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Introduction

The problem

To study constructions and properties of Multidimensional arrays that can
be used for applications in

Digital watermarking

Code division multiple access (CDMA)

Multiple target recognition

Optical orthogonal codes
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Introduction

Properties of the array

Correlations

Balance

Large family size

Variety of sizes

Linear complexity (resistance to a Berlekamp-Massey attack)
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Introduction

Constructions proposed by Moreno and Tirkel

A sequence with good correlation properties and good complexity to
construct columns

A sequence/array with good correlation properties to shift the
columns

Their constructions preserve properties of balance and correlation.

Problems computing complexity
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Introduction

Problem

How to define and compute multidimensional linear complexity?
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Introduction

Results

Provided a definition and method to compute multidimensional linear
complexity of multidimensional periodic arrays.

Definition generalizes the concept and measure of linear complexity of
sequences.

No restrictions on the periods of the array.

A measure more accurate than the one given for multisequences.

Proved some bounds for the complexity.

Proved formulas for the exact value of the complexity of some specific
arrays.

Implemented our method to compute multidimensional linear
complexity.

Results are compatible with results for sequences and computations
with unfolding method.

Computed multidimensional linear complexity of arrays that could not
be computed before.
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Construction Methods 2-dimensional arrays

Multidimensional periodic arrays

Construction of 2-dimensional arrays
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Construction Methods 2-dimensional arrays

Multidimensional periodic arrays

6

- i

j

(i , j)

X iY j
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Construction Methods 2-dimensional arrays

2-D Composition method (example)

A column sequence with good linear complexity:

Legendre (F7): c = 0, 0, 0, 1, 0, 1, 1, . . .

A shift sequence with good correlation properties:

Welch: si = 3i (mod 7), s = 1, 3, 2, 6, 4, 5, . . .

s =

6 ◦
5 ◦
4 ◦
3 ◦
2 ◦
1 ◦
0

0 1 2 3 4 5
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Construction Methods 2-dimensional arrays

2-D Composition method (example)

6 ◦
5 ◦
4 ◦
3 ◦
2 ◦
1 ◦
0

0 1 2 3 4 5

←−

1
1
0
1
0
0
0

A =

6 1 1 0 0 0 0
5 0 0 1 1 0 0
4 1 0 0 1 0 1
3 0 0 0 0 1 1
2 0 1 0 1 1 0
1 0 1 1 0 0 1
0 1 0 1 0 1 0

0 1 2 3 4 5

p × p − 1 periodic array

Ai,j = cj−si (mod p)
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Construction Methods 2-dimensional arrays

2-D Composition method

Good things:

1 Balance properties
2 Correlations

Problems to solve:
1 Need families of arrays
2 Cannot compute linear complexity of all the arrays

Solutions:
1 Consider other shift sequences
2 Definition and method to compute multidimensional linear complexity
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Construction Methods 2-dimensional arrays

Composition method: Other shift sequences

Exponential quadratic:
si = Aα2i + Bαi + C

A,B,C ∈ Fq, α a primitive element in Fq

Rational functions:

f (x) =
Ax + B

Cx + D

A,B,C ,D ∈ Fq, AD 6= BC
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Construction Methods 2-dimensional arrays

2-D Generalized Legendre (example)

Use the index table of the finite field Fp2 .

Let f (x) = x2 + 2x + 2 ∈ F3[x ] and f (α) = 0.

α2 = α + 1 αk = iα + j = (i , j), i , j ∈ F3

2 α4 α7 α6

1 α0 α2 α3

0 ∗ α1 α5

j�i 0 1 2

log−→ W =

2 4 7 6
1 0 2 3
0 ∗ 1 5

j�i 0 1 2

W0,0 = ∗, Wi ,j = k, where αk = (i , j)

Ivelisse Rubio March 31, 2021 17 / 60
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Construction Methods 2-dimensional arrays

Generalized Legendre (example)

Use the index table of the finite field Fp2 and take the entries (mod 2):

W =

2 4 7 6
1 0 2 3
0 ∗ 1 5

j�i 0 1 2

(mod 2)−→

A =

2 0 1 0
1 0 0 1
0 0 1 1

j�i 0 1 2

A0,0 = 0, Ai ,j = k (mod 2), where αk = (i , j)
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Construction Methods Multidimensional arrays

Multidimensional periodic arrays

Construction of 3-dimensional arrays
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Construction Methods Multidimensional arrays

Multidimensional periodic arrays

6

-�
�
��

i

k

j

(i , j , k)
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Construction Methods Multidimensional arrays

3-D Composition method (example)

A 2-dimensional array with good correlation properties as a shifting array:

Use the index table of the finite field Fp2 .

Let f (x) = x2 + 2x + 2 ∈ F3[x ] and f (α) = 0.

α2 = α + 1 αi = iα + j = (i , j), i , j ∈ F3

2 α4 α7 α6

1 α0 α2 α3

0 ∗ α1 α5

j�i 0 1 2

log−→ W =

2 4 7 6
1 0 2 3
0 ∗ 1 5

j�i 0 1 2

W0,0 = ∗, Wi ,j = k, where αk = (i , j)

Entries mark the “floor” where the circles for the shift are placed.
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Construction Methods Multidimensional arrays

3-D Composition method

...

0

1

7

4 7 6

0 2 3

* 1 5

NOTE: There are p2 − 1 layers; each layer has a shifting position.

Thanks to Andrés Ramos!
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Construction Methods Multidimensional arrays

3-D Composition method (example)

* A 2-dimensional array with good correlation properties as a shifting
array.

4 7 6

0 2 3

* 1 5

* A column sequence c of length p2 − 1

NOTE: There are p2 − 1 layers; each layer has a shifting position.
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Construction Methods Multidimensional arrays

3-D Composition method (example)

Aijk = ck−log (i ,j) (mod p2−1) = ck−h (mod p2−1)

αh = iα + j

Thanks to Jaziel Torres!
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Construction Methods Multidimensional arrays

3-D Composition method (example)

A 2-dimensional array with good correlation properties as a shifting array

A column sequence of commensurate length (Sidelnikov)

or

A 3-dimensional array with good correlation properties as a shifting array

A “floor array” of commensurate dimensions (Generalized Legendre)
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Linear Complexity

Periodic sequences

s = s0, s1, s2, . . .

Periodic with period n if

si+n = si , for all i ∈ N0.

This is a recurrence relation.

sn = s0, sn − s0 = 0

xn − 1
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Linear Complexity

Recurrence relations

su +
∑
i<u

ci si+β = 0

C (x) =
∑

i∈Supp(C)

cix
i

Definition

The polynomial C defines a linear recurrence relation for the sequence
s if the equation ∑

i∈Supp(C)

ci si+β = 0 holds for all β ∈ N0.

We say that C is valid for the sequence s, C ∈ Val(s).
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Linear Complexity

Linear complexity

A recurrence polynomial for the sequence generates the sequence.

The set of valid polynomials for the sequence Val(s) form an ideal in
F[x ].

The minimal polynomial of the sequence is a generator of Val(s).

The linear complexity measures the resistance to a Berlekamp-Massey
attack.

Definition

The linear complexity of a periodic sequence s is the degree of a minimal
polynomial that generates the sequence.
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Linear Complexity Periodic arrays

Periodic arrays

...
... · · ·

a0,3 a1,3 a2,3 a3,3
a0,2 a1,2 a2,2 a3,2 · · ·
a0,1 a1,1 a2,1 a3,1
a0,0 a1,0 a2,0 a3,0 · · ·

How can we define (and compute!) the linear complexity of a periodic
array????

The definition should be consistent both conceptually and numerically
with the one dimensional case.

Ivelisse Rubio March 31, 2021 30 / 60



Linear Complexity Periodic arrays

Periodic arrays

...
... · · ·

a0,3 a1,3 a2,3 a3,3
a0,2 a1,2 a2,2 a3,2 · · ·
a0,1 a1,1 a2,1 a3,1
a0,0 a1,0 a2,0 a3,0 · · ·

How can we define (and compute!) the linear complexity of a periodic
array????

The definition should be consistent both conceptually and numerically
with the one dimensional case.

Ivelisse Rubio March 31, 2021 30 / 60



Linear Complexity Periodic arrays

Linear complexity of periodic arrays (unfolding)

Old trick: Transform the problem to the one you know how to solve!

If the periods are relatively prime, one can

“unfold” the array using the Chinese Remainder Theorem

construct a sequence from the array

use the Berlekamp-Massey algorithm to find a minimal generator

the complexity is the degree of a minimal generator

Problem: restriction in the period of the array.
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Linear Complexity Periodic arrays

Multidimensional periodic arrays

...
... · · ·

3 1 4 2 3 1 4 2 3 · · ·
4 6 0 5 4 6 0 5 4

2 3 1 5 2 3 1 5 2 · · ·
2 4 1 3 2 4 1 3 2

0 5 3 1 0 5 3 1 0

3 1 4 2 3 1 4 2 3 · · ·
4 6 0 5 4 6 0 5 4

2 3 1 5 2 3 1 5 2 · · ·

(n1, n2) = (4, 5)

ai+4k1, j+5k2 = ai ,j

Ivelisse Rubio March 31, 2021 32 / 60



Linear Complexity Periodic arrays

Multidimensional periodic arrays

Definition

A 2-dimensional array a is said to be 2-dimensional periodic if there is a
period vector, n = (n1, n2) ∈ N2, such that

ai+k1n1, j+k2n2 = ai ,j

for all (i , j) , (k1, k2) ∈ N2
0.
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Linear Complexity Periodic arrays

Periodic arrays (our approach)

The array is periodic with period n = (n1, n2) if

ai+k1n1, j+k2n2 = ai ,j for all (i , j) , (k1, k2) ∈ N2
0.

This is a recurrence relation.

an1,0 = a0,0 and an1,0 − a0,0 = 0,

xn1 − 1 ∈ Val(a)

a0,n2 = a0,0 and a0,n2 − a,0 = 0.

yn2 − 1 ∈ Val(a)

Ivelisse Rubio March 31, 2021 34 / 60
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Linear Complexity Periodic arrays

Recurrence relations

Definition

The polynomial C defines a linear recurrence relation for the array a if
the equation ∑

α∈Supp(C)

cαaα+β = 0 holds for all β ∈ N2
0,

where α ∈ N2
0.

We say that C is valid for the array a,

C ∈ Val(a).

Ivelisse Rubio March 31, 2021 35 / 60



Linear Complexity Periodic arrays

Linear complexity

The polynomials that are valid in the array form a polynomial ideal
I = Val(a).

To generate the array we might need more than one polynomial.

A generating set for I = Val(a) generates the array.

The linear complexity measures the resistance to find a generating
set for I = Val(a).
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Linear Complexity Periodic arrays

Linear complexity (for sequences)

Definition

The linear complexity of a periodic sequence s is the degree of a
minimal polynomial that generates the sequence.

How can we generalize this concept for arrays?
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Linear Complexity Periodic arrays

Linear complexity

for sequences: degree of minimal generating polynomial g

for arrays: more than one generating polynomial g1, . . . , gl

for sequences: number of monomials smaller than LM(g)

for arrays: need a monomial ordering and deal with more polynomials

for sequences: number of monomials not divisible by LM(g)

for arrays: number of monomials not divisible by LM(gi ) of any of the
generating polynomials gi is not invariant for any generating set. We
need a special type of generating set:

a Gröbner basis!
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Linear Complexity Periodic arrays

Gröbner bases

Definition

Let G = {g1, . . . , gl} ⊂ I , I an ideal in F[x]. One says that G is a
Gröbner basis for I with respect to ≤T if

〈LM(g1), . . . , LM(gl)〉 = 〈LM (I )〉 .

I = 〈x + 1, x〉 = 〈1〉 = F[x ]

〈x〉 = 〈LM(x + 1), LM(x)〉 6= 〈LM(I )〉 = 〈1〉

Ivelisse Rubio March 31, 2021 39 / 60
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Linear Complexity Periodic arrays

Properties of Gröbner bases

A Gröbner basis for an ideal generates the ideal.

There are algorithms for computing Gröbner bases. (Most of them
depend on having a basis to start from)

G = {g1, . . . , gl} ⊂ I is a Gröbner basis for I if and only if for any
f ∈ I ,

LM(gi )|LM(f )

for some gi ∈ G .
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Linear Complexity Periodic arrays

Lead monomials

1"

1" 2"

2"

5"

4"3"

3"

4"

5"

Δ"

Γ"

Figure:
〈
x4y , x2y3, xy4

〉
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Linear Complexity Periodic arrays

Back to linear complexity

Complexity for sequences

degree of minimal generating polynomial g

= number of monomials not divisible by LM(g)

Complexity for arrays

number of monomials not divisible by LM(gi ) for gi ∈ GB

= the size of the Delta set!!!
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Linear Complexity Periodic arrays

Delta sets

The Delta set of an ideal is not unique.

The size of a Delta set is invariant

|∆I | = dimF (F[x , y ]/I )

Ivelisse Rubio March 31, 2021 43 / 60



Linear Complexity Periodic arrays

Linear complexity of arrays

Definition

Let a be an m-dimensional periodic array and Val(a) be the ideal of
recurrence relations valid on the array. We define the m-dimensional
linear complexity L of the array a as the size of the delta set of Val(a),

L =
∣∣∆Val(a)

∣∣ .

Invariant measure

Generalization of measure for sequences

Ivelisse Rubio March 31, 2021 44 / 60
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Linear Complexity Periodic arrays

Delta sets and complexity of periodic arrays

Val(a) = { linear recurrence relations on a periodic array a, n = (n1, n2)}
xn1 − 1 ∈ Val(a), yn2 − 1 ∈ Val(a)

1"

1" 2"

2"

n2"

…"3"

3"

…"

n1"

1"

1" 2"

2"

n2"

…"3"

3"

…"

n1"

Δ"

Γ"
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Linear Complexity Periodic arrays

Normalized linear complexity of arrays

Definition

Let a be a periodic array with period (n1, . . . , nm). The normalized
m-dimensional linear complexity Ln of the array a is

Ln =
L

n1n2 · · · nm
.

0 ≤ Ln ≤ 1

Ivelisse Rubio March 31, 2021 46 / 60



Linear Complexity Periodic arrays

2D Results

Proposition

Let (ai ,j) be an array constructed using the composition method by
shifting columns from a sequence (cj) cyclically, where the shifts are given
by a sequence with period n1. If L(c) is the linear complexity of the
sequence (cj) and L(a) is the linear complexity of the array (ai ,j), then

L(a) ≤ n1L(c).

This bound is tight.
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Linear Complexity Periodic arrays

2D Results

Corollary

Let (ai ,j) be an array constructed using the composition method by
shifting columns from a sequence (cj) cyclically, where the shifts are given
by a sequence with period n1. If L(c) is the linear complexity of the
sequence (cj) and L(a) is the linear complexity of the array (ai ,j), then

Ln(a) ≤ Ln(c).

This bound is tight.
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Linear Complexity Periodic arrays

Delta set of composition method

g ∈ Val(c)

Val(a) = { linear recurrence relations on a periodic array a, n = (n1, n2)}

g ∈ Val(a), yn2 − 1 ∈ Val(a)

1	

1	 2	

2	

L(s)	

…	3	

3	

…	

n1	

1	

1	 2	

2	

…	3	

3	

…	

n1	

Δ	

Γ	
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Linear Complexity Periodic arrays

2D Results

Proposition

Let (ai ,j) be an array constructed using the composition method by
shifting columns from a sequence (cj) cyclically, where the shifts are given
by a sequence with period n1. If the minimal polynomial of (cj), C (y), is
divisible by y − 1, L(c) is the linear complexity of the sequence (cj) and
L(a) is the linear complexity of the array (ai ,j), then

L(a) ≤ n1 (L(c)− 1) + 1.

This bound is tight.

More accurate than the multisequence approach.
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Linear Complexity Periodic arrays

2D Results

Corollary

Let (ai ,j) be an array constructed using the composition method by
shifting columns from a sequence (cj) cyclically, where the shifts are given
by a sequence with period n1. If the minimal polynomial of (cj), C (y), is
divisible by y − 1, L(c) is the linear complexity of the sequence (cj) and
L(a) is the linear complexity of the array (ai ,j), then

Ln(a) ≤ Ln(c)− 1

n2
+

1

n1n2
.

This bound is tight.
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Linear Complexity Periodic arrays

Example - Delta set of composition method

1"

1" 2"

2"

5"

4"3"

3"

4"

5"

Δ"

Γ"

6"

6"

∣∣∆Val(a)

∣∣ = 19
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Linear Complexity Periodic arrays

2D Experimental asymptotic results

Sequences Array Column M-T Our

Dim. N. Comp N. Comp N. Comp

Welch p ≡ 1, 7 (mod 8) .5 .5

Legendre p × p − 1 p ≡ 3, 5 (mod 8) 1 1

Quadratic p ≡ 1, 7 (mod 8) .5 .5 .5

Legendre p × p − 1 p ≡ 3, 5 (mod 8) 1 1 1

Array Dim. M-T Our

N. Comp N. Comp

Gen. Leg.

Ternary p × p - 1

Gen. Leg.

Binary p × p - .5
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Linear Complexity Periodic arrays

Conjecture

Let L(s) be the complexity of a Legendre sequence for p. The normalized
linear complexity L(a) of an array constructed with columns from
Legendre and a shift sequence of period n1 = p − 1 is

Ln(a) =

{
Ln(s)− n1−1

n1p
p ≡ 3 (mod 4)

Ln(s) p ≡ 1 (mod 4)
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Linear Complexity Periodic arrays

3D Results

Proposition

Let (ai ,j ,k) be a 3D array constructed using the composition method by
defining the columns as cyclic shifts up of a sequence (cj) with period
n21 − 1, where the shifts are given by a 2D square array with period n1. If
L(c) is the linear complexity of the sequence (cj) and L(a) is the linear
complexity of the array (ai ,j ,k), then

Ln(a) ≤ Ln(c).

This bound is tight.

The same is true for composition with “floors”!!
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Linear Complexity Periodic arrays

3D Experimental asymptotic results

Shift Array/ 3D Array Floor Our 3D

Floor Array Dim. N. Comp N. Comp

3D Welch p × p

2D Gen. Leg. Tern. ×p2 − 1 1 1

3D Welch p × p

2D Gen. Leg. Bin. ×p2 − 1 .5 .5

3D Quadratic p × p

2D Gen. Leg. Bin. ×p2 − 1 .5 .5

Complexity of 3D Welch with Sidelnikov columns −→ Complexity of
Sidelnikov.

Complexity of 3D Quadratic with Sidelnikov columns −→ Complexity of
Sidelnikov.
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Linear Complexity Periodic arrays

Conjectures

The normalized linear complextity of arrays constructed by composing
a shift sequence/array with a column of length commesurable with
the shifts approaches the normalized linear complexity of the column
sequence.

The normalized linear complextity of arrays constructed by composing
a shift array with a “floor” arrays of dimmensions commesurable with
the dimensions of the shift array approaches the normalized linear
complexity of the “floor array”.

Ln(a) −→ Ln(c)

Also have conjectures for exact formulas for the complexity of some 3D
arrays.
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Linear Complexity Periodic arrays

In Progress...

Study other sequences and arrays for composition method.

Find formulas for the complexity of arrays constructed with
composition method.

Study many other questions regarding multidimensional constructions!
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Linear Complexity Periodic arrays

Coming Soon!!

WEB APPLICATION FOR COMPUTING LINEAR COMPLEXITY OF
MD ARRAYS

Ivelisse Rubio March 31, 2021 59 / 60



Linear Complexity Periodic arrays

THANKS !!!

Daniel, David and Steve for the invitation.

My students for their results, help and motivation to work harder.

My collaborators Rafa Arce and Cheo Ortiz for sharing their
knowledge and expertise on array properties and applications.

The DEGI of the UPR-RP for the FIPI Grant funding.

All of you!

Ivelisse Rubio March 31, 2021 60 / 60



Linear Complexity Periodic arrays

THANKS !!!

Daniel, David and Steve for the invitation.

My students for their results, help and motivation to work harder.

My collaborators Rafa Arce and Cheo Ortiz for sharing their
knowledge and expertise on array properties and applications.

The DEGI of the UPR-RP for the FIPI Grant funding.

All of you!

Ivelisse Rubio March 31, 2021 60 / 60



Linear Complexity Periodic arrays

THANKS !!!

Daniel, David and Steve for the invitation.

My students for their results, help and motivation to work harder.

My collaborators Rafa Arce and Cheo Ortiz for sharing their
knowledge and expertise on array properties and applications.

The DEGI of the UPR-RP for the FIPI Grant funding.

All of you!

Ivelisse Rubio March 31, 2021 60 / 60



Linear Complexity Periodic arrays

THANKS !!!

Daniel, David and Steve for the invitation.

My students for their results, help and motivation to work harder.

My collaborators Rafa Arce and Cheo Ortiz for sharing their
knowledge and expertise on array properties and applications.

The DEGI of the UPR-RP for the FIPI Grant funding.

All of you!

Ivelisse Rubio March 31, 2021 60 / 60



Linear Complexity Periodic arrays

THANKS !!!

Daniel, David and Steve for the invitation.

My students for their results, help and motivation to work harder.

My collaborators Rafa Arce and Cheo Ortiz for sharing their
knowledge and expertise on array properties and applications.

The DEGI of the UPR-RP for the FIPI Grant funding.

All of you!

Ivelisse Rubio March 31, 2021 60 / 60


	Introduction
	Construction Methods
	2-dimensional arrays
	Multidimensional arrays

	Linear Complexity
	Periodic arrays


