.

Manganiello, SMSS@Clemson \& CRL@Ryerson

