Graphs and Algebra in Modern Communication.

Felice Manganiello School of Math and Stat Sciences @ Clemson University Cybersecurity Research Lab @ Ryerson University

May 26, 2020

Joint work with **Kschischang (UofT)**, **Ravagnani (TU/e)**, *Savary (Clemson)* Kai (UMichigan), Pedro (UMaryland), Paige (U of Mary Washington),

Kimberly (Bowdoin College) and Nathan (Haverford College) Partially funded by NSF Grant No. DMS:1547399.

2 Interference Networks

- Definition
- Multiple Unicast network
- Linear Achievability and complexity

3 Achievability bounds for Multiple Unicast Networks

- Lower Bound
- Upper Bounds

4 Conclusions

Noisy-Channel Coding Theorem (1948)

Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

"Any channel, however affected by noise, possesses a specific channel capacity - a rate of conveying information that can never be exceeded without error, but that can always be attained with an arbitrarily small probability of error."

Noisy-Channel Coding Theorem (1948)

Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

"Any channel, however affected by noise, possesses a specific channel capacity - a rate of conveying information that can never be exceeded without error, but that can always be attained with an arbitrarily small probability of error."

Solved: Turbo codes (LTE networks), Polar & spatially-coupled LDPC codes (5G networks)

Noisy-Channel Coding Theorem (1948)

Theorem (Noisy-Channel Coding Theorem - Shannon - 1948)

"Any channel, however affected by noise, possesses a specific channel capacity - a rate of conveying information that can never be exceeded without error, but that can always be attained with an arbitrarily small probability of error."

Solved: Turbo codes (LTE networks), Polar & spatially-coupled LDPC codes (5G networks)

Networks - a graph perspective

A network is a *directed acyclic graph* $\mathcal{N} = (\mathcal{V}, \mathcal{E}, \mathcal{S}, \mathcal{R}, \mathbb{F}_q)$.

- Sources: nodes with no incoming edges, $\mathcal{S} \subsetneq \mathcal{V}$.
- Sinks: nodes with no outgoing edges, $\mathcal{R} \subsetneq \mathcal{V}$.
- Edges represent perfect unit capacity channels.
- each sink $R \in \mathcal{R}$ demands messages from $D_R \subseteq \mathcal{S}$.

Networks - a graph perspective

A network is a *directed acyclic graph* $\mathcal{N} = (\mathcal{V}, \mathcal{E}, \mathcal{S}, \mathcal{R}, \mathbb{F}_q)$.

- Unicast Problem: $|S| = |\mathcal{R}| = 1$ and $D_R = S$.
- Multicast Problem: $|\mathcal{R}| \ge 1$ and $D_R = S$ for all $R \in \mathcal{R}$.

• Multiple Unicast problem: $S = \{S_1, \ldots, S_n\}$, $\mathcal{R} = \{R_1, \ldots, R_n\}$, and $D_{R_i} = \{S_i\}$.

Unicast Network

• Communication rate: $\rho \leq \operatorname{mincut}(S, R)$.

Unicast Network

- Communication rate: $\rho \leq \operatorname{mincut}(S, R)$.
- Menger's Theorem: mincut(S, R) = maximum number of pairwise edge-disjoint paths.

Unicast Network

- Communication rate: $\rho \leq \operatorname{mincut}(S, R)$.
- Menger's Theorem: mincut(S, R) = maximum number of pairwise edge-disjoint paths.
- Routing maximizes *R*.

Theorem (Linear Network Multicasting Theorem)

Let $\mathcal{N} = (\mathcal{V}, \mathcal{E}, \mathcal{S}, \mathcal{R}, \mathbb{F}_q)$. A multicast rate of

 $\min_{R\in\mathcal{R}}\operatorname{mincut}(\mathcal{S},R)$

is achievable, for sufficiently large q, with linear network coding.

Theorem (Linear Network Multicasting Theorem)

Let $\mathcal{N} = (\mathcal{V}, \mathcal{E}, \mathcal{S}, \mathcal{R}, \mathbb{F}_q)$. A multicast rate of

 $\min_{R\in\mathcal{R}} \operatorname{mincut}(\mathcal{S},R)$

is achievable, for sufficiently large q, with linear network coding.

Insufficiency of LNC [Dougherty et al., 2005]

Theorem

There exists an solvable network that has no linear solution over any finite field and any vector dimension.

Interference Networks

- Definition
- Multiple Unicast network
- Linear Achievability and complexity

3 Achievability bounds for Multiple Unicast Networks

- Lower Bound
- Upper Bounds

4 Conclusions

Networks and Interference

"Interference is a major impairment to the reliable communication in multi-user wireless networks, due to the broadcast and superposition nature of wireless medium." [Zhao et al., 2016]

Networks and Interference

"Interference is a major impairment to the reliable communication in multi-user wireless networks, due to the broadcast and superposition nature of wireless medium." [Zhao et al., 2016]

Let ${\cal N}$ be a network with ${\cal S}$ sources set and ${\cal R}$ receivers set. A network has interference if

- $D_R \neq S$ for some $R \in \mathcal{R}$
- for some $R \in \mathcal{R}$ there is a paths between $S \notin D_R$ and R.

Networks and Interference

"Interference is a major impairment to the reliable communication in multi-user wireless networks, due to the broadcast and superposition nature of wireless medium." [Zhao et al., 2016]

Let ${\cal N}$ be a network with ${\cal S}$ sources set and ${\cal R}$ receivers set. A network has interference if

- $D_R \neq S$ for some $R \in \mathcal{R}$
- for some $R \in \mathcal{R}$ there is a paths between $S \notin D_R$ and R.

Definition

A multiple unicast network is a network \mathcal{N} such that $|\mathcal{S}| = |\mathcal{R}|$ and $D_{R_i} = \{S_i\}$ for $i = 1, \dots, |\mathcal{S}|$.

Definition

A multiple unicast network is a network \mathcal{N} such that $|\mathcal{S}| = |\mathcal{R}|$ and $D_{\mathcal{R}_i} = \{S_i\}$ for $i = 1, \dots, |\mathcal{S}|$.

Communication strategy:

Definition

A multiple unicast network is a network \mathcal{N} such that $|\mathcal{S}| = |\mathcal{R}|$ and $D_{R_i} = \{S_i\}$ for $i = 1, \dots, |\mathcal{S}|$.

Communication strategy:

• 1 round

Definition

A multiple unicast network is a network \mathcal{N} such that $|\mathcal{S}| = |\mathcal{R}|$ and $D_{R_i} = \{S_i\}$ for $i = 1, \dots, |\mathcal{S}|$.

Communication strategy:

• 1 round \rightarrow no interference-free communication possible.

Definition

A multiple unicast network is a network \mathcal{N} such that $|\mathcal{S}| = |\mathcal{R}|$ and $D_{R_i} = \{S_i\}$ for $i = 1, \dots, |\mathcal{S}|$.

Communication strategy:

- 1 round \rightarrow no interference-free communication possible.
- multiple rounds \rightarrow time sharing.

definition multiple unicast achievability

Multiple Unicast network (cont'd)

RTG lading (ryclognysby and Naviber Theory Etheraccou

Communication strategy:

definition multiple unicast achievability

Multiple Unicast network (cont'd)

Communication strategy:

• multiple rounds \rightarrow time sharing.

Multiple Unicast network (cont'd)

Communication strategy:

- multiple rounds \rightarrow time sharing.
- 1 round \rightarrow

Multiple Unicast network (cont'd)

Communication strategy:

- multiple rounds \rightarrow time sharing.
- 1 round → interference alignment, meaning use of subspaces to communicate without interference
- original paper [Cadambe and Jafar, 2008].

definition multiple unicast achievability

Multiple Unicast network (cont'd)

CLEMSON

definition multiple unicast achievability

Multiple Unicast network (cont'd)

Manganiello, SMSS@Clemson & CRL@Ryerson Graphs and Algebra in Modern Communication

Multiple Unicast network (cont'd)

Communication strategy:

- multiple rounds \rightarrow time sharing.
- 1 round → interference alignment, meaning use of subspaces to communicate without interference

Multiple Unicast network - Notation

- s_i number of antennas available to source S_i and $s = \sum_{i=1}^N s_i$.
- t_i number of antennas available to source R_i and $t = \sum_{i=1}^{N} t_i$.

definition multiple unicast achievability

Multiple Unicast network - Notation

R.

- s_i number of antennas available to source S_i and $s = \sum_{i=1}^{N} s_i$.
- t_i number of antennas available to source R_i and $t = \sum_{i=1}^{N} t_i$.

• The adjacency matrix
$$H \in \{0,1\}^{t \times s}$$
,

$$H = \begin{pmatrix} H_{11} & & \\ & H_{22} & \\ & & & \\ & & & H_{NN} \end{pmatrix}$$

SIO H

S₂O H₃₃

H22

S. O K.

SE

definition multiple unicast achievability

Multiple Unicast network - Notation

- $S_1 \circ I = R_1 \circ I = R_1$
- s_i number of antennas available to source S_i and $s = \sum_{i=1}^N s_i$.
 - t_i number of antennas available to source R_i and $t = \sum_{i=1}^{N} t_i$.
 - The adjacency matrix $H \in \{0,1\}^{t imes s}$,

$$H = \begin{pmatrix} H_{11} & H_{12} & \dots & H_{1N} \\ H_{21} & H_{22} & \dots & H_{2N} \\ \vdots & \vdots & & \vdots \\ H_{N1} & H_{N2} & \dots & H_{NN} \end{pmatrix}$$

Example

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Linear Encoders and Decoders

Linear Encoders and Decoders

$$E_{i}\begin{pmatrix}m_{i,1}\\\vdots\\m_{i,\ell_{i}}\end{pmatrix} \qquad _{j\neq i} \qquad E_{j}\begin{pmatrix}m_{j,1}\\\vdots\\m_{j,\ell_{j}}\end{pmatrix}$$

$$H_{ii}E_{i}\begin{pmatrix}m_{i,1}\\\vdots\\m_{i,\ell_{i}}\end{pmatrix}+\sum_{j\neq i}H_{ij}E_{j}\begin{pmatrix}m_{j,1}\\\vdots\\m_{j,\ell_{j}}\end{pmatrix}$$

$$D_{i}H_{ii}E_{i}\begin{pmatrix}m_{i,1}\\\vdots\\m_{i,\ell_{i}}\end{pmatrix}+\sum_{j\neq i}D_{i}H_{ij}E_{j}\begin{pmatrix}m_{j,1}\\\vdots\\m_{j,\ell_{j}}\end{pmatrix}$$

$$\begin{pmatrix} \hat{m}_{i,1} \\ \vdots \\ \hat{m}_{i,\ell_i} \end{pmatrix} = D_i H_{ii} E_i \begin{pmatrix} m_{i,1} \\ \vdots \\ m_{i,\ell_i} \end{pmatrix} + \sum_{j \neq i} D_i H_{ij} E_j \begin{pmatrix} m_{j,1} \\ \vdots \\ m_{j,\ell_j} \end{pmatrix}$$

$$\begin{pmatrix} \hat{m}_{i,1} \\ \vdots \\ \hat{m}_{i,\ell_i} \end{pmatrix} = D_i H_{ii} E_i \begin{pmatrix} m_{i,1} \\ \vdots \\ m_{i,\ell_i} \end{pmatrix} + \sum_{j \neq i} D_i H_{ij} E_j \begin{pmatrix} m_{j,1} \\ \vdots \\ m_{j,\ell_j} \end{pmatrix} = \begin{pmatrix} m_{i,1} \\ \vdots \\ m_{i,\ell_i} \end{pmatrix}$$

Linear Achievability of Multiple Unicast networks

Definition

A network \mathcal{N} is linearly achievable for $\rho = (\rho_1, \ldots, \rho_N) \in \mathbb{Z}^N$, or simply ρ -linearly achievable, if there exist two matrices D, E (with entries in \mathbb{F}_q) such that

$$D_i H_{ij} E_j = 0$$
 and rank $(D_i H_{ii} E_i) = \rho_i$.

•
$$D_i H_{ii} E_i$$
 is a $\ell_i \times \ell_i$ matrix.

• wlog *D_i* can be chosen to be in RCEF and messages are sent at pivot positions.

$$D_{i}H_{ii}E_{i}\begin{pmatrix}m_{1}\\0\\m_{3}\\\vdots\\m_{\rho_{i}}\end{pmatrix} = \begin{pmatrix}1 & 0 & \dots & 0 & 0 & \dots & 0* & 0 & \dots & 0 & 0 & \dots & 0\\0 & 1 & \dots & 0 & 0 & \dots & 0\\\vdots & & & \vdots & & \vdots\\0 & 0 & \dots & 1 & 0 & \dots & 0\end{pmatrix}\begin{pmatrix}m_{1}\\0\\m_{3}\\\vdots\\m_{\rho_{i}}\end{pmatrix} = \begin{pmatrix}m_{1}\\\star\\m_{3}\\\vdots\\m_{\rho_{i}}\end{pmatrix}$$

Linear Achievability Region

Definition [Variable]

The *linear achievability region* of network \mathcal{N} , denoted Lin (\mathcal{N}) , is the subset of \mathbb{R}^N for which \mathcal{N} is ρ -linearly achievable.

$$H = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Manganiello, SMSS@Clemson & CRL@Ryerson Graphs and Algebra in Modern Communication

We represent a network $\ensuremath{\mathcal{N}}$ by matrices with

$$DHE = \begin{pmatrix} D_1 H_{11} E_1 & \dots & D_1 H_{1N} E_N \\ D_2 H_{21} E_1 & \dots & D_2 H_{2N} E_N \\ \vdots & \ddots & \vdots \\ D_N H_{N1} E_1 & \dots & D_N H_{NN} E_N \end{pmatrix}$$

where $E \in \mathbb{F}_q[\underline{e}, \underline{d}]^{\{s \times \ell\}}$ and $D \in \mathbb{F}_q[\underline{e}, \underline{d}]^{\{\ell \times t\}}$.

We represent a network $\ensuremath{\mathcal{N}}$ by matrices with

$$DHE = \begin{pmatrix} D_1 H_{11} E_1 & \dots & D_1 H_{1N} E_N \\ D_2 H_{21} E_1 & \dots & D_2 H_{2N} E_N \\ \vdots & \ddots & \vdots \\ D_N H_{N1} E_1 & \dots & D_N H_{NN} E_N \end{pmatrix}$$

where $E \in \mathbb{F}_q[\underline{e}, \underline{d}]^{\{s \times \ell\}}$ and $D \in \mathbb{F}_q[\underline{e}, \underline{d}]^{\{\ell \times t\}}$.

Optimization problem. Find matrices E, D such that

We represent a network $\ensuremath{\mathcal{N}}$ by matrices with

$$DHE = \begin{pmatrix} D_1 H_{11} E_1 & \dots & D_1 H_{1N} E_N \\ D_2 H_{21} E_1 & \dots & D_2 H_{2N} E_N \\ \vdots & \ddots & \vdots \\ D_N H_{N1} E_1 & \dots & D_N H_{NN} E_N \end{pmatrix}$$

where $E \in \mathbb{F}_q[\underline{e}, \underline{d}]^{\{s \times \ell\}}$ and $D \in \mathbb{F}_q[\underline{e}, \underline{d}]^{\{\ell \times t\}}$.

Optimization problem. Find matrices E, D such that

•
$$D_i H_{ij} E_j = 0$$

We represent a network $\ensuremath{\mathcal{N}}$ by matrices with

$$DHE = \begin{pmatrix} D_1 H_{11} E_1 & \dots & D_1 H_{1N} E_N \\ D_2 H_{21} E_1 & \dots & D_2 H_{2N} E_N \\ \vdots & \ddots & \vdots \\ D_N H_{N1} E_1 & \dots & D_N H_{NN} E_N \end{pmatrix}$$

where $E \in \mathbb{F}_q[\underline{e}, \underline{d}]^{\{s \times \ell\}}$ and $D \in \mathbb{F}_q[\underline{e}, \underline{d}]^{\{\ell \times t\}}$.

Optimization problem. Find matrices E, D such that

• $D_i H_{ij} E_j = 0 \longrightarrow$ homogeneous bilinear system.

We represent a network \mathcal{N} by matrices with

$$DHE = \begin{pmatrix} D_1 H_{11} E_1 & \dots & D_1 H_{1N} E_N \\ D_2 H_{21} E_1 & \dots & D_2 H_{2N} E_N \\ \vdots & \ddots & \vdots \\ D_N H_{N1} E_1 & \dots & D_N H_{NN} E_N \end{pmatrix}$$

where $E \in \mathbb{F}_{q}[e, d]^{\{s \times \ell\}}$ and $D \in \mathbb{F}_{q}[e, d]^{\{\ell \times t\}}$.

Optimization problem. Find matrices E, D such that

• $D_i H_{ii} E_i = 0 \longrightarrow$ homogeneous bilinear system.

rank D_iH_{ii}E_i is maximal.

Introduction

2 Interference Networks

- Definition
- Multiple Unicast network
- Linear Achievability and complexity

3 Achievability bounds for Multiple Unicast Networks

- Lower Bound
- Upper Bounds

Conclusions

Some preliminary results

Lemma

If \mathcal{N} is ρ -linearly achievable then $\rho_i \leq \text{rank } H_{ii} = r_i.$

Some preliminary results

Lemma

If \mathcal{N} is ρ -linearly achievable then $\rho_i \leq \text{rank } H_{ii} = r_i$.

Lemma

Let \mathcal{N} be such that $t_i = s_i = r_i = \ell_i$ for all $1 \le i \le N$. Then \mathcal{N} is ℓ -linearly achievable for $\ell = (\ell_1, \ldots, \ell_N)$ only if D, Hand E are fullrank.

Some preliminary results

Lemma

If \mathcal{N} is ρ -linearly achievable then $\rho_i \leq \text{rank } H_{ii} = r_i.$

Lemma

Let \mathcal{N} be such that $t_i = s_i = r_i = \ell_i$ for all $1 \le i \le N$. Then \mathcal{N} is ℓ -linearly achievable for $\ell = (\ell_1, \ldots, \ell_N)$ only if D, Hand E are fullrank.

Theorem

Let \mathcal{N} be such that $t_i = s_i = r_i = \ell_i$ for all $1 \le i \le N$. If \mathcal{N} has interference then \mathcal{N} is not linearly achievable for ℓ (for all finite fields).

Lower achievability bound

Lower achievability bound

Lower achievability bound

Sufficient condition for solvability

$$H = \begin{pmatrix} H_{11} & H_{12} & \dots & H_{1N} \\ H_{21} & H_{22} & \dots & H_{2N} \\ \vdots & & & \vdots \\ H_{N1} & H_{N2} & \dots & H_{NN} \end{pmatrix}$$

Definition

We call rank of interference the value $o_i := rank(H_{ij} \mid j \neq i).$

Sufficient condition for solvability

$$H = \begin{pmatrix} H_{11} & H_{12} & \dots & H_{1N} \\ H_{21} & H_{22} & \dots & H_{2N} \\ \vdots & & & \vdots \\ H_{N1} & H_{N2} & \dots & H_{NN} \end{pmatrix}$$

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Definition

We call rank of interference the value $o_i := rank(H_{ij} \mid j \neq i).$

$o_1 = 1, \ o_2 = 1, \ o_3 = 2$

Theorem

A network N is $(r_1 - o_1, ..., r_N - o_N)$ -linearly achievable and matrices E and D can be computed using Gaussian elimination 2N times.

 \mathcal{N} is (1, 1, 0)-linearly achievable.

Proof of the lower bound

Denote by $\ell \ker(H_{ij} \mid j \neq i)$ be the left kernel of $(H_{ij} \mid j \neq i)$.

• $D_i H_{ij} = 0$ if and only if the rows of D_i are contained in $\ell \ker(H_{ij} \mid j \neq i)$.

Proof of the lower bound

- $D_i H_{ij} = 0$ if and only if the rows of D_i are contained in $\ell \ker(H_{ij} \mid j \neq i)$.
- $(H_{ij} | j \neq i)$ is a matrix with t_i rows and rank o_i .

Proof of the lower bound

- $D_i H_{ij} = 0$ if and only if the rows of D_i are contained in $\ell \ker(H_{ij} \mid j \neq i)$.
- $(H_{ij} \mid j \neq i)$ is a matrix with t_i rows and rank o_i .

• dim
$$\ell$$
ker $(H_{ij} \mid j \neq i)$ is $t_i - o_i$.

Proof of the lower bound

- $D_i H_{ij} = 0$ if and only if the rows of D_i are contained in $\ell \ker(H_{ij} \mid j \neq i)$.
- $(H_{ij} \mid j \neq i)$ is a matrix with t_i rows and rank o_i .
- dim ℓ ker $(H_{ij} | j \neq i)$ is $t_i o_i$.
- Choose the rows of D_i to span the $\ell \ker (H_{ij} \mid j \neq i)$.

Proof of the lower bound

- $D_i H_{ij} = 0$ if and only if the rows of D_i are contained in $\ell \ker(H_{ij} \mid j \neq i)$.
- $(H_{ij} \mid j \neq i)$ is a matrix with t_i rows and rank o_i .
- dim ℓ ker $(H_{ij} | j \neq i)$ is $t_i o_i$.
- Choose the rows of D_i to span the $\ell \ker (H_{ij} \mid j \neq i)$.
- Without loss of generality H_{ii} is a partial identity of rank r_i.

Proof of the lower bound

- $D_i H_{ij} = 0$ if and only if the rows of D_i are contained in $\ell \ker(H_{ij} \mid j \neq i)$.
- $(H_{ij} \mid j \neq i)$ is a matrix with t_i rows and rank o_i .
- dim ℓ ker $(H_{ij} | j \neq i)$ is $t_i o_i$.
- Choose the rows of D_i to span the $\ell \ker (H_{ij} \mid j \neq i)$.
- Without loss of generality H_{ii} is a partial identity of rank r_i.
- rank $D_i H_{ii} \ge (t_i o_i) (t_i r_i) = r_i o_i$.

Proof of the lower bound

- $D_i H_{ij} = 0$ if and only if the rows of D_i are contained in $\ell \ker(H_{ij} \mid j \neq i)$.
- $(H_{ij} \mid j \neq i)$ is a matrix with t_i rows and rank o_i .
- dim ℓ ker $(H_{ij} | j \neq i)$ is $t_i o_i$.
- Choose the rows of D_i to span the $\ell \ker (H_{ij} \mid j \neq i)$.
- Without loss of generality H_{ii} is a partial identity of rank r_i.
- rank $D_i H_{ii} \ge (t_i o_i) (t_i r_i) = r_i o_i$.
- Let E_i be any invertible matrix, then rank $D_i H_{ii} E_i \ge r_i o_i$.

intro interference networks bounds conclusion

lower upper

Encoding-Dependent Linear Achievability

Theorem

A network \mathcal{N} is $\rho = (\rho_1, \dots, \rho_n)$ -linearly achievable if and only if there exist E_1, \dots, E_n such that for all $i \in [N]$ if holds that

 $\rho_i \leq \dim \ell \ker(H_{ij}E_j \mid j \neq i)/\ell \ker(H_{ij}E_j \mid \forall j).$

intro interference networks bounds conclusion

lower upper

Encoding-Dependent Linear Achievability

Theorem

A network \mathcal{N} is $\rho = (\rho_1, \dots, \rho_n)$ -linearly achievable if and only if there exist E_1, \dots, E_n such that for all $i \in [N]$ if holds that

 $\rho_i \leq \dim \ell \ker(H_{ij}E_j \mid j \neq i)/\ell \ker(H_{ij}E_j \mid \forall j).$

• Let
$$V_i = \ell \operatorname{ker}(H_{ij}E_j \mid j \neq i)/\ell \operatorname{ker}(H_{ij}E_j \mid \forall j)$$

Encoding-Dependent Linear Achievability

Theorem

A network \mathcal{N} is $\rho = (\rho_1, \dots, \rho_n)$ -linearly achievable if and only if there exist E_1, \dots, E_n such that for all $i \in [N]$ if holds that

 $\rho_i \leq \dim \ell \ker(H_{ij}E_j \mid j \neq i)/\ell \ker(H_{ij}E_j \mid \forall j).$

- Let $V_i = \ell \operatorname{ker}(H_{ij}E_j \mid j \neq i)/\ell \operatorname{ker}(H_{ij}E_j \mid \forall j)$
- If D_i is such that $D_i H_{ij} E_j = 0$, then the rows of D_i belong to $\ell \ker(H_{ij} E_j \mid j \neq i)$.

Encoding-Dependent Linear Achievability

Theorem

A network \mathcal{N} is $\rho = (\rho_1, \dots, \rho_n)$ -linearly achievable if and only if there exist E_1, \dots, E_n such that for all $i \in [N]$ if holds that

 $\rho_i \leq \dim \ell \ker(H_{ij}E_j \mid j \neq i)/\ell \ker(H_{ij}E_j \mid \forall j).$

- Let $V_i = \ell \ker(H_{ij}E_j \mid j \neq i)/\ell \ker(H_{ij}E_j \mid \forall j)$
- If D_i is such that $D_i H_{ij} E_j = 0$, then the rows of D_i belong to $\ell \ker(H_{ij} E_j \mid j \neq i)$.
- Let $v_{i,1}, \ldots, v_{i,\ell_i}$ be the rows of D_i , then

$$\operatorname{rank} D_i H_{ii} E_i = \operatorname{dim} \langle v_{i,1} H_{ii} E_i, \dots, v_{i,\ell_i} H_{ii} E_i \rangle$$
$$\leq \operatorname{dim} \ell^{\operatorname{ker}(H_{ij} E_j \mid j \neq i)} / \ell_{\operatorname{ker}(H_{ij} E_j \mid j \neq j)}$$

Encoding-Dependent Linear Achievability

Theorem

A network \mathcal{N} is $\rho = (\rho_1, \dots, \rho_n)$ -linearly achievable if and only if there exist E_1, \dots, E_n such that for all $i \in [N]$ if holds that

$$\rho_i \leq \dim \ \ell \ker(H_{ij}E_j \mid j \neq i) / \ell \ker(H_{ij}E_j \mid \forall j).$$

Moreover the bound is always tight.

- Let $V_i = \ell \ker(H_{ij}E_j \mid j \neq i)/\ell \ker(H_{ij}E_j \mid \forall j)$
- If D_i is such that $D_i H_{ij} E_j = 0$, then the rows of D_i belong to $\ell \ker(H_{ij} E_j \mid j \neq i)$.
- Let $v_{i,1}, \ldots, v_{i,\ell_i}$ be the rows of D_i , then

$$\mathsf{rank} \ D_i H_{ii} E_i = \dim \langle v_{i,1} H_{ii} E_i, \dots, v_{i,\ell_i} H_{ii} E_i \rangle$$
$$\leq \dim \ell^{\mathsf{ker}(H_{ij} E_j \mid j \neq i) / \ell^{\mathsf{ker}(H_{ij} E_j \mid \forall j)}$$

• rank $D_i H_{ii} E_i = \dim V_i$ iff $\{[v_{i,1}], \ldots, [v_{i,\ell_i}]\}$ spans V_i .

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}, \qquad E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
$$H_{31}E_1 = 0 \qquad \qquad H_{32}E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad H_{33}E_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

 $\ell \ker H_{31}E_1 = \mathbb{F}_q^2$

 ℓ ker $H_{32}E_2=\langle (0,1)
angle$

 $\ell \mathsf{ker} \, H_{33} E_2 = \langle (1,0)
angle$

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}, E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, E_4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, E_5 = \begin{pmatrix} 0$$

 $\rho_3 = \dim \ell \ker(H_{3j}E_j \mid j \neq 3) / \ell \ker(H_{3j}E_j \mid \forall j) = \dim \langle (0,1) \rangle / \{0\} = 1$

$$H = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}, \qquad E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \\ H_{31}E_1 = 0 \qquad \qquad H_{32}E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad H_{33}E_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\ell \ker H_{31}E_1 = \mathbb{F}_q^2 \qquad \ell \ker H_{32}E_2 = \langle (0, 1) \rangle \qquad \ell \ker H_{33}E_2 = \langle (1, 0) \rangle$$

$$\ell \ker H_{32}E_2 = \langle (0,1)
angle \qquad \qquad \ell \ker H_{33}E_2 = \langle (1,0)
angle$$

 $\rho_3 = \dim \ell \ker(H_{3j}E_j \mid j \neq 3)/\ell \ker(H_{3j}E_j \mid \forall j) = \dim \langle (0,1) \rangle/\{0\} = 1$

$$D_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Conclusions

Future projects

- Find $Lin(\mathcal{N})$ for all multiple unicast networks.
- Find good algorithmic methods to solve the optimization problem.
- Prove that linearity is actually optimal for the explained multiple unicast networks.
- Generalize these results to other interference networks

Conclusions

Future projects

- Find $Lin(\mathcal{N})$ for all multiple unicast networks.
- Find good algorithmic methods to solve the optimization problem.
- Prove that linearity is actually optimal for the explained multiple unicast networks.
- Generalize these results to other interference networks

Thank you.

References

Cadambe, V. R. and Jafar, S. A. (2008). Interference alignment and degrees of freedom of the *k*-user interference channel.

IEEE Transactions on Information Theory, 54(8):3425-3441.

Dougherty, R., Freiling, C., and Zeger, K. (2005). Insufficiency of linear coding in network information flow. *IEEE Transactions on Information Theory*, 51(8):2745–2759.

Koetter, R. and Medard, M. (2003). An algebraic approach to network coding. *IEEE/ACM Transactions on Networking*, 11(5):782–795.

Li, S. . R., Yeung, R. W., and Ning Cai (2003). Linear network coding. IEEE Transactions on Information Theory, 49(2):371–381.

Zhao, N., Yu, F. R., Jin, M., Yan, Q., and Leung, V. C. M. (2016). Interference alignment and its applications: A survey, research issues, and challenges.

IEEE Communications Surveys Tutorials, 18(3):1779–1803.

