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Noisy-Channel Coding Theorem (1948)

Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

“Any channel, however affected by noise, possesses a specific
channel capacity - a rate of conveying information that can never
be exceeded without error, but that can always be attained with an
arbitrarily small probability of error.”

Solved: Turbo codes (LTE networks), Polar & spatially-coupled
LDPC codes (5G networks)
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Networks - a graph perspective

A network is a directed acyclic graph N = (V, E ,S,R,Fq).

• Sources: nodes with no incoming edges, S ( V.

• Sinks: nodes with no outgoing edges, R ( V.

• Edges represent perfect unit capacity channels.

• each sink R ∈ R demands messages from DR ⊆ S.
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Networks - a graph perspective

A network is a directed acyclic graph N = (V, E ,S,R,Fq).

• Unicast Problem: |S| = |R| = 1 and DR = S.

• Multicast Problem: |R| ≥ 1 and DR = S for all R ∈ R.

• Multiple Unicast problem: S = {S1, . . . ,Sn},
R = {R1, . . . ,Rn}, and DRi

= {Si}.
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Unicast Network

• Communication rate: ρ ≤ mincut(S ,R).

• Menger’s Theorem: mincut(S ,R) = maximum number of
pairwise edge–disjoint paths.

• Routing maximizes R.
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Multicast network [Li et al., 2003, Koetter and Medard, 2003]

Theorem (Linear Network Multicasting Theorem)

Let N = (V, E ,S,R,Fq). A multicast rate of

min
R∈R

mincut(S,R)

is achievable, for sufficiently large q, with linear network coding.

Manganiello, SMSS@Clemson & CRL@Ryerson Graphs and Algebra in Modern Communication



intro interference networks bounds conclusion

Multicast network [Li et al., 2003, Koetter and Medard, 2003]

Theorem (Linear Network Multicasting Theorem)

Let N = (V, E ,S,R,Fq). A multicast rate of

min
R∈R

mincut(S,R)

is achievable, for sufficiently large q, with linear network coding.

Manganiello, SMSS@Clemson & CRL@Ryerson Graphs and Algebra in Modern Communication



intro interference networks bounds conclusion

Multicast network [Li et al., 2003, Koetter and Medard, 2003]

Theorem (Linear Network Multicasting Theorem)

Let N = (V, E ,S,R,Fq). A multicast rate of

min
R∈R

mincut(S,R)

is achievable, for sufficiently large q, with linear network coding.

Manganiello, SMSS@Clemson & CRL@Ryerson Graphs and Algebra in Modern Communication



intro interference networks bounds conclusion

Multicast network [Li et al., 2003, Koetter and Medard, 2003]

Theorem (Linear Network Multicasting Theorem)

Let N = (V, E ,S,R,Fq). A multicast rate of

min
R∈R

mincut(S,R)

is achievable, for sufficiently large q, with linear network coding.

Manganiello, SMSS@Clemson & CRL@Ryerson Graphs and Algebra in Modern Communication



intro interference networks bounds conclusion

Multicast network [Li et al., 2003, Koetter and Medard, 2003]

Theorem (Linear Network Multicasting Theorem)

Let N = (V, E ,S,R,Fq). A multicast rate of

min
R∈R

mincut(S,R)

is achievable, for sufficiently large q, with linear network coding.

Manganiello, SMSS@Clemson & CRL@Ryerson Graphs and Algebra in Modern Communication



intro interference networks bounds conclusion

Multicast network [Li et al., 2003, Koetter and Medard, 2003]

Theorem (Linear Network Multicasting Theorem)

Let N = (V, E ,S,R,Fq). A multicast rate of

min
R∈R

mincut(S,R)

is achievable, for sufficiently large q, with linear network coding.

Manganiello, SMSS@Clemson & CRL@Ryerson Graphs and Algebra in Modern Communication



intro interference networks bounds conclusion

Insufficiency of LNC [Dougherty et al., 2005]

Theorem

There exists an solvable network that has no linear solution over
any finite field and any vector dimension.
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Networks and Interference

“Interference is a major impairment to the reliable communication
in multi-user wireless networks, due to the broadcast and
superposition nature of wireless medium.” [Zhao et al., 2016]

Let N be a network with S sources set
and R receivers set. A network has
interference if

• DR 6= S for some R ∈ R
• for some R ∈ R there is a paths

between S /∈ DR and R.
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Multiple Unicast network

Definition

A multiple unicast network is a network N such that |S| = |R| and
DRi

= {Si} for i = 1, . . . , |S|.

Communication strategy:

• 1 round → no interference-free
communication possible.

• multiple rounds → time sharing.
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Multiple Unicast network (cont’d)

Communication strategy:

• multiple rounds → time sharing.

• 1 round → interference alignment,
meaning use of subspaces to
communicate without interference

• original paper
[Cadambe and Jafar, 2008].
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Communication strategy:

• multiple rounds → time sharing.

• 1 round →

interference alignment,
meaning use of subspaces to
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Multiple Unicast network - Notation

• si number of antennas available to
source Si and s =

∑N
i=1 si .

• ti number of antennas available to
source Ri and t =

∑N
i=1 ti .

• The adjacency matrix H ∈ {0, 1}t×s ,
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Multiple Unicast network - Notation

• si number of antennas available to
source Si and s =

∑N
i=1 si .

• ti number of antennas available to
source Ri and t =

∑N
i=1 ti .

• The adjacency matrix H ∈ {0, 1}t×s ,

H =


H11 H12 . . . H1N

H21 H22 . . . H2N
...

...
...

HN1 HN2 . . . HNN


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Example

H =



1 0 0 0 0 0
0 1 0 0 1 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 1 0 0 0 1


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Linear Encoders and Decoders

E =


E1 0 . . . 0
0 E2 . . . 0
...

...
0 0 . . . EN



D =


D1 0 . . . 0
0 D2 . . . 0
...

...
0 0 . . . DN


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Linear Network Communication

mi ,1
...

mi ,`i

 j 6=i

mj ,1
...

mj ,`j


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Linear Network Communication

Ei

mi ,1
...

mi ,`i

 j 6=i Ej

mj ,1
...

mj ,`j


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Linear Network Communication

HiiEi

mi ,1
...

mi ,`i

 +
∑

j 6=i HijEj

mj ,1
...

mj ,`j


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Linear Network Communication

DiHiiEi

mi ,1
...

mi ,`i

 +
∑

j 6=i DiHijEj

mj ,1
...

mj ,`j


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Linear Network Communication

m̂i ,1
...

m̂i ,`i

 = DiHiiEi

mi ,1
...

mi ,`i

 +
∑

j 6=i DiHijEj

mj ,1
...

mj ,`j


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Linear Achievability of Multiple Unicast networks

Definition

A network N is linearly achievable for ρ = (ρ1, . . . , ρN) ∈ ZN , or
simply ρ-linearly achievable, if there exist two matrices D,E (with
entries in Fq) such that

DiHijEj = 0 and rank(DiHiiEi ) = ρi .

• DiHiiEi is a `i × `i matrix.
• wlog Di can be chosen to be in RCEF and messages are sent

at pivot positions.

DiHiiEi


m1

0
m3

...
mρi

 =


1 0 . . . 0 0 . . . 0
? 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
...

0 0 . . . 1 0 . . . 0




m1

0
m3

...
mρi

 =


m1

?
m3

...
mρi


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Linear Achievability Region

Definition

The linear achievability region of network N , denoted Lin(N ), is
the subset of RN for which N is ρ-linearly achievable.

H =


1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1


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Algebraic model

We represent a network N by matrices with

DHE =


D1H11E1 . . . D1H1NEN

D2H21E1 . . . D2H2NEN
...

. . .
...

DNHN1E1 . . . DNHNNEN


where E ∈ Fq[e, d ]{s×`} and D ∈ Fq[e, d ]{`×t}.

Optimization problem. Find matrices E ,D such that

• DiHijEj = 0 −→ homogeneous bilinear system.

• rankDiHiiEi is maximal.
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Some preliminary results

Lemma

If N is ρ-linearly achievable then
ρi ≤ rank Hii = ri .

Lemma

Let N be such that ti = si = ri = `i for all 1 ≤ i ≤ N. Then N is
`-linearly achievable for ` = (`1, . . . , `N) only if D, Hand E are
fullrank.

Theorem

Let N be such that ti = si = ri = `i for all 1 ≤ i ≤ N. If N has
interference then N is not linearly achievable for ` (for all finite
fields).
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Sufficient condition for solvability

H =


H11 H12 . . . H1N

H21 H22 . . . H2N
...

...
HN1 HN2 . . . HNN


Definition

We call rank of interference the value
oi := rank(Hij | j 6= i).

Theorem

A network N is
(r1 − o1, . . . , rN − oN)-linearly achievable
and matrices E and D can be computed
using Gaussian elimination 2N times.

H =


1 0 0 0 0 0
0 1 0 0 1 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 1 0 0 0 1



o1 = 1, o2 = 1, o3 = 2

N is (1, 1, 0)-linearly
achievable.
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Proof of the lower bound

Denote by `ker(Hij | j 6= i) be the left kernel of (Hij | j 6= i).

• DiHij = 0 if and only if the rows of Di are contained in
`ker (Hij | j 6= i).

• (Hij | j 6= i) is a matrix with ti rows and rank oi .

• dim `ker (Hij | j 6= i) is ti − oi .

• Choose the rows of Di to span the `ker (Hij | j 6= i).

• Without loss of generality Hii is a partial identity of rank ri .

• rankDiHii ≥ (ti − oi )− (ti − ri ) = ri − oi .

• Let Ei be any invertible matrix, then rankDiHiiEi ≥ ri − oi .
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Encoding-Dependent Linear Achievability

Theorem

A network N is ρ = (ρ1, . . . , ρn)-linearly achievable if and only if
there exist E1, . . . ,En such that for all i ∈ [N] if holds that

ρi ≤ dim `ker(HijEj | j 6= i)/̀ ker(HijEj | ∀ j).

Moreover the bound is always tight.

• Let Vi = `ker(HijEj | j 6= i)/̀ ker(HijEj | ∀ j)

• If Di is such that DiHijEj = 0, then the rows of Di belong to
`ker(HijEj | j 6= i).

• Let vi ,1, . . . , vi ,`i be the rows of Di , then

rankDiHiiEi = dim〈vi ,1HiiEi , . . . , vi ,`iHiiEi 〉
≤ dim `ker(HijEj | j 6= i)/̀ ker(HijEj | ∀ j)

• rankDiHiiEi = dimVi iff {[vi ,1], . . . , [vi ,`i ]} spans Vi .
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Example

H =


1 0 0 0 0 0
0 1 0 0 1 0
1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 1 0 0 0 1

,

E1 =

(
1 0
0 0

)
,E2 =

(
1 0
0 1

)
,E3 =

(
0 0
0 1

)

H31E1 = 0 H32E2 =

(
0 1
0 0

)
H33E3 =

(
0 0
0 1

)

`ker H31E1 = F2
q `ker H32E2 = 〈(0, 1)〉 `ker H33E2 = 〈(1, 0)〉

ρ3 = dim `ker(H3jEj | j 6= 3)/̀ ker(H3jEj | ∀ j) = dim 〈(0, 1)〉/{0} = 1

D3 =

(
0 1
0 0

)
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Conclusions

Future projects

• Find Lin(N ) for all multiple unicast networks.

• Find good algorithmic methods to solve the optimization
problem.

• Prove that linearity is actually optimal for the explained
multiple unicast networks.

• Generalize these results to other interference networks

Thank you.
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