On multidimensional periodic arrays

Ivelisse Rubio Department of Computer Science University of Puerto Rico, Río Piedras

Carleton Finite Fields eSeminar

March 31, 2021

→ Ξ →

Outline

Construction Methods

- 2-dimensional arrays
- Multidimensional arrays
- Linear ComplexityPeriodic arrays

3

< ロ > < 同 > < 三 > < 三

Collaborators

Oscar Moreno - Andrew Tirkel

- Rafael Arce
- Francis Castro
- Domingo Gómez
- Carlos Hernández
- Tom Hoholdt
- José Ortiz
- Andrés Ramos
- David Thomson
- Jaziel Torres

3

(人間) トイヨト イヨト

Ongoing work

- Rafael Arce
- Carlos Hernández
- José Ortiz
- Jaziel Torres

<ロ> (日) (日) (日) (日) (日)

The problem

To study constructions and properties of Multidimensional arrays that can be used for applications in

- Digital watermarking
- Code division multiple access (CDMA)
- Multiple target recognition
- Optical orthogonal codes

/₽ ▶ ∢ ∋ ▶

Properties of the array

- Correlations
- Balance
- Large family size
- Variety of sizes

(日) (同) (三) (三)

Properties of the array

- Correlations
- Balance
- Large family size
- Variety of sizes
- Linear complexity (resistance to a Berlekamp-Massey attack)

-

• • • • • • • • • • • •

Constructions proposed by Moreno and Tirkel

- A sequence with good correlation properties and good complexity to construct columns
- A sequence/array with good correlation properties to shift the columns

A (10) F (10)

Constructions proposed by Moreno and Tirkel

- A sequence with good correlation properties and good complexity to construct columns
- A sequence/array with good correlation properties to shift the columns

• Their constructions preserve properties of balance and correlation.

Constructions proposed by Moreno and Tirkel

- A sequence with good correlation properties and good complexity to construct columns
- A sequence/array with good correlation properties to shift the columns

- Their constructions preserve properties of balance and correlation.
- Problems computing complexity

Problem

How to define and compute multidimensional linear complexity?

イロト イヨト イヨト イヨト

• Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.

3

< ロ > < 同 > < 三 > < 三

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.

- **(())) (())) ())**

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.

• • = • •

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.
- A measure more accurate than the one given for multisequences.

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.
- A measure more accurate than the one given for multisequences.
- Proved some bounds for the complexity.

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.
- A measure more accurate than the one given for multisequences.
- Proved some bounds for the complexity.
- Proved formulas for the exact value of the complexity of some specific arrays.

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.
- A measure more accurate than the one given for multisequences.
- Proved some bounds for the complexity.
- Proved formulas for the exact value of the complexity of some specific arrays.
- Implemented our method to compute multidimensional linear complexity.

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.
- A measure more accurate than the one given for multisequences.
- Proved some bounds for the complexity.
- Proved formulas for the exact value of the complexity of some specific arrays.
- Implemented our method to compute multidimensional linear complexity.
- Results are compatible with results for sequences and computations with unfolding method.

(日) (同) (三) (三)

- Provided a definition and method to compute multidimensional linear complexity of multidimensional periodic arrays.
- Definition generalizes the concept and measure of linear complexity of sequences.
- No restrictions on the periods of the array.
- A measure more accurate than the one given for multisequences.
- Proved some bounds for the complexity.
- Proved formulas for the exact value of the complexity of some specific arrays.
- Implemented our method to compute multidimensional linear complexity.
- Results are compatible with results for sequences and computations with unfolding method.
- Computed multidimensional linear complexity of arrays that could not be computed before.

Outline

2 Construction Methods

- 2-dimensional arrays
- Multidimensional arrays
- Linear ComplexityPeriodic arrays

-

< 🗗 🕨

Multidimensional periodic arrays

Construction of 2-dimensional arrays

∃ ►

Image: A matrix and a matrix

Multidimensional periodic arrays

3

(日) (同) (三) (三)

A column sequence with good linear complexity:

3

(日) (同) (三) (三)

2-dimensional arrays

2-D Composition method (example)

A **column** sequence with good linear complexity:

Legendre (\mathbb{F}_7): c = 0, 0, 0, 1, 0, 1, 1, ...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

A column sequence with good linear complexity: Legendre (\mathbb{F}_7): c = 0, 0, 0, 1, 0, 1, 1, ...

A shift sequence with good correlation properties:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

A **column** sequence with good linear complexity: Legendre (\mathbb{F}_7): c = 0, 0, 0, 1, 0, 1, 1, ...

A **shift** sequence with good correlation properties: Welch: $s_i = 3^i \pmod{7}$, s = 1, 3, 2, 6, 4, 5, ...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

A column sequence with good linear complexity: Legendre (\mathbb{F}_7): c = 0, 0, 0, 1, 0, 1, 1, ...

A **shift** sequence with good correlation properties: Welch: $s_i = 3^i \pmod{7}$, s = 1, 3, 2, 6, 4, 5, ...

6				0		
5						0
4					0	
3		0				
2			0			
1	0					
0						
-	0	1	0	2	Δ	E

3

<ロ> (日) (日) (日) (日) (日)

(日) (周) (三) (三)

3

 $p \times p - 1$ periodic array

$$A_{i,j} = c_{j-s_i \pmod{p}}$$

(日) (周) (三) (三)

3

• Good things:

3

<ロ> (日) (日) (日) (日) (日)

- Good things:
 - Balance properties

(日) (周) (三) (三)

3

- Good things:
 - Balance properties
 - 2 Correlations

3

イロト イヨト イヨト

- Good things:
 - Balance properties
 - 2 Correlations
- Problems to solve:

3

(日) (同) (三) (三)

• Good things:

- Balance properties
- 2 Correlations
- Problems to solve:
 - Need families of arrays

3

-
Good things:

- Balance properties
- 2 Correlations

Problems to solve:

- Need families of arrays
- ② Cannot compute linear complexity of all the arrays

/₽ ▶ ∢ ∋ ▶

Good things:

- Balance properties
- 2 Correlations

Problems to solve:

- Need families of arrays
- ② Cannot compute linear complexity of all the arrays

Solutions:

Good things:

- Balance properties
- 2 Correlations

Problems to solve:

- Need families of arrays
- ② Cannot compute linear complexity of all the arrays

Solutions:

Consider other shift sequences

Good things:

- Balance properties
- 2 Correlations

Problems to solve:

- Need families of arrays
- ② Cannot compute linear complexity of all the arrays

Solutions:

- Consider other shift sequences
- 2 Definition and method to compute multidimensional linear complexity

□ ▶ ▲ □ ▶ ▲ □

Composition method: Other shift sequences

Exponential quadratic:

$$s_i = A\alpha^{2i} + B\alpha^i + C$$

 $A, B, C \in \mathbb{F}_q$, α a primitive element in \mathbb{F}_q

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Composition method: Other shift sequences

Exponential quadratic:

$$s_i = A\alpha^{2i} + B\alpha^i + C$$

 $A, B, C \in \mathbb{F}_q, \quad \alpha$ a primitive element in \mathbb{F}_q

Rational functions:

$$f(x) = \frac{Ax + B}{Cx + D}$$
$$A, B, C, D \in \mathbb{F}_q, \quad AD \neq BC$$

Use the **index table** of the finite field \mathbb{F}_{p^2} .

3

Use the **index table** of the finite field \mathbb{F}_{p^2} .

Let $f(x) = x^2 + 2x + 2 \in \mathbb{F}_3[x]$ and $f(\alpha) = 0$.

イロト 不得下 イヨト イヨト 二日

Use the **index table** of the finite field \mathbb{F}_{p^2} .

Let
$$f(x) = x^2 + 2x + 2 \in \mathbb{F}_3[x]$$
 and $f(\alpha) = 0$.

 $\alpha^2 = \alpha + 1$

3

Use the **index table** of the finite field \mathbb{F}_{p^2} .

Let
$$f(x) = x^2 + 2x + 2 \in \mathbb{F}_3[x]$$
 and $f(\alpha) = 0$.

$$\alpha^2 = \alpha + 1$$
 $\alpha^k = i\alpha + j = (i, j), i, j \in \mathbb{F}_3$

3

Use the **index table** of the finite field \mathbb{F}_{p^2} .

Let
$$f(x) = x^2 + 2x + 2 \in \mathbb{F}_3[x]$$
 and $f(\alpha) = 0$.

$$\alpha^2 = \alpha + 1$$
 $\alpha^k = i\alpha + j = (i, j), i, j \in \mathbb{F}_3$

2	α^4	α^7	α^{6}	
1	α^{0}	α^2	α^3	log
0	*	α^1	α^{5}	\rightarrow
j∕i	0	1	2	

3

Use the **index table** of the finite field \mathbb{F}_{p^2} .

Let
$$f(x) = x^2 + 2x + 2 \in \mathbb{F}_3[x]$$
 and $f(\alpha) = 0$.

$$\alpha^2 = \alpha + 1$$
 $\alpha^k = i\alpha + j = (i, j), i, j \in \mathbb{F}_3$

$$W_{0,0} = *, \quad W_{i,j} = k, \quad \text{where } \alpha^k = (i,j)$$

-

Image: A matrix and a matrix

Use the **index table** of the finite field \mathbb{F}_{p^2} and take the entries (mod 2):

3

Use the **index table** of the finite field \mathbb{F}_{p^2} and take the entries (mod 2):

 $A_{0,0} = 0, \quad A_{i,j} = k \pmod{2}, \text{ where } \alpha^k = (i,j)$

Multidimensional periodic arrays

Construction of 3-dimensional arrays

Image: A match a ma

Multidimensional periodic arrays

3

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

∃ ► < ∃</p>

A 2-dimensional array with good correlation properties as a shifting array:

3

A 2-dimensional array with good correlation properties as a **shifting array**: Use the **index table** of the finite field \mathbb{F}_{p^2} .

Let $f(x) = x^2 + 2x + 2 \in \mathbb{F}_3[x]$ and $f(\alpha) = 0$.

$$\alpha^2 = \alpha + 1$$
 $\alpha^i = i\alpha + j = (i, j), i, j \in \mathbb{F}_3$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

A 2-dimensional array with good correlation properties as a **shifting array**: Use the **index table** of the finite field \mathbb{F}_{p^2} .

Let $f(x) = x^2 + 2x + 2 \in \mathbb{F}_3[x]$ and $f(\alpha) = 0$.

$$\alpha^2 = \alpha + 1$$
 $\alpha^i = i\alpha + j = (i, j), i, j \in \mathbb{F}_3$

 $W_{0,0} = *, \quad W_{i,j} = k, \quad \text{where } \alpha^k = (i,j)$

イロト 不得 トイヨト イヨト 二日

A 2-dimensional array with good correlation properties as a **shifting array**: Use the **index table** of the finite field \mathbb{F}_{p^2} .

Let $f(x) = x^2 + 2x + 2 \in \mathbb{F}_3[x]$ and $f(\alpha) = 0$.

$$\alpha^2 = \alpha + 1$$
 $\alpha^i = i\alpha + j = (i, j), i, j \in \mathbb{F}_3$

 $W_{0,0} = *, \quad W_{i,j} = k, \quad \text{where } \alpha^k = (i,j)$

Entries mark the "floor" where the circles for the shift are placed.

Ivelisse Rubio

March 31, 2021 21 / 60

NOTE: There are $p^2 - 1$ layers; each layer has a shifting position. Thanks to Andrés Ramos!

3

Image: A match a ma

* A 2-dimensional array with good correlation properties as a **shifting array**.

4	7	6
0	2	3
*	1	5

* A column sequence c of length $p^2 - 1$

3

イロト イポト イヨト イヨト

* A 2-dimensional array with good correlation properties as a shifting array.

4	7	6
0	2	3
*	1	5

* A column sequence c of length $p^2 - 1$

NOTE: There are $p^2 - 1$ layers; each layer has a shifting position.

(日) (同) (三) (三)

э

$$\begin{aligned} \mathcal{A}_{ijk} &= c_{k-\log{(i,j)} \pmod{p^2-1}} = c_{k-h} \pmod{p^2-1} \\ \alpha^h &= i\alpha + j \end{aligned}$$

Thanks to Jaziel Torres!

Ivelisse Rubio

A 2-dimensional array with good correlation properties as a **shifting array** A **column sequence** of commensurate length (Sidelnikov)

- 4 @ > - 4 @ > - 4 @ >

- A 2-dimensional array with good correlation properties as a **shifting array** A **column sequence** of commensurate length (Sidelnikov) or
- A 3-dimensional array with good correlation properties as a **shifting array** A **"floor array"** of commensurate dimensions (Generalized Legendre)

Outline

Introduction

Construction Methods2-dimensional arrays

Multidimensional arrays

3 Linear Complexity• Periodic arrays

- ∢ - 🛱 🕨

э

$$s = s_0, s_1, s_2, \ldots$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$s = s_0, s_1, s_2, \ldots$$

Periodic with period *n* if

 $s_{i+n} = s_i$, for all $i \in \mathbb{N}_0$.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

$$s = s_0, s_1, s_2, \ldots$$

Periodic with period *n* if

$$s_{i+n} = s_i$$
, for all $i \in \mathbb{N}_0$.

This is a recurrence relation.

3

$$s = s_0, s_1, s_2, \ldots$$

Periodic with period *n* if

$$s_{i+n} = s_i$$
, for all $i \in \mathbb{N}_0$.

This is a recurrence relation.

$$s_n=s_0, \quad s_n-s_0=0$$

3

$$s = s_0, s_1, s_2, \ldots$$

Periodic with period *n* if

$$s_{i+n} = s_i$$
, for all $i \in \mathbb{N}_0$.

This is a recurrence relation.

$$s_n = s_0, \quad s_n - s_0 = 0$$

$$x^n - 1$$

Recurrence relations

$$s_u + \sum_{i < u} c_i s_{i+\beta} = 0$$

Ξ.

・ロト ・四ト ・ヨト ・ヨト

Recurrence relations

$$s_u + \sum_{i < u} c_i s_{i+\beta} = 0$$

$$C(x) = \sum_{i \in Supp(C)} c_i x^i$$

Ivelisse Rubio

≣ ► < ≣ ► Ξ ∽ < ભ March 31, 2021 28 / 60

・ロト ・四ト ・ヨト ・ヨト

Recurrence relations

$$s_u + \sum_{i < u} c_i s_{i+\beta} = 0$$

$$C(x) = \sum_{i \in Supp(C)} c_i x^i$$

Definition

The polynomial C defines a **linear recurrence relation for the sequence** s if the equation

$$\sum_{i \in Supp(C)} c_i s_{i+\beta} = 0 \quad \text{holds for all} \quad \beta \in \mathbb{N}_0.$$
Recurrence relations

$$s_u + \sum_{i < u} c_i s_{i+\beta} = 0$$

$$C(x) = \sum_{i \in Supp(C)} c_i x^i$$

Definition

The polynomial C defines a **linear recurrence relation for the sequence** s if the equation

$$\sum_{i\in Supp(\mathcal{C})} c_i s_{i+eta} = 0$$
 holds for all $eta \in \mathbb{N}_0.$

We say that C is valid for the sequence s, $C \in Val(s)$.

• A recurrence polynomial for the sequence generates the sequence.

3

< ロ > < 同 > < 三 > < 三

- A recurrence polynomial for the sequence generates the sequence.
- The set of valid polynomials for the sequence Val(s) form an ideal in $\mathbb{F}[x]$.

- A recurrence polynomial for the sequence generates the sequence.
- The set of valid polynomials for the sequence Val(s) form an ideal in $\mathbb{F}[x]$.
- The minimal polynomial of the sequence is a generator of Val(s).

- **(())) (())) ())**

- A recurrence polynomial for the sequence generates the sequence.
- The set of valid polynomials for the sequence Val(s) form an ideal in $\mathbb{F}[x]$.
- The minimal polynomial of the sequence is a generator of Val(s).
- The linear complexity measures the resistance to a Berlekamp-Massey attack.

A (10) < A (10) </p>

- A recurrence polynomial for the sequence generates the sequence.
- The set of valid polynomials for the sequence Val(s) form an ideal in $\mathbb{F}[x]$.
- The minimal polynomial of the sequence is a generator of Val(s).
- The linear complexity measures the resistance to a Berlekamp-Massey attack.

Definition

The **linear complexity** of a periodic sequence *s* is the degree of a minimal polynomial that generates the sequence.

Periodic arrays

:				
a _{0,3}	a _{1,3}	a _{2,3}	a _{3,3}	
<i>a</i> _{0,2}	a _{1,2}	a _{2,2}	a _{3,2}	• • •
a _{0,1}	a _{1,1}	a _{2,1}	a _{3,1}	
<i>a</i> 0,0	a _{1,0}	a _{2,0}	a _{3,0}	• • • •

How can we define (and compute!) the **linear complexity** of a periodic array????

3

Periodic arrays

÷			:	
a _{0,3}	a _{1,3}	a _{2,3}	a _{3,3}	
<i>a</i> _{0,2}	a _{1,2}	a _{2,2}	a _{3,2}	• • •
$a_{0,1}$	a _{1,1}	a _{2,1}	a _{3,1}	
<i>a</i> 0,0	a _{1,0}	a _{2,0}	<i>a</i> _{3,0}	•••

How can we define (and compute!) the **linear complexity** of a periodic array????

The definition should be consistent both conceptually and numerically with the one dimensional case.

Old trick: Transform the problem to the one you know how to solve!

< □ > < 同 > < 三 > < 三

Old trick: Transform the problem to the one you know how to solve!

If the periods are relatively prime, one can

- "unfold" the array using the Chinese Remainder Theorem
- construct a sequence from the array

Old trick: Transform the problem to the one you know how to solve!

If the periods are relatively prime, one can

- "unfold" the array using the Chinese Remainder Theorem
- construct a sequence from the array
- use the Berlekamp-Massey algorithm to find a minimal generator
- the complexity is the degree of a minimal generator

Old trick: Transform the problem to the one you know how to solve!

If the periods are relatively prime, one can

- "unfold" the array using the Chinese Remainder Theorem
- construct a sequence from the array
- use the Berlekamp-Massey algorithm to find a minimal generator
- the complexity is the degree of a minimal generator

Problem: restriction in the period of the array.

Multidimensional periodic arrays

:			:						
3	1	4	2	3	1	4	2	3	
4	6	0	5	4	6	0	5	4	
2	3	1	5	2	3	1	5	2	
2	4	1	3	2	4	1	3	2	
0	E	2	1	^	-	~	-	~	
Ŭ	5	3		0	5	3		0	
3	5 1	3 4	1	0 3	5 1	3	1	0 3	•••
3 4	5 1 6	3 4 0	1 2 5	0 3 4	5 1 6	3 4 0	1 2 5	0 3 4	•••

$$(n_1, n_2) = (4, 5)$$

 $a_{i+4k_1, j+5k_2} = a_{i,j}$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Multidimensional periodic arrays

Definition

A 2-dimensional array *a* is said to be 2-**dimensional periodic** if there is a **period vector**, $n = (n_1, n_2) \in \mathbb{N}^2$, such that

 $a_{i+k_1n_1, j+k_2n_2} = a_{i,j}$

for all $(i, j), (k_1, k_2) \in \mathbb{N}_0^2$.

The array is **periodic** with period $n = (n_1, n_2)$ if

$$a_{i+k_1n_1, \ j+k_2n_2} = a_{i,j}$$
 for all $(i,j), (k_1,k_2) \in \mathbb{N}_0^2$.

3

The array is **periodic** with period $n = (n_1, n_2)$ if

$$a_{i+k_{1}n_{1},\;j+k_{2}n_{2}}=a_{i,j}$$
 for all $\left(i,j
ight) ,\left(k_{1},k_{2}
ight) \in\mathbb{N}_{0}^{2}.$

This is a recurrence relation.

$$a_{n_1,0} = a_{0,0}$$
 and $a_{n_1,0} - a_{0,0} = 0$,

3

The array is **periodic** with period $n = (n_1, n_2)$ if

$$a_{i+k_{1}n_{1},\;j+k_{2}n_{2}}=a_{i,j}$$
 for all $\left(i,j
ight) ,\left(k_{1},k_{2}
ight) \in\mathbb{N}_{0}^{2}.$

This is a recurrence relation.

$$a_{n_1,0} = a_{0,0}$$
 and $a_{n_1,0} - a_{0,0} = 0$,

$$x^{n_1} - 1 \in Val(a)$$

3

The array is **periodic** with period $n = (n_1, n_2)$ if

$$a_{i+k_{1}n_{1},\;j+k_{2}n_{2}}=a_{i,j}$$
 for all $\left(i,j
ight) ,\left(k_{1},k_{2}
ight) \in\mathbb{N}_{0}^{2}.$

This is a recurrence relation.

$$a_{n_1,0} = a_{0,0}$$
 and $a_{n_1,0} - a_{0,0} = 0$,

$$x^{n_1} - 1 \in Val(a)$$

$$a_{0,n_2} = a_{0,0}$$
 and $a_{0,n_2} - a_{,0} = 0$.

$$y^{n_2}-1 \in Val(a)$$

3

Recurrence relations

Definition

The polynomial C defines a **linear recurrence relation for the array** a if the equation

$$\sum_{\alpha\in Supp(C)}c_{\alpha}a_{\alpha+\beta}=0 \quad \text{holds for all} \ \ \beta\in\mathbb{N}^2_0,$$

where $\alpha \in \mathbb{N}_0^2$.

We say that C is valid for the array a,

 $C \in Val(a).$

		-	
110	1660	Rui	hio.
100	11330	T N U	

Periodic arrays

Linear complexity

• The polynomials that are valid in the array form a polynomial ideal I = Val(a).

3

- The polynomials that are valid in the array form a polynomial ideal I = Val(a).
- To generate the array we might need more than one polynomial.

< ロ > < 同 > < 三 > < 三

- The polynomials that are valid in the array form a polynomial ideal I = Val(a).
- To generate the array we might need more than one polynomial.
- A generating set for I = Val(a) generates the array.

- The polynomials that are valid in the array form a polynomial ideal I = Val(a).
- To generate the array we might need more than one polynomial.
- A generating set for I = Val(a) generates the array.
- The **linear complexity** measures the resistance to find a generating set for I = Val(a).

Linear complexity (for sequences)

Definition

The **linear complexity of a periodic sequence** *s* is the degree of a minimal polynomial that generates the sequence.

Linear complexity (for sequences)

Definition

The **linear complexity of a periodic sequence** s is the degree of a minimal polynomial that generates the sequence.

How can we generalize this concept for arrays?

A (10) A (10)

• for sequences: degree of minimal generating polynomial g

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Periodic arrays

Linear complexity

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial g_1, \ldots, g_l

3

Periodic arrays

Linear complexity

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial g_1, \ldots, g_l
- for sequences: number of monomials smaller than LM(g)

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial g_1, \ldots, g_l
- for sequences: number of monomials smaller than LM(g)
- for arrays: need a monomial ordering and deal with more polynomials

- 4 同 ト 4 三 ト 4 三

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial g_1,\ldots,g_l
- for sequences: number of monomials smaller than LM(g)
- for arrays: need a monomial ordering and deal with more polynomials
- for sequences: number of monomials not divisible by LM(g)

(人間) トイヨト イヨト

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial g_1, \ldots, g_l
- for sequences: number of monomials smaller than LM(g)
- for arrays: need a monomial ordering and deal with more polynomials
- for sequences: number of monomials not divisible by LM(g)
- for arrays: number of monomials not divisible by $LM(g_i)$ of any of the generating polynomials g_i is not invariant for any generating set.

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial g_1,\ldots,g_l
- for sequences: number of monomials smaller than LM(g)
- for arrays: need a monomial ordering and deal with more polynomials
- for sequences: number of monomials not divisible by LM(g)
- for arrays: number of monomials not divisible by $LM(g_i)$ of any of the generating polynomials g_i is not invariant for any generating set. We need a special type of generating set:

- for sequences: degree of minimal generating polynomial g
- for arrays: more than one generating polynomial g_1, \ldots, g_l
- for sequences: number of monomials smaller than LM(g)
- for arrays: need a monomial ordering and deal with more polynomials
- for sequences: number of monomials not divisible by LM(g)
- for arrays: number of monomials not divisible by $LM(g_i)$ of any of the generating polynomials g_i is not invariant for any generating set. We need a special type of generating set:

a Gröbner basis!

イロト イポト イヨト イヨト

Gröbner bases

Definition

Let $G = \{g_1, \ldots, g_I\} \subset I$, I an ideal in $\mathbb{F}[\mathbf{x}]$. One says that G is a **Gröbner basis** for I with respect to \leq_T if

 $\langle LM(g_1),\ldots,LM(g_l)\rangle = \langle LM(l)\rangle.$

3

Gröbner bases

Definition

Let $G = \{g_1, \ldots, g_I\} \subset I$, I an ideal in $\mathbb{F}[\mathbf{x}]$. One says that G is a **Gröbner basis** for I with respect to \leq_T if

 $\langle LM(g_1),\ldots,LM(g_I)\rangle = \langle LM(I)\rangle.$

$$I = \langle x + 1, x \rangle = \langle 1 \rangle = \mathbb{F}[x]$$

3

Gröbner bases

Definition

Let $G = \{g_1, \ldots, g_I\} \subset I$, I an ideal in $\mathbb{F}[\mathbf{x}]$. One says that G is a **Gröbner basis** for I with respect to \leq_T if

 $\langle LM(g_1),\ldots,LM(g_l)\rangle = \langle LM(l)\rangle.$

$$I = \langle x + 1, x \rangle = \langle 1 \rangle = \mathbb{F}[x]$$

 $\langle x \rangle = \langle LM(x+1), LM(x) \rangle \neq \langle LM(I) \rangle = \langle 1 \rangle$

イロト 不得 トイヨト イヨト 二日
Properties of Gröbner bases

• A Gröbner basis for an ideal generates the ideal.

3

(日) (同) (三) (三)

Properties of Gröbner bases

- A Gröbner basis for an ideal generates the ideal.
- There are algorithms for computing Gröbner bases. (Most of them depend on having a basis to start from)

Properties of Gröbner bases

- A Gröbner basis for an ideal generates the ideal.
- There are algorithms for computing Gröbner bases. (Most of them depend on having a basis to start from)
- $G = \{g_1, \dots, g_l\} \subset I$ is a Gröbner basis for I if and only if for any $f \in I$,

 $LM(g_i)|LM(f)$

for some $g_i \in G$.

- 4 @ > 4 @ > 4 @ >

Lead monomials

Figure: $\langle x^4y, x^2y^3, xy^4 \rangle$

2

<ロ> (日) (日) (日) (日) (日)

Back to linear complexity

• Complexity for sequences

degree of minimal generating polynomial g

= number of monomials not divisible by LM(g)

3

(人間) トイヨト イヨト

Back to linear complexity

Complexity for sequences

degree of minimal generating polynomial g

= number of monomials not divisible by LM(g)

• Complexity for arrays

number of monomials not divisible by $LM(g_i)$ for $g_i \in GB$

= the size of the Delta set!!!

- 4 週 ト - 4 三 ト - 4 三 ト

Delta sets

- The Delta set of an ideal is not unique.
- The size of a Delta set is invariant

$$|\Delta_I| = \dim_{\mathbb{F}} \left(\mathbb{F}[x, y] / I \right)$$

3

(日) (同) (三) (三)

Linear complexity of arrays

Definition

Let *a* be an *m*-dimensional periodic array and Val(a) be the ideal of recurrence relations valid on the array. We define the *m*-dimensional linear complexity \mathcal{L} of the array *a* as the size of the delta set of Val(a),

$$\mathcal{L} = \left| \Delta_{Val(a)} \right|.$$

Linear complexity of arrays

Definition

Let *a* be an *m*-dimensional periodic array and Val(a) be the ideal of recurrence relations valid on the array. We define the *m*-dimensional linear complexity \mathcal{L} of the array *a* as the size of the delta set of Val(a),

$$\mathcal{L} = \left| \Delta_{Val(a)} \right|.$$

Invariant measure

Linear complexity of arrays

Definition

Let *a* be an *m*-dimensional periodic array and Val(a) be the ideal of recurrence relations valid on the array. We define the *m*-dimensional linear complexity \mathcal{L} of the array *a* as the size of the delta set of Val(a),

$$\mathcal{L} = \left| \Delta_{Val(a)} \right|.$$

- Invariant measure
- Generalization of measure for sequences

Delta sets and complexity of periodic arrays

 $Val(a) = \{$ linear recurrence relations on a periodic array $a, n = (n_1, n_2)\}$

$$x^{n_1}-1\in Val(a), y^{n_2}-1\in Val(a)$$

Normalized linear complexity of arrays

Definition

Let *a* be a periodic array with period (n_1, \ldots, n_m) . The **normalized** *m*-dimensional linear complexity \mathcal{L}_n of the array *a* is

$$\mathcal{L}_n=\frac{\mathcal{L}}{n_1n_2\cdots n_m}.$$

$$0 \leq \mathcal{L}_n \leq 1$$

(日) (同) (三) (三)

Proposition

Let $(a_{i,j})$ be an array constructed using the composition method by shifting columns from a sequence (c_j) cyclically, where the shifts are given by a sequence with period n_1 . If $\mathcal{L}(c)$ is the linear complexity of the sequence (c_j) and $\mathcal{L}(a)$ is the linear complexity of the array $(a_{i,j})$, then

$$\mathcal{L}(a) \leq n_1 \mathcal{L}(c).$$

This bound is tight.

(日) (周) (三) (三)

Corollary

Let $(a_{i,j})$ be an array constructed using the composition method by shifting columns from a sequence (c_j) cyclically, where the shifts are given by a sequence with period n_1 . If $\mathcal{L}(c)$ is the linear complexity of the sequence (c_j) and $\mathcal{L}(a)$ is the linear complexity of the array $(a_{i,j})$, then

$$\mathcal{L}_n(a) \leq \mathcal{L}_n(c).$$

This bound is tight.

(日) (周) (三) (三)

Delta set of composition method

 $g \in Val(c)$

 $Val(a) = \{$ linear recurrence relations on a periodic array $a, n = (n_1, n_2)\}$ $g \in Val(a), y^{n_2} - 1 \in Val(a)$

< A > < 3

Proposition

Let $(a_{i,j})$ be an array constructed using the composition method by shifting columns from a sequence (c_j) cyclically, where the shifts are given by a sequence with period n_1 . If the minimal polynomial of (c_j) , C(y), is divisible by y - 1, $\mathcal{L}(c)$ is the linear complexity of the sequence (c_j) and $\mathcal{L}(a)$ is the linear complexity of the array $(a_{i,j})$, then

$$\mathcal{L}(a) \leq n_1(\mathcal{L}(c)-1)+1.$$

This bound is tight.

(日) (周) (三) (三)

Proposition

Let $(a_{i,j})$ be an array constructed using the composition method by shifting columns from a sequence (c_j) cyclically, where the shifts are given by a sequence with period n_1 . If the minimal polynomial of (c_j) , C(y), is divisible by y - 1, $\mathcal{L}(c)$ is the linear complexity of the sequence (c_j) and $\mathcal{L}(a)$ is the linear complexity of the array $(a_{i,j})$, then

$$\mathcal{L}(a) \leq n_1(\mathcal{L}(c)-1)+1.$$

This bound is tight.

More accurate than the multisequence approach.

イロト 不得下 イヨト イヨト 二日

Corollary

Let $(a_{i,j})$ be an array constructed using the composition method by shifting columns from a sequence (c_j) cyclically, where the shifts are given by a sequence with period n_1 . If the minimal polynomial of (c_j) , C(y), is divisible by y - 1, $\mathcal{L}(c)$ is the linear complexity of the sequence (c_j) and $\mathcal{L}(a)$ is the linear complexity of the array $(a_{i,j})$, then

$$\mathcal{L}_n(a) \leq \mathcal{L}_n(c) - rac{1}{n_2} + rac{1}{n_1 n_2}.$$

This bound is tight.

イロト 不得下 イヨト イヨト 二日

Example - Delta set of composition method

 $\left|\Delta_{Val(a)}\right| = 19$

< 🗇 🕨

Sequences	Array		Column	M-T	Our
	Dim.		N. Comp	N. Comp	N. Comp
Welch		$p \equiv 1,7 \pmod{8}$.5		.5
Legendre	$p \times p - 1$	$p \equiv 3,5 \pmod{8}$	1		1
Quadratic		$p \equiv 1,7 \pmod{8}$.5	.5	.5
Legendre	$p \times p - 1$	$p \equiv 3,5 \pmod{8}$	1	1	1

Array	Dim.	M-T	Our	
		N. Comp	N. Comp	
Gen. Leg.				
Ternary	p imes p	-	1	
Gen. Leg.				
Binary	p imes p	-	.5	

Let $\mathcal{L}(s)$ be the complexity of a Legendre sequence for p. The normalized linear complexity $\mathcal{L}(a)$ of an array constructed with columns from Legendre and a shift sequence of period $n_1 = p - 1$ is

$$\mathcal{L}_n(a) = \begin{cases} \mathcal{L}_n(s) - \frac{n_1 - 1}{n_1 p} & p \equiv 3 \pmod{4} \\ \mathcal{L}_n(s) & p \equiv 1 \pmod{4} \end{cases}$$

イロト イポト イヨト イヨト

Proposition

Let $(a_{i,j,k})$ be a 3D array constructed using the composition method by defining the columns as cyclic shifts up of a sequence (c_j) with period $n_1^2 - 1$, where the shifts are given by a 2D square array with period n_1 . If $\mathcal{L}(c)$ is the linear complexity of the sequence (c_j) and $\mathcal{L}(a)$ is the linear complexity of the array $(a_{i,j,k})$, then

$$\mathcal{L}_n(a) \leq \mathcal{L}_n(c).$$

This bound is tight.

(日) (周) (三) (三)

Proposition

Let $(a_{i,j,k})$ be a 3D array constructed using the composition method by defining the columns as cyclic shifts up of a sequence (c_j) with period $n_1^2 - 1$, where the shifts are given by a 2D square array with period n_1 . If $\mathcal{L}(c)$ is the linear complexity of the sequence (c_j) and $\mathcal{L}(a)$ is the linear complexity of the array $(a_{i,j,k})$, then

$$\mathcal{L}_n(a) \leq \mathcal{L}_n(c).$$

This bound is tight.

The same is true for composition with "floors" !!

(日) (周) (三) (三)

Shift Array/	3D Array	Floor	Our 3D
Floor Array	Dim.	N. Comp	N. Comp
3D Welch	$p \times p$		
2D Gen. Leg. Tern.	$ imes p^2 - 1$	1	1
3D Welch	p imes p		
2D Gen. Leg. Bin.	$\times p^2 - 1$.5	.5
3D Quadratic	$p \times p$		
2D Gen. Leg. Bin.	$\times p^2 - 1$.5	.5

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Shift Array/	3D Array	Floor	Our 3D
Floor Array	Dim.	N. Comp	N. Comp
3D Welch	$p \times p$		
2D Gen. Leg. Tern.	$ imes p^2 - 1$	1	1
3D Welch	p imes p		
2D Gen. Leg. Bin.	$\times p^2 - 1$.5	.5
3D Quadratic	$p \times p$		
2D Gen. Leg. Bin.	$\times p^2 - 1$.5	.5

Complexity of 3D Welch with Sidelnikov columns \longrightarrow Complexity of Sidelnikov.

(日) (周) (三) (三)

Shift Array/	3D Array	Floor	Our 3D
Floor Array	Dim.	N. Comp	N. Comp
3D Welch	$p \times p$		
2D Gen. Leg. Tern.	$ imes p^2 - 1$	1	1
3D Welch	p imes p		
2D Gen. Leg. Bin.	$\times p^2 - 1$.5	.5
3D Quadratic	$p \times p$		
2D Gen. Leg. Bin.	$\times p^2 - 1$.5	.5

Complexity of 3D Welch with Sidelnikov columns \longrightarrow Complexity of Sidelnikov.

Complexity of 3D Quadratic with Sidelnikov columns \longrightarrow Complexity of Sidelnikov.

(日) (周) (三) (三)

• The normalized linear complexity of arrays constructed by composing a shift sequence/array with a column of length commesurable with the shifts approaches the normalized linear complexity of the column sequence.

(日) (同) (三) (三)

- The normalized linear complexity of arrays constructed by composing a shift sequence/array with a column of length commesurable with the shifts approaches the normalized linear complexity of the column sequence.
- The normalized linear complexity of arrays constructed by composing a shift array with a "floor" arrays of dimmensions commesurable with the dimensions of the shift array approaches the normalized linear complexity of the "floor array".

A (10) A (10) A (10)

- The normalized linear complexity of arrays constructed by composing a shift sequence/array with a column of length commesurable with the shifts approaches the normalized linear complexity of the column sequence.
- The normalized linear complexity of arrays constructed by composing a shift array with a "floor" arrays of dimmensions commesurable with the dimensions of the shift array approaches the normalized linear complexity of the "floor array".

$$\mathcal{L}_n(a) \longrightarrow \mathcal{L}_n(c)$$

A (10) A (10) A (10)

- The normalized linear complexity of arrays constructed by composing a shift sequence/array with a column of length commesurable with the shifts approaches the normalized linear complexity of the column sequence.
- The normalized linear complexity of arrays constructed by composing a shift array with a "floor" arrays of dimmensions commesurable with the dimensions of the shift array approaches the normalized linear complexity of the "floor array".

$$\mathcal{L}_n(a) \longrightarrow \mathcal{L}_n(c)$$

Also have conjectures for exact formulas for the complexity of some 3D arrays.

• Study other sequences and arrays for composition method.

3

In Progress...

- Study other sequences and arrays for composition method.
- Find formulas for the complexity of arrays constructed with composition method.

- 4 同 6 4 日 6 4 日 6

In Progress...

- Study other sequences and arrays for composition method.
- Find formulas for the complexity of arrays constructed with composition method.
- Study many other questions regarding multidimensional constructions!

Coming Soon!!

WEB APPLICATION FOR COMPUTING LINEAR COMPLEXITY OF MD ARRAYS

3

(日) (同) (三) (三)

Periodic arrays

THANKS !!!

• Daniel, David and Steve for the invitation.

э

・ロン ・四 ・ ・ ヨン ・ ヨン

THANKS !!!

- Daniel, David and Steve for the invitation.
- My students for their results, help and motivation to work harder.

3

(日) (同) (三) (三)
THANKS !!!

- Daniel, David and Steve for the invitation.
- My students for their results, help and motivation to work harder.
- My collaborators Rafa Arce and Cheo Ortiz for sharing their knowledge and expertise on array properties and applications.

(人間) トイヨト イヨト

THANKS !!!

- Daniel, David and Steve for the invitation.
- My students for their results, help and motivation to work harder.
- My collaborators Rafa Arce and Cheo Ortiz for sharing their knowledge and expertise on array properties and applications.
- The DEGI of the UPR-RP for the FIPI Grant funding.

- 4 回 ト 4 三 ト 4 三

THANKS !!!

- Daniel, David and Steve for the invitation.
- My students for their results, help and motivation to work harder.
- My collaborators Rafa Arce and Cheo Ortiz for sharing their knowledge and expertise on array properties and applications.
- The DEGI of the UPR-RP for the FIPI Grant funding.
- All of you!

- 4 回 ト - 4 回 ト