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Motivation

In 2011, Jao and De Feo proposed the Supersingular Isogeny-based
Diffie-Hellman key exchange protocol (SIDH).

The Supersingular Isogeny Key Encapsulation (SIKE) protocol, which can be
seen as a descendant of SIDH, is one of the candidates considered in the
second round of the NIST post-quantum cryptography standardization
project.

SIDH and SIKE operate on supersingular elliptic curves defined over Fp2 ,
where p is a large prime number of the form, p = 2eA3eB − 1.

The time costs of SIDH and SIKE are dominated by the computation of
large smooth-degree isogenies and scalar multiplications.
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Motivation

SIDH has been studied and implemented in an impressive number of recent
publications.

However, until today very few works have been published on the parallel
opportunities that the SIDH and SIKE protocols can offer. We are aware of
just two works,

In [Koziel-Azarderakhsh-Kermani Indocrypt’16], it was reported a
hardware implementation that concurrently evaluates the isogeny
images of an average of four points, as they became available.
In [Hutchinson-Karabina Indocrypt’18], two parallel canonical strategies
for computing/evaluating isogenies in multi-core environments were
proposed
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Motivation

More than 99% of the processors used today have multi-core capabilities.

Modern multi-core processors come equipped with two or more separate
processing units known as cores.

While most general processors have two, four or eight cores; modern servers
are equipped with tens of cores. Moreover, Graphics Processing Unit
(GPUs) are many-core architectures equipped with thousands of cores.
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Motivation

In this talk we present two [essentially orthogonal] ideas for exploiting the
rich parallelism offered by SIDH

We extend the work by [Hutchinson-Karabina Indocrypt’18] to
parallelize the whole SIDH protocol considering also the three-point
scalar multiplications
We propose an extended SIDH (eSIDH) protocol that uses primes
allowing more parallelism and faster field arithmetic

At the end of this talk we present estimates and experimental timings of the
combination of these two techniques that for an 8-core processor, achieves
an acceleration factor close to two compared against the sequential version
of the SIDH and SIKE protocols.
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Mathematical Background
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Montgomery curves

A Montgomery elliptic curve over a finite field Fq is given by the equation

E/Fq : By2 = x3 +Ax2 + x

where A2 6= 4, B 6= 0 ∈ Fq.

E(Fq) denotes the set of all finite points, i.e. points with coordinates in Fq that
satisfy the equation x3 +Ax2 + x−By2 = 0, along with the point at infinity O.

The j-invariant j(E) of a curve acts as its fingerprint, and it is given as

j(E) = 256
(A2 − 3)3

A2 − 4
.
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Advantages of Montgomery Curves

Projective Constant Montgomery Curves
[Costello-Longa-Naehrig Crypto’16]:

E(A:C)/Fq : Cy2 = x(Cx2 +Ax+ C).

Advantages:

Allows an x-only arithmetic

Highly suitable for computing scalar multiplications
using Montgomery ladders

[Costello&Hisil Asiacrypt’17] proposed efficient
formulas for computing isogenies between
Montgomery curves.
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Elliptic curve arithmetic

Scalar multiplication is defined as,

[k]P := P + P + · · ·+ P , (k − 1)(times).

The minimum integer m such that [m]P = O is called the order of P .

The subgroup generated by P is the set {P, [2]P, [3]P, . . . , [m− 1]P,O}
and is denoted by 〈P 〉.

The m-torsion subgroup is defined as E[m] = {P ∈ E | [m]P = O}.
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Supersingular elliptic curves

E is supersingular if

#E(Fq) = 1 mod p.

Otherwise E is said to be ordinary.
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Basic definitions of isogenies

An Isogeny φ : E → E′ is a non-trivial homomorphism between elliptic
curves given by rational functions. Given P and Q in E then,

φ(P +Q) = φ(P ) + φ(Q),
φ(O) = O.

The Kernel of an Isogeny φ is the set

K = {P ∈ E | φ(P ) = O}.

Note: In this talk the degree of an isogeny is s := #K.

Let E and E′ be two elliptic curves defined over Fq. If there exists an
isogeny φ : E → E′, then we say that E and E′ are isogenous.

If there exists a degree-1 isogeny between E and E′ then j(E) = j(E′). We
say that E and E′ are isomorphic. We denote that by E ∼= E′.
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Two curves are isogenous if...

Tate’s theorem states that two elliptic curves E and E′ are isogenous over
Fq, iff #E(Fq) = #E′(Fq).

If two elliptic curves E and E′ are isogenous over Fq, either both of them
are supersingular or both of them are ordinary.

Francisco Rodŕıguez-Henŕıquez Parallel strategies for SIDH May 20, 2020 10 / 45



Computing isogenies

Let E be an elliptic curve and P ∈ E be an order-m point.

Isogeny computation: there exists an elliptic curve E′ and an isogeny
φ : E → E′ such that the Kernel of φ is 〈P 〉, i.e. φ(R) = O for each
R ∈ 〈P 〉. We use the notation,

E′ = E/〈P 〉

Isogeny Evaluation: Given a point Q ∈ E(Fq) such that Q 6∈ Ker(φ), find
φ(Q), i.e., the image of the point Q on E′.
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Computing large smooth-degree isogenies

Given an isogeny φ : E → E′ of degree `e then

φ can be efficiently computed as the composition

φe−1 ◦ φe−2 ◦ · · ·φ1 ◦ φ0

where each φi for i = 0, . . . , e− 1 has degree `.
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Supersingular Isogeny Diffie Hellman
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Diffie-Hellman like protocol using isogenies: The SIDH
protocol [de Feo-Jao 2011]

SIDH framework:

Find a prime p of the form p = 2eA · 3eB · f − 1,

Let E0 be a supersingular elliptic curve defined over Fp2 with
#E0(Fp2) = (p+ 1)2.
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SIDH public parameters

p := 2eA · 3eB · f − 1

Such that 2eA ≈ 3eB
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SIDH public parameters

p := 2eA · 3eB · f − 1

Such that 2eA ≈ 3eB

Choose PA and QA

such that〈PA, QA〉 = E0[2eA ]

Choose PB and QB

such that 〈PB, QB〉 = E0[3eB ]
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SIDH protocol

KA := PA + [mA]QA

Get φA and EA = E0/〈KA〉

E0

EA
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SIDH protocol

KB := PB + [mB]QB

Get φB and EB = E0/KB

E0

EA

EB
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SIDH protocol

(EB, φB(PA), φB(QA))

E0

EA

EB
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SIDH protocol

(EA, φA(PB), φA(QB))

E0

EA

EB

EB

EA
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SIDH protocol

K ′A := φB(PA) + [mA]φB(QA)
Get EBA = EB/〈K ′A〉

E0

EA

EB

EB

EA

EBA
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SIDH protocol

K ′B := φA(PB) + [mB]φA(QB)
Get EAB = EA/〈K ′B〉

E0

EA

EB

EB

EA

EBA
∼= EAB
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E0

RA
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]QA
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Figure 1: SIDH protocol at a glance
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SIDH main building blocks

The computation of four three-point scalar multiplications of the form

R = P + [m]Q

Can be efficiently computed using the right-to-left Montgomery ladder
proposed in [FLOR TC’18] at a per-step cost of

xADD + xDBL ≈ 2xDBL

.
Montgomery ladders are not amenable for parallelization
They account for about 20-30% of the overall protocol’s computational
cost
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SIDH main building blocks

The computation of four three-point scalar multiplications of the form

R = P + [m]Q

Can be efficiently computed using the right-to-left Montgomery ladder
proposed in [FLOR TC’18] at a per-step cost of

xADD + xDBL ≈ 2xDBL

.
Montgomery ladders are not amenable for parallelization [Really??]
They account for about 20-30% of the overall protocol’s computational
cost
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SIDH main building blocks

The computation of large smooth-degree isogenies and the evaluation
of elliptic curve points in those isogenies,

Compute the degree-`e isogeny, φ : E → E′. Recall that φ can be
efficiently computed as the composition

φe−1 ◦ φe−2 ◦ · · ·φ1 ◦ φ0

where each φi for i = 0, . . . , e− 1 has degree `.

These tasks can be efficiently computed using optimal strategies as
proposed by [deFeo-Jao-Plût, JMC’14]

Optimal strategies are highly amenable for parallelization

They amount for about 70-80% of the overall protocol’s
computational cost
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computing a degree-`e isogeny φ : E → E ′

Setting:

One can compute a degree-`e

isogeny by traversing a weighted
directed graph represented as a
right triangular lattice ∆e having
e(e+1)

2 points distributed in e
columns and rows.

A leaf is defined as the most
bottom point in a given column of
the lattice.

The vertices of the graph represent
elliptic curve points and its vertical
and horizontal edges have a p` and
q` weight: the costs of performing
one scalar multiplication by ` and
one degree-` isogeny, respectively.

e columns

e rows

∆e

R0 Re−1

[`e−1]R0

...
...

...

. . .

[`e]

φ(·)
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computing a degree-`e isogeny φ : E → E ′

Game objective:

At the beginning of the isogeny
computation, only the point R0 of
order `e is known.

The goal of the isogeny
computation/evaluation
computation is to obtain one by
one, all the leaves in ∆e until the
farthest right one, Re−1, has been
calculated.

Then, φ : E → E′ can be obtained
by simply computing a degree-`
isogeny with kernel Re−1.

e columns

e rows

∆e

R0 Re−1

[`e−1]R0

...
...

...

. . .

[`e]

φ(·)
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computing a degree-`e isogeny φ : E → E ′

Rules of the game:

0 Once that you go down you can’t
go up

1 A Vertical edge corresponds to a
scalar multiplication by `

2 A Horizontal edge corresponds to a
degree-` isogeny evaluation

3 One cannot compute any horizontal
edge unless one has previously
reached the leave of the column
where you are at

4 All horizontal edges are
independent of each other and
therefore can be computed in
parallel

e columns

e rows

∆e

R0 Re−1

[`e−1]R0

...
...

...

. . .

[`e]

φ(·)
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Example: Two naive strategies

R0

[`8]R0

R1

[`7]R1

R2

[`6]R2

R3

[`5]R3

R4

[`4]R4

R5

[`3]R5

R6

[`2]R6

R7

[`1]R7

R8

[`0]R8

(a) Cost: 8 + 36

R0
0

R0
8

R0
1

R1
7

R0
2

R2
6

R0
3

R3
5

R0
4 R4

4

R0
5

R5
3

R0
6

R6
2

R0
7

R7
1

R0
8

R8
0

(b) Cost: 36 + 8

Figure 2: Two basic strategies for computing a degree-`9 isogeny. Both strategies
have quadratic complexity in terms of mults. or isogeny evaluations.
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Example: Two competitive strategies
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(a) Cost: 20 + 11
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(b) Cost: 16 + 13

Figure 3: Subfigures 3a and 3b correspond to two more efficient different
strategies to traverse ∆9.
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Optimization rules

Definition (Optimal Strategy Problem)

Let ∆e be the upper-left triangle of the grid of (e)× (e) vertices, Ge. The
Optimal Strategy Problem consists of finding a legal
directed-rooted-weighted subtree S∆e such that:∑

E∈Edges(S∆e)w(E),

is minimum, where w(E) is the weight of the edge E.
In this case we say that S∆e is an optimal strategy to traverse ∆e.
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Optimal strategies [deFeo-Jao-Plût, JMC’14]

h scalar muls by `
h

e− h

e− h degree-` isogeny evaluations

∆e−h

∆h

∆e

Optimal strategies exploit the fact that a triangle ∆e can be optimally and
recursively decomposed into two sub-triangles ∆h and ∆e−h
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Optimal strategies [deFeo-Jao-Plût, JMC’14]

h scalar muls by `
h

e− h

e− h degree-` isogeny evaluations

∆e−h

∆h

∆e

Let us denote as ∆h
e the design decision of splitting a triangle ∆e at row h.

Then, the sequential cost of walking through the triangle ∆e using the cut
∆h
e is given as,

C(∆h
e ) = C(∆h) + C(∆e−h) + (e− h) · q` + h · p`.

We say that ∆ĥ
e is optimal if C(∆ĥ

e ) is minimal among all ∆h
e for

h ∈ [1, e− 1].
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Optimal strategies [deFeo-Jao-Plût, JMC’14]

h scalar muls by `
h

e− h

e− h degree-` isogeny evaluations

∆e−h

∆h

∆e

Applying this strategy recursively leads to a procedure that computes a
degree-`e isogeny at a cost of approximately e

2 log2 e scalar multiplications
by `, e

2 log2 e degree-` isogeny evaluations, and e computations of degree-`
isogenous curves.
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Optimal strategies [deFeo-Jao-Plût, JMC’14]

h scalar muls by `
h

e− h

e− h degree-` isogeny evaluations

∆e−h

∆h

∆e

The optimal strategies presented in [deFeo-Jao-Plût, JMC’14] is one of the
major contributions to the SIDH protocol. The authors proved the
optimality of their result and virtually all the implementations of the SIDH
and SIKE protocols have adopted them.
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Optimal strategies [deFeo-Jao-Plût, JMC’14]

h scalar muls by `
h

e− h

e− h degree-` isogeny evaluations

∆e−h

∆h

∆e

The optimal strategies presented in [deFeo-Jao-Plût, JMC’14] stand as one
of the major contributions to the SIDH protocol. The authors proved the
optimality of their result and virtually all the implementations of the
SI(DH/KE) protocol have adopted them. Nevertheless... these strategies
must be revisited for parallel multi-core environments!
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Parallel computations of SIDH
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Computing large smooth degree isogenies in parallel
environments

Single Core

5 4 3 2 2 1 2 1

2

2
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2

1

1

1

1

(a) Cost: 20 + 11

4 3 2 2 1 2 1 1

3

2
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1

2

1

1

1

(b) Cost: 16 + 13
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Computing large smooth degree isogenies in parallel
environments

Two Cores

3 2 2 1 1 1 1 1

2

2

1

2

1

1

1

1

(c) Cost: 12 + 11

2 2 1 1 1 1 1 1
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2
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2

1

1

1

(d) Cost: 10 + 13
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Computing large smooth degree isogenies in parallel
environments

Three Cores

2 2 1 1 1 1 1 1
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1

2

1

1

1

1

(e) Cost: 11 + 11
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(f) Cost: 10 + 13
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Computing large smooth degree isogenies in parallel
environments

Four Cores
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Parallel Optimal Strategy Problem

Proposition (Parallel Optimal Strategy Problem)

Let q` be the timing cost associated to the computation of a degree-`
isogeny. Let us define a set of horizontal edges for a fixed index
j ∈ {0, 1, . . . , e− 2} by
Colj(S∆e) = {[(i, j), (i, j + 1)] ∈ S∆e | i ∈ [0, e− j − 2]}. The timing
cost of computing all horizontal edges in Colj(S∆e) using k cores is of⌈

#Colj(S∆e)

k

⌉
· q`
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Parallel Optimal Strategy Problem

Proposition (Parallel Optimal Strategy Problem)

Let q` be the timing cost associated to the computation of a degree-`
isogeny. Let us define a set of horizontal edges for a fixed index
j ∈ {0, 1, . . . , e− 2} by
Colj(S∆e) = {[(i, j), (i, j + 1)] ∈ S∆e | i ∈ [0, e− j − 2]}. The timing
cost of computing all horizontal edges in S∆e using k cores is given by

e−2∑
j=0

⌈
#Colj(S∆e)

k

⌉
· q`
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Parallel Optimal Strategy Problem

Proposition (Parallel Optimal Strategy Problem)

Let q` be the timing cost associated to the computation of a degree-`
isogeny. Let us define a set of horizontal edges for a fixed index
j ∈ {0, 1, . . . , e− 2} by
Colj(S∆e) = {[(i, j), (i, j + 1)] ∈ S∆e | i ∈ [0, e− j − 2]}. Now the cost
of evaluating S∆e using k cores is given as

Ck(S∆e) =

e−1∑
j=0

⌈
#Colj(S∆e)

k

⌉
· q` + #V (S∆e) · p`,

where V (S∆e) is the set of all vertical edges in S∆e
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Optimal strategies for parallel environments

h scalar muls by `
h

e− h

e− h degree-` isogeny evaluations

∆e−h

∆h

∆e

Lemma (Single core cost [deFeo-Jao-Plût JMC’14])

Given a triangle ∆e and its decomposition into ∆h and ∆e−h, the sequential cost
of traversing S∆e is given as,

C1(Sh∆e
) = C1(S∆h

) + C1(S∆e−h
) + (e− h) · q` + h · p`.

We say that S∆e
is an optimal strategy if C1(Sh∆e

) is minimal among all Sh∆e
for

h ∈ [1, e− 1].
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Optimal strategies for parallel environments

h scalar muls by `
h

e− h

e− h degree-` isogeny evaluations

∆e−h

∆h

∆e

Lemma (Multi-core cost)

Given a triangle ∆e and its decomposition into ∆h and ∆e−h, the cost of
traversing S∆e

using k cores is given as,

Ck(Sh∆e
) = Ck(S∆e−h

) + Ck(Sth) +
(e− h) · q`

k
+ h · p`,

We say that Sh∆e
is an optimal parallel strategy if Ck(Sh∆e

) is minimum among all

Sh∆e
for h ∈ [1, e− 1].
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Breaking the rules
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Breaking the rules

Proposition

Computing [2i]RA costs (eA − i) xDBL .

Computing RA = PA + [mA]QA costs eA xDBL .

Hence, computing [2i]RA costs less than computing RA.
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Breaking the rules

Proposition

Computing [2i]RA costs (eA − i) xDBL .

Computing RA = PA + [mA]QA costs eA xDBL .

Hence, computing [2i]RA costs less than computing RA.

Proof.

As PA and QA are public parameters, then we can pre-compute all points [2i]PA

and [2i]QA for i = 1 to eA − 1.

Note that [2i]RA = [2i]PA + [mA]([2i]QA).

As [2i]QA has order 2eA−i, then we can replace mA by m̄A where m̄A = mA

mod 2eA−i. This has a size of 2(eA − i) bits

Computing [2i]RA = [2i](PA + [mA mod 2eA−i]QA) costs (eA − i) xDBL
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New parallel strategy: computing Alice’s secret point and
isogenies concurrently

Single core step
1 core

k cores

k − 1cores
S∆b

S∆e−b

RA

[2e−b]RA

P
A

R
A

L
L

E
L
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Experiments and efficiency
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Experimental setting

SIDH protocol instantiation

NIST quantum security level 5 level using the prime,

p751 = 4186 · 3239 − 1

e4 = 185, p4 = 11, 902, q4 = 8, 108, r4 = 3, 492,
Fp2751 inversion = 310,512.
Where r4 is the cost of computing a degree-4 isogeny curve.
All the costs above are given in clock cycles.
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Experimental setting

Software tools and platform

We benchmarked our software on an Intel Core i9-9980XE processor
supporting the Skylake micro-architecture.
The Intel Hyper-Threading and Intel Turbo Boost technologies were
disabled.
The OpenMP v4.5 API was used for parallelization.
The source code was compiled using Clang v9.0 with the -O3

optimization flag and using the options -mbmi2 -madx -fwrapv

-fomit-frame-pointer -fopenmp.
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Experimental results

Estimated Cost Experimental timings
Strategy type

Parallel Single core
# of cores (including R (including R

k in parallel) in parallel)
1 19.60 (19.60) 19.00 (19.00) 19.00
2 16.44 (14.73) 16.57 (15.17) 17.06
3 15.04 (13.21) 15.95 (13.82) 16.35
4 14.19 (12.25) 14.64 (13.51) 16.11
6 13.30 (11.36) 14.17 (13.30) 15.20
8 12.71 (10.80) 13.50 (12.97) 15.20

Table 1: A comparison of estimated versus experimental costs of computing the
key agreement phase of the SIDH protocol for its p751 instantiation. All estimates
and experimental results are given in 106 clock cycles. The last column reports
the timing costs of the SIDH protocol using the [sequential] optimal strategies of
[deFeo-Jao-Plût JMC’14].
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Experimental results

Isogeny
Evaluations

Cores Serial Parallel Muls Cost AF
1 784 784 636 20.32 1
2 849 540 508 15.35 1.32
3 1,006 436 445 13.76 1.48
4 1,125 370 413 12.77 1.59
8 1,723 303 331 11.26 1.80

22 3,083 233 281 10.15 2.00
60 9,099 245 187 9.26 2.20

122 9,456 184 184 8.73 2.33
184 9,456 184 184 8.73 2.33
185 9,456 184 184 8.73 2.33

Table 1: Estimate costs of Alice’s SIDH key agreement phase instantiated for
p751. All estimates are given in 106 clock cycles. The Acceleration Factor (AF)
column is the quotient of the Single core cost and the parallel cost using k cores.
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Achieving the limits of SIDH parallelization

[`0]R
[`1]R
[`2]R

[`e−3]R
[`e−2]R
[`e−1]R
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.

R0

R1
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Re−3
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R
A
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Figure 4: If the hardware resources are plentiful enough, all multiples of R can be
computed in parallel. Also, if there are e available cores, all isogeny evaluations
can be computed in parallel.
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Extended SIDH
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Parameters

p := 2eA · 3eB · 5eC f − 1

Such that 3eB5eC ≈ 2eA

and 3eB ≈ 5eC

Choose PA and QA

such that〈PA, QA〉 = E[2eA ]

Choose PB and QB

such that 〈PB, QB〉 = E[3eB ]

Choose PC and QC

such that 〈PC, QC〉 = E[5eC ]

Define S := PB + PC and T := QB +QC

to be the public parameters of B and C
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eSIDH

KA := PA + [mA]QA

Get φA and EA

E0

EA
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eSIDH

KB := PB + [mB]QB KC := PC + [mC]QC

Parallel

Get φB and EB. “Send” φB(KC) to C.

E0

EA

EB
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eSIDH

Use φB(KC) to get EBC and φBC

E0

EA

EB EBC
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eSIDH

(EBC, φBC(PA), φBC(QA))

E0

EA

EB EBC
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eSIDH

(EA, φA(S), φA(T))

E0

EA

EB EBC

EBC

EA
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eSIDH

K ′A := φBC(PA) + [mA]φBC(QA)
Get EBCA

E0

EA

EB EBC

EBC

EA

EBCA
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eSIDH

K ′B := [5eC ](φA(S) + [mB]φA(T)) K ′C := [3eB ](φA(S) + [mC]φA(T))

Parallel

Get φ′B and E′B. “Send” φ′B(K ′C) to C.

E0

EA

EB EBC

EBC

EA

EBCA

EAB
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eSIDH

Use φ′B(K ′C) to get EABC

E0

EA

EB EBC

EBC

EA EAB

EBCA
∼= EABC

Francisco Rodŕıguez-Henŕıquez Parallel strategies for SIDH May 20, 2020 37 / 45



eSIDH parallel instantiation at a glance

E0

RA
=
PA

+
[mA

]QA

φA

EA

φB

RB = PB + [mB]QB

RC = PC + [mC]QC

Parallel

EB

φC

EBC

φA(S),
φA(T ),
EA

φBC(PA),
φBC(QA),
EBC

EBC

EA

R ′
A =

φ
BC (P

A ) +
[m

A ]φ
BC (Q

A )

φ′A

φ′B

EAB

φ′C

EBCA
∼= EABC

R′B = [rC](φA(S) + [mB]φA(T ))

R′C = [rB](φA(S) + [mC]φA(T ))

Parallel
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RC
φB

RB

Computing a degree-3eB isogeny φB

φB(RC)

Computing a degree-5eC isogeny φC

Computing a degree-3eB5eC isogeny φBC = φC ◦ φB

Figure 5: Overview of an strategy to compute a degree-3eB 5eC isogeny, which exploits
parallelism by defining two secret points RB and RC for Bob. The kernel of φB is the subgroup
〈RB〉, and the kernel of φC is the subgroup 〈φB(RC)〉.
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Protocol Single Core processor Two-Core processor
required # of xDBL required # of xDBL

SIDH [Jao-deFeo-Plût] 16λ
4

16λ
4

CRT-based∗ 15λ
4

13λ
4

eSIDH Parallel 16λ
4

11λ
4

Table 2: Let λ = dlog2(p)e be the bit-length of the eSIDH prime p. This table
shows the approximate number of xDBL operations processed by the SIDH
protocol of Jao-deFeo-Plût compared against the parallel eSIDH variant discussed
here. ∗The description of the eSIDH CRT-based version was omitted in this talk.
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Experiments and efficiency
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Experiments and efficiency

eSIDH primes proposed here N γ SIKE primes N γ
p443 = 2222373545 − 1 7 3 p434 = 22163137 − 1 7 3
p508 = 2258374557 − 1 8 4 p503 = 22503159 − 1 8 3
p628 = 2320394567 − 1 10 5 p610 = 23053192 − 1 10 4
p765 = 23913119581 − 1 12 6 p751 = 23723239 − 1 12 5

Table 3: Selection of eSIDH primes matching the four security levels offered by
the SIKE primes. N = ddlog2(p)e/64e, and γ is the largest integer for that N
such that p ≡ −1 mod 2γ·64 holds.
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Experiments and efficiency

p751 p765

Phase
Number of cores Number of cores

1 2 3 1 2 3
Key generation 26.74 23.69 22.26 24.26 17.80 15.81
Encapsulation 43.19 38.57 35.59 40.38 36.12 33.98
Decapsulation 46.51 40.82 38.48 45.03 37.26 35.10

Total 116.44 103.08 96.33 109.67 91.18 84.89

Table 3: SIKE Performance comparison of the SIKE prime p751 against the eSIDH
prime p765. All timings are reported in 106 clock cycles measured on an Intel
Skylake proccessor at 4.0 GHz.
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Combining all the tricks
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Experiments and Estimates Work in progress

p751 p765

Phase
Number of cores Number of cores

1 1 2 3
Alice Key Generation 23.59 22.27 15.93 14.80
Bob Key Generation 26.74 24.34 17.76 15.79
Alice Key Agreement 19.37 18.21 14.30 13.07
Bob Key Agreement 22.76 23.24 17.16 15.94

Total 92.46 88.05 65.15 59.06

Table 4: SIKE protocol experimental timing costs for its p751 instantiation. All
timings are given in 106 clock cycles measured on an Intel Skylake proccessor at
4.0 GHz. An acceleration factor of 1.57 was measured for a SIKE three-core
implementation.
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Experiments and Estimates Work in progress

Parallel
k Estimate Strategy

(including R) (including R)
1 19.08 (19.08) 18.22 (18.22)
2 15.96 (14.32) 16.14 (14.30)
3 15.04 (12.83) 14.91 (13.07)
4 14.60 (11.90)
6 12.90 (10.98)
8 12.32 (10.48)

Table 4: A comparison of estimated versus experimental costs of the key
agreement phase of the SIKE protocol for its p751 instantiation. All estimates and
experimental results are given in 106 clock cycles measured on an Intel Skylake
proccessor at 4.0 GHz. An acceleration factor of 1.82 is expected for a SIKE
eight-core implementation.
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Gracias-Thanks
for your attention

Questions?

Credits: Many of the drawings in this presentation were designed by Daniel
Cervantes-Vázquez. Others were borrowed from Quino, Escher and Banksy. The

pictures of Botero’s and Miro’s paintings were taken by the speaker.
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