On multidimensional periodic arrays

Ivelisse Rubio
Department of Computer Science
University of Puerto Rico, Río Piedras

Carleton Finite Fields eSeminar

March 31, 2021

Outline

(2) Construction Methods

- 2-dimensional arrays
- Multidimensional arrays
(3) Linear Complexity
- Periodic arrays

Collaborators

- Oscar Moreno - Andrew Tirkel
- Rafael Arce
- Francis Castro
- Domingo Gómez
- Carlos Hernández
- Tom Hoholdt
- José Ortiz
- Andrés Ramos
- David Thomson
- Jaziel Torres

Ongoing work

- Rafael Arce
- Carlos Hernández
- José Ortiz
- Jaziel Torres

The problem

To study constructions and properties of Multidimensional arrays that can be used for applications in

- Digital watermarking
- Code division multiple access (CDMA)
- Multiple target recognition
- Optical orthogonal codes

Properties of the array

- Correlations
- Balance
- Large family size
- Variety of sizes

Properties of the array

- Correlations
- Balance
- Large family size
- Variety of sizes
- Linear complexity (resistance to a Berlekamp-Massey attack)

Constructions proposed by Moreno and Tirkel

- A sequence with good correlation properties and good complexity to construct columns
- A sequence/array with good correlation properties to shift the columns

Constructions proposed by Moreno and Tirkel

- A sequence with good correlation properties and good complexity to construct columns
- A sequence/array with good correlation properties to shift the columns
- Their constructions preserve properties of balance and correlation.

Constructions proposed by Moreno and Tirkel

- A sequence with good correlation properties and good complexity to construct columns
- A sequence/array with good correlation properties to shift the columns
- Their constructions preserve properties of balance and correlation.
- Problems computing complexity

Problem

How to define and compute multidimensional linear complexity?

Results

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.

Results

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.

Results

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.

Results

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.
- A measure more accurate than the one given for multisequences.

Results

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.
- A measure more accurate than the one given for multisequences.
- Proved some bounds for the complexity.

Results

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.
- A measure more accurate than the one given for multisequences.
- Proved some bounds for the complexity.
- Proved formulas for the exact value of the complexity of some specific arrays.

Results

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.
- A measure more accurate than the one given for multisequences.
- Proved some bounds for the complexity.
- Proved formulas for the exact value of the complexity of some specific arrays.
- Implemented our method to compute multidimensional linear complexity.

Results

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.
- A measure more accurate than the one given for multisequences.
- Proved some bounds for the complexity.
- Proved formulas for the exact value of the complexity of some specific arrays.
- Implemented our method to compute multidimensional linear complexity.
- Results are compatible with results for sequences and computations with unfolding method.

Results

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.
- A measure more accurate than the one given for multisequences.
- Proved some bounds for the complexity.
- Proved formulas for the exact value of the complexity of some specific arrays.
- Implemented our method to compute multidimensional linear complexity.
- Results are compatible with results for sequences and computations with unfolding method.
- Computed multidimensional linear complexity of arrays that could not be computed before.

Outline

(1) Introduction

(2) Construction Methods

- 2-dimensional arrays
- Multidimensional arrays
(3) Linear Complexity
- Periodic arrays

Multidimensional periodic arrays

Construction of 2-dimensional arrays

Multidimensional periodic arrays

$$
\begin{aligned}
& (i, j) \\
& X^{i} Y^{j}
\end{aligned}
$$

2-D Composition method (example)

A column sequence with good linear complexity:

2-D Composition method (example)

A column sequence with good linear complexity:
Legendre $\left(\mathbb{F}_{7}\right): \quad c=0,0,0,1,0,1,1, \ldots$

2-D Composition method (example)

A column sequence with good linear complexity:
Legendre $\left(\mathbb{F}_{7}\right): \quad c=0,0,0,1,0,1,1, \ldots$
A shift sequence with good correlation properties:

2-D Composition method (example)

A column sequence with good linear complexity:
Legendre $\left(\mathbb{F}_{7}\right): \quad c=0,0,0,1,0,1,1, \ldots$
A shift sequence with good correlation properties:
Welch: $\quad s_{i}=3^{i}(\bmod 7), \quad s=1,3,2,6,4,5, \ldots$

2-D Composition method (example)

A column sequence with good linear complexity:
Legendre (\mathbb{F}_{7}): $\quad c=0,0,0,1,0,1,1, \ldots$
A shift sequence with good correlation properties:
Welch: $\quad s_{i}=3^{i}(\bmod 7), \quad s=1,3,2,6,4,5, \ldots$

$s=$| 6 | | | | \circ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | | | | | | 0 |
| 4 | | | | | | \circ |
| 3 | | \circ | | | | |
| 2 | | | 0 | | | |
| 1 | \circ | | | | | |
| 0 | | | | | | |
| | 0 | 1 | 2 | 3 | 4 | 5 |

2-D Composition method (example)

6				\circ		
5						\circ
4					\circ	
3		\circ				
2			\circ			
1	\circ					
0						
	0	1	2	3	4	5

2-D Composition method (example)

6				\circ		
5						0
4					0	
3		\circ				
2			\circ			
1	\circ					
0						
	0	1	2	3	4	5

\longleftarrow| 1 |
| :--- |
| 1 |
| 0 |
| 1 |
| 0 |
| 0 |
| 0 |

2-D Composition method (example)

6				\circ		
5						0
4					\circ	
3		\circ				
2			\circ			
1	\circ					
0						
	0	1	2	3	4	5

\longleftarrow| 1 |
| :--- |
| 1 |
| 0 |
| 1 |
| 0 |
| 0 |
| 0 |

$A=$| 6 | 1 | 1 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 0 | 0 | 1 | 1 | 0 | 0 |
| 4 | 1 | 0 | 0 | 1 | 0 | 1 |
| 3 | 0 | 0 | 0 | 0 | 1 | 1 |
| 2 | 0 | 1 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| | 0 | 1 | 2 | 3 | 4 | 5 |

$$
p \times p-1 \quad \text { periodic array }
$$

$$
A_{i, j}=c_{j-s_{i}}(\bmod p)
$$

2-D Composition method

- Good things:

2-D Composition method

- Good things:
(1) Balance properties

2-D Composition method

- Good things:
(1) Balance properties
(2) Correlations

2-D Composition method

- Good things:
(1) Balance properties
(2) Correlations
- Problems to solve:

2-D Composition method

- Good things:
(1) Balance properties
(2) Correlations
- Problems to solve:
(1) Need families of arrays

2-D Composition method

- Good things:
(1) Balance properties
(2) Correlations
- Problems to solve:
(1) Need families of arrays
(2) Cannot compute linear complexity of all the arrays

2-D Composition method

- Good things:
(1) Balance properties
(2) Correlations
- Problems to solve:
(1) Need families of arrays
(2) Cannot compute linear complexity of all the arrays
- Solutions:

2-D Composition method

- Good things:
(1) Balance properties
(2) Correlations
- Problems to solve:
(1) Need families of arrays
(2) Cannot compute linear complexity of all the arrays
- Solutions:
(1) Consider other shift sequences

2-D Composition method

- Good things:
(1) Balance properties
(2) Correlations
- Problems to solve:
(1) Need families of arrays
(2) Cannot compute linear complexity of all the arrays
- Solutions:
(1) Consider other shift sequences
(2) Definition and method to compute multidimensional linear complexity

Composition method: Other shift sequences

Exponential quadratic:

$$
s_{i}=A \alpha^{2 i}+B \alpha^{i}+C
$$

$A, B, C \in \mathbb{F}_{q}, \quad \alpha$ a primitive element in \mathbb{F}_{q}

Composition method: Other shift sequences

Exponential quadratic:

$$
s_{i}=A \alpha^{2 i}+B \alpha^{i}+C
$$

$A, B, C \in \mathbb{F}_{q}, \quad \alpha$ a primitive element in \mathbb{F}_{q}

Rational functions:

$$
f(x)=\frac{A x+B}{C x+D}
$$

$$
A, B, C, D \in \mathbb{F}_{q}, \quad A D \neq B C
$$

2-D Generalized Legendre (example)

Use the index table of the finite field $\mathbb{F}_{p^{2}}$.

2-D Generalized Legendre (example)

Use the index table of the finite field $\mathbb{F}_{p^{2}}$.
Let $f(x)=x^{2}+2 x+2 \in \mathbb{F}_{3}[x]$ and $f(\alpha)=0$.

2-D Generalized Legendre (example)

Use the index table of the finite field $\mathbb{F}_{p^{2}}$.
Let $f(x)=x^{2}+2 x+2 \in \mathbb{F}_{3}[x]$ and $f(\alpha)=0$.

$$
\alpha^{2}=\alpha+1
$$

2-D Generalized Legendre (example)

Use the index table of the finite field $\mathbb{F}_{p^{2}}$.
Let $f(x)=x^{2}+2 x+2 \in \mathbb{F}_{3}[x]$ and $f(\alpha)=0$.

$$
\alpha^{2}=\alpha+1 \quad \alpha^{k}=i \alpha+j=(i, j), \quad i, j \in \mathbb{F}_{3}
$$

2-D Generalized Legendre (example)

Use the index table of the finite field $\mathbb{F}_{p^{2}}$.
Let $f(x)=x^{2}+2 x+2 \in \mathbb{F}_{3}[x]$ and $f(\alpha)=0$.

$$
\alpha^{2}=\alpha+1 \quad \alpha^{k}=i \alpha+j=(i, j), \quad i, j \in \mathbb{F}_{3}
$$

2	α^{4}	α^{7}	α^{6}
1	α^{0}	α^{2}	α^{3}
0	$*$	α^{1}	α^{5}
j / i	0	1	2

2-D Generalized Legendre (example)

Use the index table of the finite field $\mathbb{F}_{p^{2}}$.
Let $f(x)=x^{2}+2 x+2 \in \mathbb{F}_{3}[x]$ and $f(\alpha)=0$.

$$
\alpha^{2}=\alpha+1 \quad \alpha^{k}=i \alpha+j=(i, j), \quad i, j \in \mathbb{F}_{3}
$$

2	α^{4}	α^{7}	α^{6}	$\xrightarrow{\log }$	2	4	7	6
1	α^{0}	α^{2}	α^{3}		W	0	2	3
0	*	α^{1}	α^{5}		$W=\frac{1}{0}$	*	1	5
j/i	0	1	2		j/i	0	1	2

$$
W_{0,0}=*, \quad W_{i, j}=k, \quad \text { where } \alpha^{k}=(i, j)
$$

Generalized Legendre (example)

Use the index table of the finite field $\mathbb{F}_{p^{2}}$ and take the entries $(\bmod 2)$:

$W=$| 2 | 4 | 7 | 6 |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 2 | 3 |
| 0 | $*$ | 1 | 5 |
| j / i | 0 | 1 | 2 |$\quad \xrightarrow{(\bmod 2)}$

Generalized Legendre (example)

Use the index table of the finite field $\mathbb{F}_{p^{2}}$ and take the entries $(\bmod 2)$:

$W=$| 2 4 | | | |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 2 | 6 |
| 0 | $*$ | 1 | 5 |
| j / i | 0 | 1 | 2 |$\quad \xrightarrow{(\bmod 2)} \quad A=$| 2 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| j / i | 0 | 1 | 2 |

$$
A_{0,0}=0, \quad A_{i, j}=k \quad(\bmod 2), \quad \text { where } \alpha^{k}=(i, j)
$$

Multidimensional periodic arrays

Construction of 3-dimensional arrays

Multidimensional periodic arrays

$$
(i, j, k)
$$

3-D Composition method (example)

A 2-dimensional array with good correlation properties as a shifting array:

3-D Composition method (example)

A 2-dimensional array with good correlation properties as a shifting array: Use the index table of the finite field $\mathbb{F}_{p^{2}}$.
Let $f(x)=x^{2}+2 x+2 \in \mathbb{F}_{3}[x]$ and $f(\alpha)=0$.

$$
\alpha^{2}=\alpha+1 \quad \alpha^{i}=i \alpha+j=(i, j), \quad i, j \in \mathbb{F}_{3}
$$

3-D Composition method (example)

A 2-dimensional array with good correlation properties as a shifting array: Use the index table of the finite field $\mathbb{F}_{p^{2}}$.
Let $f(x)=x^{2}+2 x+2 \in \mathbb{F}_{3}[x]$ and $f(\alpha)=0$.

$$
\alpha^{2}=\alpha+1 \quad \alpha^{i}=i \alpha+j=(i, j), \quad i, j \in \mathbb{F}_{3}
$$

2	α^{4}	α^{7}	α^{6}
1	α^{0}	α^{2}	α^{3}
0	$*$	α^{1}	α^{5}
j / i	0	1	2

$W=$| 2 | 4 | 7 | 6 |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 2 | 3 |
| 0 | $*$ | 1 | 5 |
| j / i | 0 | 1 | 2 |

$$
W_{0,0}=*, \quad W_{i, j}=k, \quad \text { where } \alpha^{k}=(i, j)
$$

3-D Composition method (example)

A 2-dimensional array with good correlation properties as a shifting array: Use the index table of the finite field $\mathbb{F}_{p^{2}}$.
Let $f(x)=x^{2}+2 x+2 \in \mathbb{F}_{3}[x]$ and $f(\alpha)=0$.

$$
\alpha^{2}=\alpha+1 \quad \alpha^{i}=i \alpha+j=(i, j), \quad i, j \in \mathbb{F}_{3}
$$

2	α^{4}	α^{7}	α^{6}
1	α^{0}	α^{2}	α^{3}
0	$*$	α^{1}	α^{5}
j / i	0	1	2

$W=$| 2 | 4 | 7 | 6 |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 2 | 3 |
| 0 | $*$ | 1 | 5 |
| j / i | 0 | 1 | 2 |

$$
W_{0,0}=*, \quad W_{i, j}=k, \quad \text { where } \alpha^{k}=(i, j)
$$

Entries mark the "floor" where the circles for the shift are placed.

3-D Composition method

4	7	6
0	2	3
$*$	1	5

NOTE: There are $p^{2}-1$ layers; each layer has a shifting position. Thanks to Andrés Ramos!

3-D Composition method (example)

* A 2-dimensional array with good correlation properties as a shifting array.

4	7	6
0	2	3
$*$	1	5

* A column sequence c of length $p^{2}-1$

3-D Composition method (example)

* A 2-dimensional array with good correlation properties as a shifting array.

4	7	6
0	2	3
$*$	1	5

* A column sequence c of length $p^{2}-1$

NOTE: There are $p^{2}-1$ layers; each layer has a shifting position.

3-D Composition method (example)

3-D Composition method (example)

Thanks to Jaziel Torres!

3-D Composition method (example)

A 2-dimensional array with good correlation properties as a shifting array A column sequence of commensurate length (Sidelnikov)

3-D Composition method (example)

A 2-dimensional array with good correlation properties as a shifting array
A column sequence of commensurate length (Sidelnikov) or

A 3-dimensional array with good correlation properties as a shifting array
A "floor array" of commensurate dimensions (Generalized Legendre)

Outline

(1) Introduction

(2) Construction Methods

- 2-dimensional arrays
- Multidimensional arrays
(3) Linear Complexity
- Periodic arrays

Periodic sequences

$$
s=s_{0}, s_{1}, s_{2}, \ldots
$$

Periodic sequences

$$
s=s_{0}, s_{1}, s_{2}, \ldots
$$

Periodic with period n if

$$
s_{i+n}=s_{i}, \quad \text { for all } i \in \mathbb{N}_{0}
$$

Periodic sequences

$$
s=s_{0}, s_{1}, s_{2}, \ldots
$$

Periodic with period n if

$$
s_{i+n}=s_{i}, \quad \text { for all } i \in \mathbb{N}_{0} .
$$

This is a recurrence relation.

Periodic sequences

$$
s=s_{0}, s_{1}, s_{2}, \ldots
$$

Periodic with period n if

$$
s_{i+n}=s_{i}, \quad \text { for all } i \in \mathbb{N}_{0}
$$

This is a recurrence relation.

$$
s_{n}=s_{0}, \quad s_{n}-s_{0}=0
$$

Periodic sequences

$$
s=s_{0}, s_{1}, s_{2}, \ldots
$$

Periodic with period n if

$$
s_{i+n}=s_{i}, \quad \text { for all } i \in \mathbb{N}_{0}
$$

This is a recurrence relation.

$$
s_{n}=s_{0}, \quad s_{n}-s_{0}=0
$$

$$
x^{n}-1
$$

Recurrence relations

$$
s_{u}+\sum_{i<u} c_{i} s_{i+\beta}=0
$$

Recurrence relations

$$
\begin{aligned}
& s_{u}+\sum_{i<u} c_{i} s_{i+\beta}=0 \\
& C(x)=\sum_{i \in \operatorname{Supp}(C)} c_{i} x^{i}
\end{aligned}
$$

Recurrence relations

$$
\begin{aligned}
& s_{u}+\sum_{i<u} c_{i} s_{i+\beta}=0 \\
& C(x)=\sum_{i \in \operatorname{Supp}(C)} c_{i} x^{i}
\end{aligned}
$$

Definition
The polynomial C defines a linear recurrence relation for the sequence s if the equation

$$
\sum_{i \in \operatorname{Supp}(C)} c_{i} s_{i+\beta}=0 \text { holds for all } \beta \in \mathbb{N}_{0}
$$

Recurrence relations

$$
\begin{gathered}
s_{u}+\sum_{i<u} c_{i} s_{i+\beta}=0 \\
C(x)=\sum_{i \in \operatorname{Supp}(C)} c_{i} x^{i}
\end{gathered}
$$

Definition
The polynomial C defines a linear recurrence relation for the sequence s if the equation

$$
\sum_{i \in \operatorname{Supp}(C)} c_{i} s_{i+\beta}=0 \text { holds for all } \beta \in \mathbb{N}_{0}
$$

We say that C is valid for the sequence $s, \quad C \in \operatorname{Val}(s)$.

Linear complexity

- A recurrence polynomial for the sequence generates the sequence.

Linear complexity

- A recurrence polynomial for the sequence generates the sequence.
- The set of valid polynomials for the sequence $\operatorname{Val}(s)$ form an ideal in $\mathbb{F}[x]$.

Linear complexity

- A recurrence polynomial for the sequence generates the sequence.
- The set of valid polynomials for the sequence $\operatorname{Val}(s)$ form an ideal in $\mathbb{F}[x]$.
- The minimal polynomial of the sequence is a generator of $\mathrm{Val}(s)$.

Linear complexity

- A recurrence polynomial for the sequence generates the sequence.
- The set of valid polynomials for the sequence $\operatorname{Val}(s)$ form an ideal in $\mathbb{F}[x]$.
- The minimal polynomial of the sequence is a generator of $\mathrm{Val}(s)$.
- The linear complexity measures the resistance to a Berlekamp-Massey attack.

Linear complexity

- A recurrence polynomial for the sequence generates the sequence.
- The set of valid polynomials for the sequence $\mathrm{Val}(s)$ form an ideal in $\mathbb{F}[x]$.
- The minimal polynomial of the sequence is a generator of $\mathrm{Val}(s)$.
- The linear complexity measures the resistance to a Berlekamp-Massey attack.

Definition

The linear complexity of a periodic sequence s is the degree of a minimal polynomial that generates the sequence.

Periodic arrays

\vdots			\vdots	\cdots
$a_{0,3}$	$a_{1,3}$	$a_{2,3}$	$a_{3,3}$	
$a_{0,2}$	$a_{1,2}$	$a_{2,2}$	$a_{3,2}$	\cdots
$a_{0,1}$	$a_{1,1}$	$a_{2,1}$	$a_{3,1}$	
$a_{0,0}$	$a_{1,0}$	$a_{2,0}$	$a_{3,0}$	\cdots

How can we define (and compute!) the linear complexity of a periodic array????

Periodic arrays

\vdots			\vdots	\cdots
$a_{0,3}$	$a_{1,3}$	$a_{2,3}$	$a_{3,3}$	
$a_{0,2}$	$a_{1,2}$	$a_{2,2}$	$a_{3,2}$	\cdots
$a_{0,1}$	$a_{1,1}$	$a_{2,1}$	$a_{3,1}$	
$a_{0,0}$	$a_{1,0}$	$a_{2,0}$	$a_{3,0}$	\cdots

How can we define (and compute!) the linear complexity of a periodic array????

The definition should be consistent both conceptually and numerically with the one dimensional case.

Linear complexity of periodic arrays (unfolding)

Old trick: Transform the problem to the one you know how to solve!

Linear complexity of periodic arrays (unfolding)

Old trick: Transform the problem to the one you know how to solve!

If the periods are relatively prime, one can

- "unfold" the array using the Chinese Remainder Theorem
- construct a sequence from the array

Linear complexity of periodic arrays (unfolding)

Old trick: Transform the problem to the one you know how to solve!

If the periods are relatively prime, one can

- "unfold" the array using the Chinese Remainder Theorem
- construct a sequence from the array
- use the Berlekamp-Massey algorithm to find a minimal generator
- the complexity is the degree of a minimal generator

Linear complexity of periodic arrays (unfolding)

Old trick: Transform the problem to the one you know how to solve!

If the periods are relatively prime, one can

- "unfold" the array using the Chinese Remainder Theorem
- construct a sequence from the array
- use the Berlekamp-Massey algorithm to find a minimal generator
- the complexity is the degree of a minimal generator

Problem: restriction in the period of the array.

Multidimensional periodic arrays

\vdots			\vdots						\cdots
3	1	4	2	3	1	4	2	3	\cdots
4	6	0	5	4	6	0	5	4	
2	3	1	5	2	3	1	5	2	\cdots
2	4	1	3	2	4	1	3	2	
0	5	3	1	0	5	3	1	0	
3	1	4	2	3	1	4	2	3	\cdots
4	6	0	5	4	6	0	5	4	
2	3	1	5	2	3	1	5	2	\cdots

$$
\begin{gathered}
\left(n_{1}, n_{2}\right)=(4,5) \\
a_{i+4 k_{1}, j+5 k_{2}}=a_{i, j}
\end{gathered}
$$

Multidimensional periodic arrays

Definition

A 2-dimensional array a is said to be 2-dimensional periodic if there is a period vector, $n=\left(n_{1}, n_{2}\right) \in \mathbb{N}^{2}$, such that

$$
a_{i+k_{1} n_{1}, j+k_{2} n_{2}}=a_{i, j}
$$

for all $(i, j),\left(k_{1}, k_{2}\right) \in \mathbb{N}_{0}^{2}$.

Periodic arrays (our approach)

The array is periodic with period $n=\left(n_{1}, n_{2}\right)$ if

$$
a_{i+k_{1} n_{1}, j+k_{2} n_{2}}=a_{i, j} \text { for all }(i, j),\left(k_{1}, k_{2}\right) \in \mathbb{N}_{0}^{2} .
$$

Periodic arrays (our approach)

The array is periodic with period $n=\left(n_{1}, n_{2}\right)$ if

$$
a_{i+k_{1} n_{1}, j+k_{2} n_{2}}=a_{i, j} \text { for all }(i, j),\left(k_{1}, k_{2}\right) \in \mathbb{N}_{0}^{2}
$$

This is a recurrence relation.

$$
a_{n_{1}, 0}=a_{0,0} \quad \text { and } \quad a_{n_{1}, 0}-a_{0,0}=0,
$$

Periodic arrays (our approach)

The array is periodic with period $n=\left(n_{1}, n_{2}\right)$ if

$$
a_{i+k_{1} n_{1}, j+k_{2} n_{2}}=a_{i, j} \text { for all }(i, j),\left(k_{1}, k_{2}\right) \in \mathbb{N}_{0}^{2}
$$

This is a recurrence relation.

$$
\begin{gathered}
a_{n_{1}, 0}=a_{0,0} \quad \text { and } \quad a_{n_{1}, 0}-a_{0,0}=0 \\
x^{n_{1}}-1 \in \operatorname{Val}(a)
\end{gathered}
$$

Periodic arrays (our approach)

The array is periodic with period $n=\left(n_{1}, n_{2}\right)$ if

$$
a_{i+k_{1} n_{1}, j+k_{2} n_{2}}=a_{i, j} \text { for all }(i, j),\left(k_{1}, k_{2}\right) \in \mathbb{N}_{0}^{2}
$$

This is a recurrence relation.

$$
\begin{gathered}
a_{n_{1}, 0}=a_{0,0} \quad \text { and } \quad a_{n_{1}, 0}-a_{0,0}=0 \\
x^{n_{1}}-1 \in \operatorname{Val}(a) \\
a_{0, n_{2}}=a_{0,0} \quad \text { and } a_{0, n_{2}}-a_{, 0}=0 \\
y^{n_{2}}-1 \in \operatorname{Val}(a)
\end{gathered}
$$

Recurrence relations

Definition

The polynomial C defines a linear recurrence relation for the array a if the equation

$$
\sum_{\alpha \in \operatorname{Supp}(C)} c_{\alpha} a_{\alpha+\beta}=0 \quad \text { holds for all } \beta \in \mathbb{N}_{0}^{2},
$$

where $\alpha \in \mathbb{N}_{0}^{2}$.
We say that C is valid for the array a,

$$
C \in \operatorname{Val}(a) .
$$

Linear complexity

- The polynomials that are valid in the array form a polynomial ideal $I=\operatorname{Val}(a)$.

Linear complexity

- The polynomials that are valid in the array form a polynomial ideal $I=\operatorname{Val}(a)$.
- To generate the array we might need more than one polynomial.

Linear complexity

- The polynomials that are valid in the array form a polynomial ideal $I=\operatorname{Val}(a)$.
- To generate the array we might need more than one polynomial.
- A generating set for $I=\operatorname{Val}(a)$ generates the array.

Linear complexity

- The polynomials that are valid in the array form a polynomial ideal $I=\operatorname{Val}(a)$.
- To generate the array we might need more than one polynomial.
- A generating set for $I=\operatorname{Val}(a)$ generates the array.
- The linear complexity measures the resistance to find a generating set for $I=\operatorname{Val}(a)$.

Linear complexity (for sequences)

Definition

The linear complexity of a periodic sequence s is the degree of a minimal polynomial that generates the sequence.

Linear complexity (for sequences)

Abstract

Definition The linear complexity of a periodic sequence s is the degree of a minimal polynomial that generates the sequence.

How can we generalize this concept for arrays?

Linear complexity

- for sequences: degree of minimal generating polynomial g

Linear complexity

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial g_{1}, \ldots, g_{l}

Linear complexity

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial g_{1}, \ldots, g_{l}
- for sequences: number of monomials smaller than $L M(g)$

Linear complexity

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial g_{1}, \ldots, g_{l}
- for sequences: number of monomials smaller than $L M(g)$
- for arrays: need a monomial ordering and deal with more polynomials

Linear complexity

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial $g_{1}, \ldots, g_{\text {I }}$
- for sequences: number of monomials smaller than $L M(g)$
- for arrays: need a monomial ordering and deal with more polynomials
- for sequences: number of monomials not divisible by $L M(g)$

Linear complexity

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial g_{1}, \ldots, g_{l}
- for sequences: number of monomials smaller than $L M(g)$
- for arrays: need a monomial ordering and deal with more polynomials
- for sequences: number of monomials not divisible by $L M(g)$
- for arrays: number of monomials not divisible by $L M\left(g_{i}\right)$ of any of the generating polynomials g_{i} is not invariant for any generating set.

Linear complexity

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial g_{1}, \ldots, g_{l}
- for sequences: number of monomials smaller than $L M(g)$
- for arrays: need a monomial ordering and deal with more polynomials
- for sequences: number of monomials not divisible by $L M(g)$
- for arrays: number of monomials not divisible by $L M\left(g_{i}\right)$ of any of the generating polynomials g_{i} is not invariant for any generating set. We need a special type of generating set:

Linear complexity

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial $g_{1}, \ldots, g_{\text {I }}$
- for sequences: number of monomials smaller than $L M(g)$
- for arrays: need a monomial ordering and deal with more polynomials
- for sequences: number of monomials not divisible by $L M(g)$
- for arrays: number of monomials not divisible by $L M\left(g_{i}\right)$ of any of the generating polynomials g_{i} is not invariant for any generating set. We need a special type of generating set:
a Gröbner basis!

Gröbner bases

Definition

Let $G=\left\{g_{1}, \ldots, g_{l}\right\} \subset I, I$ an ideal in $\mathbb{F}[\mathbf{x}]$. One says that G is a Gröbner basis for I with respect to \leq_{T} if

$$
\left\langle L M\left(g_{1}\right), \ldots, L M\left(g_{I}\right)\right\rangle=\langle L M(I)\rangle
$$

Gröbner bases

Definition

Let $G=\left\{g_{1}, \ldots, g_{l}\right\} \subset I, I$ an ideal in $\mathbb{F}[\mathbf{x}]$. One says that G is a Gröbner basis for I with respect to \leq_{T} if

$$
\left\langle L M\left(g_{1}\right), \ldots, L M\left(g_{I}\right)\right\rangle=\langle L M(I)\rangle
$$

$$
I=\langle x+1, x\rangle=\langle 1\rangle=\mathbb{F}[x]
$$

Gröbner bases

Definition

Let $G=\left\{g_{1}, \ldots, g_{l}\right\} \subset I, I$ an ideal in $\mathbb{F}[\mathbf{x}]$. One says that G is a Gröbner basis for I with respect to \leq_{T} if

$$
\left\langle L M\left(g_{1}\right), \ldots, L M\left(g_{I}\right)\right\rangle=\langle L M(I)\rangle
$$

$$
\begin{gathered}
I=\langle x+1, x\rangle=\langle 1\rangle=\mathbb{F}[x] \\
\langle x\rangle=\langle L M(x+1), L M(x)\rangle \neq\langle L M(I)\rangle=\langle 1\rangle
\end{gathered}
$$

Properties of Gröbner bases

- A Gröbner basis for an ideal generates the ideal.

Properties of Gröbner bases

- A Gröbner basis for an ideal generates the ideal.
- There are algorithms for computing Gröbner bases. (Most of them depend on having a basis to start from)

Properties of Gröbner bases

- A Gröbner basis for an ideal generates the ideal.
- There are algorithms for computing Gröbner bases. (Most of them depend on having a basis to start from)
- $G=\left\{g_{1}, \ldots, g_{l}\right\} \subset I$ is a Gröbner basis for I if and only if for any $f \in I$,

$$
L M\left(g_{i}\right) \mid L M(f)
$$

for some $g_{i} \in G$.

Lead monomials

Figure: $\left\langle x^{4} y, x^{2} y^{3}, x y^{4}\right\rangle$

Back to linear complexity

- Complexity for sequences
degree of minimal generating polynomial g
$=$ number of monomials not divisible by $L M(g)$

Back to linear complexity

- Complexity for sequences
degree of minimal generating polynomial g
$=$ number of monomials not divisible by $L M(g)$
- Complexity for arrays
number of monomials not divisible by $L M\left(g_{i}\right)$ for $g_{i} \in G B$
$=$ the size of the Delta set!!!

Delta sets

- The Delta set of an ideal is not unique.
- The size of a Delta set is invariant

$$
\left|\Delta_{I}\right|=\operatorname{dim}_{\mathbb{F}}(\mathbb{F}[x, y] / I)
$$

Linear complexity of arrays

Definition

Let a be an m-dimensional periodic array and $\mathrm{Val}(\mathrm{a})$ be the ideal of recurrence relations valid on the array. We define the m-dimensional linear complexity \mathcal{L} of the array a as the size of the delta set of $\mathrm{Val}(a)$,

$$
\mathcal{L}=\left|\Delta_{\text {Val(a) }}\right|
$$

Linear complexity of arrays

Definition

Let a be an m-dimensional periodic array and $\mathrm{Val}(\mathrm{a})$ be the ideal of recurrence relations valid on the array. We define the m-dimensional linear complexity \mathcal{L} of the array a as the size of the delta set of $\operatorname{Val}(a)$,

$$
\mathcal{L}=\left|\Delta_{\text {Val(a) }}\right|
$$

- Invariant measure

Linear complexity of arrays

Definition

Let a be an m-dimensional periodic array and $\mathrm{Val}(\mathrm{a})$ be the ideal of recurrence relations valid on the array. We define the m-dimensional linear complexity \mathcal{L} of the array a as the size of the delta set of $\operatorname{Val}(a)$,

$$
\mathcal{L}=\left|\Delta_{\text {Val(a) }}\right| .
$$

- Invariant measure
- Generalization of measure for sequences

Delta sets and complexity of periodic arrays

$\operatorname{Val}(a)=\left\{\right.$ linear recurrence relations on a periodic array $\left.a, n=\left(n_{1}, n_{2}\right)\right\}$

$$
x^{n_{1}}-1 \in \operatorname{Val}(a), \quad y^{n_{2}}-1 \in \operatorname{Val}(a)
$$

Normalized linear complexity of arrays

Definition

Let a be a periodic array with period $\left(n_{1}, \ldots, n_{m}\right)$. The normalized m-dimensional linear complexity \mathcal{L}_{n} of the array a is

$$
\mathcal{L}_{n}=\frac{\mathcal{L}}{n_{1} n_{2} \cdots n_{m}} .
$$

$$
0 \leq \mathcal{L}_{n} \leq 1
$$

2D Results

Proposition

Let ($a_{i, j}$) be an array constructed using the composition method by shifting columns from a sequence $\left(c_{j}\right)$ cyclically, where the shifts are given by a sequence with period n_{1}. If $\mathcal{L}(c)$ is the linear complexity of the sequence $\left(c_{j}\right)$ and $\mathcal{L}(a)$ is the linear complexity of the array $\left(a_{i, j}\right)$, then

$$
\mathcal{L}(a) \leq n_{1} \mathcal{L}(c)
$$

This bound is tight.

2D Results

Corollary
Let ($a_{i, j}$) be an array constructed using the composition method by shifting columns from a sequence $\left(c_{j}\right)$ cyclically, where the shifts are given by a sequence with period n_{1}. If $\mathcal{L}(c)$ is the linear complexity of the sequence $\left(c_{j}\right)$ and $\mathcal{L}(a)$ is the linear complexity of the array $\left(a_{i, j}\right)$, then

$$
\mathcal{L}_{n}(a) \leq \mathcal{L}_{n}(c) .
$$

This bound is tight.

Delta set of composition method

$$
g \in \operatorname{Val}(c)
$$

$\operatorname{Val}(a)=\left\{\right.$ linear recurrence relations on a periodic array a, $\left.n=\left(n_{1}, n_{2}\right)\right\}$

$$
g \in \operatorname{Val}(a), \quad y^{n_{2}}-1 \in \operatorname{Val}(a)
$$

2D Results

Proposition

Let $\left(a_{i, j}\right)$ be an array constructed using the composition method by shifting columns from a sequence $\left(c_{j}\right)$ cyclically, where the shifts are given by a sequence with period n_{1}. If the minimal polynomial of $\left(c_{j}\right), C(y)$, is divisible by $y-1, \mathcal{L}(c)$ is the linear complexity of the sequence $\left(c_{j}\right)$ and $\mathcal{L}(a)$ is the linear complexity of the array $\left(a_{i, j}\right)$, then

$$
\mathcal{L}(a) \leq n_{1}(\mathcal{L}(c)-1)+1 .
$$

This bound is tight.

2D Results

Proposition

Let $\left(a_{i, j}\right)$ be an array constructed using the composition method by shifting columns from a sequence $\left(c_{j}\right)$ cyclically, where the shifts are given by a sequence with period n_{1}. If the minimal polynomial of $\left(c_{j}\right), C(y)$, is divisible by $y-1, \mathcal{L}(c)$ is the linear complexity of the sequence $\left(c_{j}\right)$ and $\mathcal{L}(a)$ is the linear complexity of the array $\left(a_{i, j}\right)$, then

$$
\mathcal{L}(a) \leq n_{1}(\mathcal{L}(c)-1)+1 .
$$

This bound is tight.
More accurate than the multisequence approach.

2D Results

Corollary

Let ($a_{i, j}$) be an array constructed using the composition method by shifting columns from a sequence $\left(c_{j}\right)$ cyclically, where the shifts are given by a sequence with period n_{1}. If the minimal polynomial of $\left(c_{j}\right), C(y)$, is divisible by $y-1, \mathcal{L}(c)$ is the linear complexity of the sequence $\left(c_{j}\right)$ and $\mathcal{L}(a)$ is the linear complexity of the array $\left(a_{i, j}\right)$, then

$$
\mathcal{L}_{n}(a) \leq \mathcal{L}_{n}(c)-\frac{1}{n_{2}}+\frac{1}{n_{1} n_{2}}
$$

This bound is tight.

Example - Delta set of composition method

$$
\left|\Delta_{\text {Val(a) }}\right|=19
$$

2D Experimental asymptotic results

Sequences	Array Dim.		Column N. Comp	M-T N. Comp	Our N. Comp
Welch		$p \equiv 1,7(\bmod 8)$.5		.5
Legendre	$p \times p-1$	$p \equiv 3,5(\bmod 8)$	1		1
Quadratic		$p \equiv 1,7(\bmod 8)$.5	.5	.5
Legendre	$p \times p-1$	$p \equiv 3,5(\bmod 8)$	1	1	1

Array	Dim.	M-T N. Comp	Our N. Comp
Gen. Leg. Ternary	$p \times p$	-	1
Gen. Leg. Binary	$p \times p$	-	.5

Conjecture

Let $\mathcal{L}(s)$ be the complexity of a Legendre sequence for p. The normalized linear complexity $\mathcal{L}(a)$ of an array constructed with columns from Legendre and a shift sequence of period $n_{1}=p-1$ is

$$
\mathcal{L}_{n}(a)=\left\{\begin{array}{ccc}
\mathcal{L}_{n}(s)-\frac{n_{1}-1}{n_{1} p} & p \equiv 3 & (\bmod 4) \\
\mathcal{L}_{n}(s) & p \equiv 1 & (\bmod 4)
\end{array}\right.
$$

3D Results

Proposition

Let $\left(a_{i, j, k}\right)$ be a 3D array constructed using the composition method by defining the columns as cyclic shifts up of a sequence $\left(c_{j}\right)$ with period $n_{1}^{2}-1$, where the shifts are given by a $2 D$ square array with period n_{1}. If $\mathcal{L}(c)$ is the linear complexity of the sequence $\left(c_{j}\right)$ and $\mathcal{L}(a)$ is the linear complexity of the array $\left(a_{i, j, k}\right)$, then

$$
\mathcal{L}_{n}(a) \leq \mathcal{L}_{n}(c)
$$

This bound is tight.

3D Results

Proposition

Let $\left(a_{i, j, k}\right)$ be a 3D array constructed using the composition method by defining the columns as cyclic shifts up of a sequence $\left(c_{j}\right)$ with period $n_{1}^{2}-1$, where the shifts are given by a $2 D$ square array with period n_{1}. If $\mathcal{L}(c)$ is the linear complexity of the sequence $\left(c_{j}\right)$ and $\mathcal{L}(a)$ is the linear complexity of the array $\left(a_{i, j, k}\right)$, then

$$
\mathcal{L}_{n}(a) \leq \mathcal{L}_{n}(c)
$$

This bound is tight.
The same is true for composition with "floors"!!

3D Experimental asymptotic results

Shift Array/ Floor Array	3D Array Dim.	Floor N. Comp	Our 3D N. Comp
3D Welch	$p \times p$		
2D Gen. Leg. Tern.	$\times p^{2}-1$	1	1
3D Welch	$p \times p$		
2D Gen. Leg. Bin.	$\times p^{2}-1$.5	.5
3D Quadratic	$p \times p$		
2D Gen. Leg. Bin.	$\times p^{2}-1$.5	.5

3D Experimental asymptotic results

Shift Array/ Floor Array	3D Array Dim.	Floor N. Comp	Our 3D N. Comp
3D Welch 2D Gen. Leg. Tern.	$p \times p$ $\times p^{2}-1$	1	1
3D Welch	$p \times p$		
2D Gen. Leg. Bin.	$\times p^{2}-1$.5	.5
3D Quadratic	$p \times p$		
2D Gen. Leg. Bin.	$\times p^{2}-1$.5	.5

Complexity of 3D Welch with Sidelnikov columns \longrightarrow Complexity of Sidelnikov.

3D Experimental asymptotic results

Shift Array/ Floor Array	3D Array Dim.	Floor N. Comp	Our 3D N. Comp
3D Welch 2D Gen. Leg. Tern.	$p \times p$ $\times p^{2}-1$	1	1
3D Welch	$p \times p$		
2D Gen. Leg. Bin.	$\times p^{2}-1$.5	.5
3D Quadratic	$p \times p$		
2D Gen. Leg. Bin.	$\times p^{2}-1$.5	.5

Complexity of 3D Welch with Sidelnikov columns \longrightarrow Complexity of Sidelnikov.

Complexity of 3D Quadratic with Sidelnikov columns \longrightarrow Complexity of Sidelnikov.

Conjectures

- The normalized linear complextity of arrays constructed by composing a shift sequence/array with a column of length commesurable with the shifts approaches the normalized linear complexity of the column sequence.

Conjectures

- The normalized linear complextity of arrays constructed by composing a shift sequence/array with a column of length commesurable with the shifts approaches the normalized linear complexity of the column sequence.
- The normalized linear complextity of arrays constructed by composing a shift array with a "floor" arrays of dimmensions commesurable with the dimensions of the shift array approaches the normalized linear complexity of the "floor array".

Conjectures

- The normalized linear complextity of arrays constructed by composing a shift sequence/array with a column of length commesurable with the shifts approaches the normalized linear complexity of the column sequence.
- The normalized linear complextity of arrays constructed by composing a shift array with a "floor" arrays of dimmensions commesurable with the dimensions of the shift array approaches the normalized linear complexity of the "floor array".

$$
\mathcal{L}_{n}(a) \longrightarrow \mathcal{L}_{n}(c)
$$

Conjectures

- The normalized linear complextity of arrays constructed by composing a shift sequence/array with a column of length commesurable with the shifts approaches the normalized linear complexity of the column sequence.
- The normalized linear complextity of arrays constructed by composing a shift array with a "floor" arrays of dimmensions commesurable with the dimensions of the shift array approaches the normalized linear complexity of the "floor array".

$$
\mathcal{L}_{n}(a) \longrightarrow \mathcal{L}_{n}(c)
$$

Also have conjectures for exact formulas for the complexity of some 3D arrays.

In Progress...

- Study other sequences and arrays for composition method.

In Progress...

- Study other sequences and arrays for composition method.
- Find formulas for the complexity of arrays constructed with composition method.

In Progress...

- Study other sequences and arrays for composition method.
- Find formulas for the complexity of arrays constructed with composition method.
- Study many other questions regarding multidimensional constructions!

Coming Soon!!

WEB APPLICATION FOR COMPUTING LINEAR COMPLEXITY OF MD ARRAYS

THANKS !!!

- Daniel, David and Steve for the invitation.

THANKS !!!

- Daniel, David and Steve for the invitation.
- My students for their results, help and motivation to work harder.

THANKS !!!

- Daniel, David and Steve for the invitation.
- My students for their results, help and motivation to work harder.
- My collaborators Rafa Arce and Cheo Ortiz for sharing their knowledge and expertise on array properties and applications.

THANKS !!!

- Daniel, David and Steve for the invitation.
- My students for their results, help and motivation to work harder.
- My collaborators Rafa Arce and Cheo Ortiz for sharing their knowledge and expertise on array properties and applications.
- The DEGI of the UPR-RP for the FIPI Grant funding.

THANKS !!!

- Daniel, David and Steve for the invitation.
- My students for their results, help and motivation to work harder.
- My collaborators Rafa Arce and Cheo Ortiz for sharing their knowledge and expertise on array properties and applications.
- The DEGI of the UPR-RP for the FIPI Grant funding.
- All of you!

