Optimal Cryptographic Functions over Finite
Fields

Lilya Budaghyan

Selemer Center
Department of Informatics
University of Bergen
NORWAY

Carleton Finite Fields eSeminar
June 10, 2020

1/48



Introduction Preliminaries
Differential Uniformity and APN Functions
Nonlinearity and AB Functions

Functions over finite fields

For p a prime, n and m positive integers

(n,m, p)-functions:  F : Fpn — Fpm

Boolean functions: F :Fon — Fo

Vectorial Boolean (n, m)-functions: ~ F : Fon — Fom
Modern applications of functions over finite fields, especially,
Boolean functions:

@ reliability theory, multicriteria analysis, mathematical
biology, image processing, theoretical physics, statistics;

@ voting games, artificial intelligence, management science,
digital electronics, propositional logic;

@ algebra, coding theory, combinatorics, sequence design,
cryptography.
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Cryptographic properties of functions

Functions used in block ciphers (S-boxes) should possess
certain properties to ensure resistance of the ciphers to
cryptographic attacks.

Main cryptographic attacks on block ciphers and corresponding
properties of S-boxes:

@ Linear attack — Nonlinearity
@ Differential attack — Differential uniformity

@ Algebraic attack — Existence of low degree multivariate
equations

@ Higher order differential attack — Algebraic degree

@ Interpolation attack — Univariate polynomial degree
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Optimal Cryptographic Functions

Optimal Cryptographic functions

@ are (n, m, p)-functions (in particular, vectorial Boolean
functions) optimal for primary cryptographic criteria (APN,
AB, PN, planar etc.);

@ are UNIVERSAL - they define optimal objects in several
branches of mathematics and information theory (coding
theory, sequence design, projective geometry,
combinatorics, commutative algebra);

@ are "HARD-TO-GET" - there are only a few known
constructions (13 AB, 19 APN);

@ are "HARD-TO-PREDICT" - most conjectures are proven
to be false.
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Univariate representation of functions

The univariate representation of F : Fpn — Fpm for m|n:

The univariate degree of F is the degree of its univariate
representation.
Example

F(x) = x" + ax® + a®x® + o*x3

where « is a primitive element of Fos.
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Algebraic degree of univariate function

For p a prime and n a positive integer, p-ary expansion of an
integer kK, 0 < k < p"is

n—1
k = ZPSKS,
s=0
where ks, 0 < ks < p. Then p-weight of k:

n—1
s=0

Algebraic degree of F

p"—1
F(x)= )Y cx', ¢ eFp,
i=0
d°(F)= ma wp(i).
(F) = oim, 2o el
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Special Functions

@ Fislinear if 1
n_

F(x)=> bix".
i=0

o Fis affine if it is a linear function plus a constant.
@ F is quadratic if for some affine A

n—1 o

F(x) =Y byxP P + A(x).

i,j=0
@ F is power function or monomial if F(x) = x9.
@ Fis permutation if it is a one-to-one map.
@ The inverse F~' of a permutation F is s.t.

F1(F(x)) = F(F~(x)) = x.
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Trace functions

Trace function from Fpn to Fpm for m|n:

Absolute trace function:
n—1 )
tra(x) = try(x) = > xP.
i=0

For F:Fpn — Fpmand v €
trm(vF(x))

is a component function of F.
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Differential Uniformity and Derivatives of Functions

@ Differential cryptanalysis of block ciphers was introduced
by Biham and Shamir in 1991.

@ F :Fpn — Fpm is differentially 6-uniform if
F(x+a)— F(x)=b, vaeFpn, VbeFpm,
has at most 4 solutions.

@ Differential uniformity measures the resistance to
differential attack [Nyberg 1993].
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PN, APN and Planar Functions

@ F :Fpn — Fpm is perfect nonlinear (PN) if 6 = p"~"™.

@ If n= mthen PN functions have § = 1 and are called
planar.

@ Planar functions exist only for p > 2.

@ F : Fon — FFan is almost perfect nonlinear (APN) if § = 2.

@ Planar, PN and APN functions are optimal for differential
cryptanalysis.

Examples of planar functions:
@ x2 on Fpn with p > 2, n any positive integer;
@ xP*1 on Fp with p > 2, n/ ged(i, n) odd.

First examples of APN functions [Nyberg 1993]:
@ Gold function x*1 on Fan with ged(i, n) = 1;

@ Inverse function x2"~2 on F.n with n odd.
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Nonlinearity of Functions

@ Linear cryptanalysis was discovered by Matsui in 1993.

@ Distance between two Boolean functions:

d(f,9) = [{x € Fan : f(x) # g(x)}|.

@ Nonlinearity of F : Fon — Fom:
N = min d(trm(v F(x), tran(ax) + b)

aclon,belF,,vel

@ Nonlinearity measures the resistance to linear attack
[Chabaud and Vaudenay 1994].
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Walsh transform of an (n, m)-function F

Ae(u, v) = Z (-1 )trm(v F(x))+trn(ax)7 (U, V) € Fon x FZm

XE]an

@ Walsh coefficients of F are the values of its Walsh
transform.

@ Walsh spectrum of F is the set of all Walsh coefficients of
F.

@ The extended Walsh spectrum of F is the set of absolute
values of all Walsh coefficients of F.

@ Fis APN iff

> AEH(u,v) =231(27 1),

u,velF,n,v#£0
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The nonlinearity of F via Walsh Transform

1
Ne=2""1T__  max Ae(u, v
F 2ue11<‘2n,ve1F;m‘ Flu V)l

@ Covering radius bound for an (n, m)-function F:
NF < 2”71 - 2”/271.

o Ny =21 _2/2-1iff \p(u,v) = £2"2 for any u € Fyn,
v € F5n. Then F is called bent.

@ An (n, m)-function is bent iff it is PN.

@ Bent (n, m)-functions exist iff nis even and m < n/2.
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Almost Bent Functions

For (n, n)-functions Ng < 2"1 — 2"z and functions achieving
this bound are called almost bent (AB).

@ AB functions are optimal for linear cryptanalysis.
o Fis ABiff Ar(u, v) € {0,£2"¢ }.
@ AB functions exist only for n odd.

@ F is maximally nonlinear if n = mis even and
Nf = 2"=1 — 22 (conjectured optimal).
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Almost Bent Functions Il

@ If Fis AB then itis APN.
@ If nis odd and F is quadratic APN then F is AB.

@ Algebraic degrees of AB functions are upper bounded by

nti
5

First example of AB functions:
@ Gold functions x2+1 on Fan with ged(i, n) = 1, n odd:
@ Gold APN functions with n even are not AB;

@ Inverse functions are not AB.

18/48



EAl-equivalence and Known Power APN Functions
Equivalence Relations of Functions CCZ-Equivalence and Its Relation to EAI-Equivalence
Application of CCZ-Equivalence

Outline

9 Equivalence Relations of Functions
@ EAl-equivalence and Known Power APN Functions

19/48



EAl-equivalence and Known Power APN Functions
Equivalence Relations of Functions CCZ-Equivalence and Its Relation to EAI-Equivalence
Application of CCZ-Equivalence

Cyclotomic, Linear, Affine, EA- and EAI- Equivalences

@ F and F’ are affine (resp. linear) equivalent if
F'=AioFoA
for some affine (resp. linear) permutations A; and A..
@ F and F’ are extended affine equivalent (EA-equivalent) if
FF=AjoFoA+A
for some affine permutations A; and A, and some affine A.

@ F and F’ are EAl-equivalent if F" is obtained from F by a
sequence of applications of EA-equivalence and inverses
of permutations.

@ Functions x? and x? over FF» are cyclotomic equivalent if
d =p'-d mod (p"—1)forsome0 <i<n
or,d =p'/d mod (p" — 1) in case gcd(d,p" — 1) = 1.
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Invariants and Relation Between Equivalences

@ Linear equivalence C affine equivalence C EA-equivalence
C EAl-equivalence.

@ Cyclotomic equivalence C EAl-equivalence.

@ APNness, ABness, bentness, planarity are preserved by
EAl-equivalence.

@ Algebraic degree is preserved by EA-equivalence but not
by EAl-equivalence.

@ Permutation property is preserved by cyclotomic and affine
equivalences.
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CCZ-Equivalence and Its Relation to EAI-Equivalence

Application of CCZ-Equivalence

Known AB power functions x? on Fas

’ Functions Exponents d \ Conditions on n odd ‘
Gold (1968) 2 41 ged(i,n) =1,1<i<n/2
Kasami (1971) 22 2l 11 ged(i,n) =1,2<i<n/2
Welch (conj.1968) 2" +3 n=2m+1
Niho 2™ 1 2% _ 1, meven n=2m+1
3m+1

(conjectured in 1972)

2"+ 272 —1, modd

Welch and Niho cases were proven by Canteaut, Charpin,
Dobbertin (2000) and Hollmann, Xiang (2001), respectively.
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Application of CCZ-Equivalence

Known APN power functions x? on Fas

EAl-equivalence and Known Power APN Functions
CCZ-Equivalence and Its Relation to EAI-Equivalence

’ Functions ‘ Exponents d ‘ Conditions ‘

Gold 2" +1 ged(i,n) =1,1<i<n/2
Kasami 22 2" 41 ged(i,n) =1,2<i< n/2
Welch 2"+ 3 n=2m+1

Niho 2™ 4+ 2% — 1, meven n=2m-+1

2"+ 2% — 1, modd
Inverse 21 4 n=2m+1
Dobbertin | 24M 4 23 4 22m 4 om _ 4 n=>5m

@ This list is up to cyclotomic equivalence and is conjectured
complete (Dobbertin 1999).

@ For neven the Inverse function is differentially 4-uniform

and maximally nonlinear and is used as S-box in AES with

n=_8.
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CCZ-Equivalence

The graph of a function F : Fpn — Fpm is the set

Gr = {(x, F(x)) : x € Fpr}.
F and F’" are CCZ-equivalent if £L(Gg) = Gg for some affine
permutation £ of Fpn x Fpm [Carlet, Charpin, Zinoviev 1998].

CCZ-equivalence
@ preserves differential uniformity, nonlinearity, extended
Walsh spectrum and resistance to algebraic attack.

@ is more general than EAl-equivalence [2005].
@ was used to disprove two conjectures of 1998:

e There exist AB functions EA-inequivalent to any
permutation [B., Carlet, Pott 2005].

e For neven there exist APN permutations for n = 6 [Dillon et
al. 2009].
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Relation Between Equivalences

@ Two power functions are CCZ-equivalent iff they are
cyclotomic equivalent.

@ For Gold APN monomials and quadratic APN polynomials
CCZ>EAI.

@ CCZ=EAI for non-quadratic power APN with n < 7.
@ CCZ>EAI for non-power non-quadratic APN functions.

Cases when CCZ-equivalence coincides with EA-equivalence:
@ Boolean functions;
@ All bent, planar and PN functions;
@ Two quadratic APN functions;
@ A quadratic APN function is CCZ-equivalent to a power
function iff it is EA-equivalent to one of the Gold functions.
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CCZ-eq. is more general than EAI-eq.

Example: APN maps F(x) = x*1, ged(i, n) = 1, over Fan and
F'(x) = X2+ 4 (3@ 4 x + tra(1) + Dtra(x2 1 + x trp(1))
(with d(F") = 3) are CCZ-equivalent but EAl-inequivalent.

Take for n odd
L(x,y) = (L1(x), La(x)) = (X+tra(X) +tra(y), Y + tra(y) + tra(X))
and for neven L(x,y) = (L1, L2)(x,y) = (x + tra(y), ¥)-

F’ is EA-inequivalent to permutations. This disproved the
conjecture from 1998 that every AB function is EA-equivalent to
permutation.

Among more than 480 known AB functions over F,7 only 6 of
them, that are power functions, are CCZ-equivalent to

permutations.
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First Classes of APN Maps EAl-ineq. to Monomials

APN functions CCZ-equivalent to Gold functions and
EAl-inequivalent to power functions on Fan [B., Carlet, Pott

2005].
’ Functions \ Conditions ‘
n>4
X2 £ @ 4 x4 tra(1) + Dea(@ ! + x tra(1)) ged(i, n) = 1
6|n
[x + tr%(x2(2i+1) + X4(2"+1)) + trn(x)trf’,(xzi“ + X22’(2"+1))]2"+1 ged(i, n) = 1
m#n
X2H LM@Y 4 x2 e (x) + x P (x)2 n odd
0?4 G ) £ (0] (6 + (07 +1) min
P O0P 1 a0 + uBO1FH (x 4+ 1 () ged(i,n) = 1

29/48



EAl-equivalence and Known Power APN Functions
Equivalence Relations of Functions CCZ-Equivalence and Its Relation to EAI-Equivalence
Application of CCZ-Equivalence

CCZ-construction of Bent Functions

Although for bent functions CCZ and EA equivalences coincide,
constructing new bent functions using CCZ-equivalence is
possible [B., Carlet 2011].

A few infinite families of bent Boolean and vectorial functions
are constructed by applying CCZ-equivalence to non-bent
vectorial functions with bent components.

Example F/(x) = x*1 4+ (x® + x + 1)trp(x*+") and

F(x) = x2+! are CCZ-equivalent on Fan.

f(x) = trp(bF’(x)) is cubic bent when n/gcd(n, i) even,

b € Fan \ Fyi s.t. neither b nor b+ 1 are (2/ + 1)-th powers.
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CCZ-construction of APN permutation for n even

@ No quadratic APN permutations for n even [Nyberg 1993].

The only known APN permutation for n even [Dillon et al 2009]:

@ Applying CCZ-equivalence to quadratic APN on Fan with
n =6 and c primitive

F(x) = x® 4+ x"0 4+ x4

obtain a nonquadratic APN permutation

025 x57 4 3056 4 3250 | 37 49 | 023448 | (39,43 | d4y42 |
CHxH1 4 o18x40 | 46536 | (51,35 | 52,34 | 18,33 4 56,32 |
C53x29 | (3028 | x5 | (58y24 (60,22 | (37,21 | 51,20 4
ox18 £ 2x17 1 cAx15 4 cHx14 4 g32x13 4 o18y12 4 oy i1 |
09X10 +C17X8 +CS1X7 +C17X6 +C18X5+X4+C16X3+ C13X

31/48



Classes of APN polynomials CCZ-inequivalent to Monomials
Applications of APN constructions
APN Constructions and Their Applications and Properties Properties of APN Functions

Outline

e APN Constructions and Their Applications and Properties
@ Classes of APN polynomials CCZ-inequivalent to
Monomials

32/48



Classes of APN polynomials CCZ-inequivalent to Monomials
Applications of APN constructions
APN Constructions and Their Applications and Properties Properties of APN Functions

The first APN and AB classes CCZ-ineq. to Monomials

Let s, k, p be positive integers such that n = pk, p = 3, 4,
ged(k, p) = ged(s, pk) = 1 and a primitive in F5,.

s k_ —k_ ok+s
X2+1+a2 1X2 +2

is quadratic APN on Fon. If nis odd then this function is an AB
permutation [B., Carlet, Leander 2006-2008].

This binomials disproved the conjecture from 1998 on
nonexistence of quadratic AB functions inequivalent to Gold
functions.
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Extensions of a class of APN binomials

Let s, k be positive integers such that n = 3k,
ged(k, 3) = ged(s,3k) = 1 and and « primitive in F5,.

K25+ L g 2i 2ok

+«
is quadratic APN on Fan.
Add more quadratic terms [McGuire et al 2008-2011]:

s k —k k+s —k k k+s_ os
OéX2 +1 +a2 X2 +2 —|—bX2 +1 + da2 +1X2 +2

)

where b, d € Fy«, bd # 1.
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Another APN quadrinomial family

Fpin(x) = x3 4+ wx3®

over Fy10, where w has the order 3 or 93 [Edel et al. 2005].

Let n = 2m with m odd and 3 t m, 3 primitive in Fy2,
(a,b,c)=(B,6%,1)andi=m—2o0ri=(m—-2)"" mod n.
Then , .

X3+ a(x2 12" 4 px32" 4 (x2 R

is APN on Faon. Fpin is a particular case of this quadrinomial
withn=10,a=p8,b=c=0,i =3, k =2 [B., Helleseth,
Kaleyski 2020].
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A class of APN and AB functions x3 + tr,(x°)

B., Carlet, Leander 2009:

F(x) + trp(G(x)) is at most differentially 4-uniform for any APN
function F and any function G.

@ x3 4 trp(x®) is APN over Fon.

@ ltis the only APN polynomial CCZ-inequivalent to power
functions which is defined for any n.

@ It was the first APN polynomial CCZ-inequivalent to power
functions with all coefficients in Fs.
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Known APN families CCZ-ineq. to power functions
N* Functions Conditions
cl- 1 1 n = pk, ged(k,3) = ged(s,3k) = 1,p €

c2 3 3 i = skmod p,m = p—i,n > 12, u primit
q=2",n=2m,ged(i,m) = L€ Fr.s

* s+ 3D 4 0 4 g X1 4 cX? 4 X + 1 has no solution z s.t. 271 = 1
Cc4 z* +a"'Tr, (a2”) a#0

cs 2 fa 'Tri(a’s’ +ad'z") 3n.as0

o6 & +a TR (a%" +a%2") 3n,a #0

- P n = 3k, ged(k, 3) — ged(s, 3K) = 1,

241 2% 2kigkts 2541 2! 2°+2*
ua? s B T e .
vw #1,3|(k + 5), u primitive in F

n=2m,m > 2 even, ged(k,m) = 1 and i > 2 even,
w primitive in Fj., u' € Fyn not a cube

c10| (z + 22" ) + o (uz + u" 2" )P 4z + 27 )(uz + 1" 2

Ci1 L(z)" = + L(z)z*

- ’ " m,q = 2", ged(m, 1) = L,(@) = wiz + 2'u |
c12|  ut(e)(a? +2) + e+ at(@) (2 +2)7 + b(at +2)P n=2mg=2" ged(m,i) = L,4(z) = 'z +2tu

X?*1 4 aX + b has no solution over Fy
n=2m =10, (a,b,c) = (5,1,0,0),i = 3,k = 2, 3 primitive in F,z
c13 2 4 a(@® ) 4 b 4 c(a? ) n = 2m,m odd, 3 { m, (a,b,c) = (B, 5%, 1), B primit

ie{m—2,m2m—1,(m—2)" modn}

@ All are quadratic.

@ All have the same optimal nonlinearity and for n odd they
are AB.

@ In general, these families are pairwise CCZ-inequivalent.

Only one known example of APN polynomial CCZ-inequivalent
to quadratics and to power functions for n=6 [Leander et al,
Edel et al. 2008]. 57148
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Representatives of APN polynomial families n < 11

[Dimension| Functions [Equivalent tol
. x4 4ax17 4870 4ax9ux? c3
aex7satx? c7-co
7 XO+TrAx) c4
XO4x174a%8x18 18X 4 ax¥ 1x%8 c3
eTrg(x%) c4
8 Xora Trg(a’x) c4
a(eex ) axsal®x 6)sa(axsa6x16)12 c1o
X+ Trg(x%) cn
X+Tre(x%) c4
9 4T (x04x18) cs
X +Tr(x184x%6) c6
O5a2x 10,717, 418186 45425120 et
KuxB4a¥1x192 c3
X334x724g31x258 c3
X3 +Tr1p(x%) c4
XP4aTryp(a®x) c4
3+ 8%41x9 4 268296 4 5268 c13
10 X7+ 83415129 4 68296 4 536 c13
X 4212856 4+ g984x12 4 a13333 4 x4 1 2254 4 XBF 4 2128558 4 x96 4 gx130 4 g260x196 4 gix192 4 1965260 1 512384 c12
X7 + 892055 4 215312 4 a925x33 4 x4 4 479454 4 xBF 1 g920x58 4 X6 4 g796x130 4 q29x136 4 g796x192 4. g926260 . B0 364 c12
X7 + 278850 1 a21x12 4 479933 4 x34 4 66254 4 xB5 4 aTB8XE8 4 96 4 g664x130 4 q920x136 4 gB64x192 4. g796x260 4 672364 c12
X5+ 8770x18 4 851220 4 a13333 4 X6 4 a2xB% 4 251450 4 x129 4 g512144 4 X160 4 gBOX514 4 q16x516 4 18x576 4 9165540 c12
X + a¥77x18 4 g#1320 4 g34x33 4 x6 4 a926x54 4 g#15xB0 4 x129 4 g#13x144 4 X160 4 1004514 . 940,516 ;. g9425T76 4 90X 64 c12
X5 +881x78 4+ 21720 4 aB61x33 4 536 4 g530x54 4 190 4 x129 4 17x144 4. X160 4 608514 4 544,516 4 g546,5T6 . gB44x540 c12
I XotTry () ca

Infinite families are identified for
@ only 3 out of 11 quadratic APN functions of Fye;
@ only 4 out of more than 480 quadratic APN of Fy7;
@ only 7 out of more than 8180 quadratic APN of Fos.
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Classification of APN Functions

Leander et al 2008:

CCZ-classification finished for:
@ APN functions with n < 5 (there are only power functions).

EA-classification is finished for:
@ APN functions with n < 5 (there are only power functions
and the ones constructed by CCZ-equivalence in 2005).

There are some partial results for
@ EA-classification of APN functions for n > 6 by Calderini
2019,
@ CCZ-equivalence of quadratic APN for n = 7,8 by Yu et al.
2013,
@ quadratic APN functions with coefficients in Fo for n < 9 by
B., Kaleyski, Yu 2020.
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Application to commutative semifields

S = (S, +, ) is a commutative semifield if all axioms of finite
fields hold except associativity for multiplication.

@ S=(S,+,*)is considered as S = (Fpn, +, *) .
@ There is one-to-one correspondence between quadratic

planar functions and commutative semifields [Coulter et al.
2008].

The only previously known infinite classes of commutative
semifields defined for all odd primes p were Dickson (1906) and
Albert (1952) semifields.

Some of the classes of APN polynomials were used as patterns
for constructions of new such classes of semifields
[B., Helleseth 2007; Zha et al 2009; Bierbrauer 2010].
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Yet another equivalence?

@ Isotopisms of commutative semifields induces isotopic
equivalence of quadratic planar functions more general
than CCZ-equivalence [B., Helleseth 2007].

@ If quadratic planar functions F and F’ are isotopic
equivalent then F’ is EA-equivalent to

F(x+ L(x)) = F(x) = F(L(X))

for some linear permutation L [B., Calderini, Carlet,
Coulter, Villa 2018].

@ Isotopic equivalence for APN functions?
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Isotopic construction

Isotopic construction of APN functions:
F(x + L(x)) = F(x) = F(L(x))

where L is linear and F is APN.
It is not equivalence but a powerful construction method for
APN functions:

@ a new infinite family of quadratic APN functions;

@ for n = 6, starting with any quadratic APN it is possible to
construct all the other quadratic APNs.

Isotopic construction for planar functions?
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Application of APN constructions - crooked functions

F is crooked if F(0) = 0, for all distinct x, y,zand Va # 0, b, ¢, d
FxX)+F(y)+F(z2)+F(x+y+2z)#0and
Fx)+F(y)+F(z2)+ F(x+a+F(y+a)+ F(z+a) #0.

@ Every quadratic AB permutation with F£(0) = 0 is crooked.
@ Every crooked function is an AB permutation.

@ Conjecture: Every crooked function is quadratic.

@ Crookedness is preserved only by affine equivalence.

Known crooked functions over Fan.

’ Functions \ Exponents d \ Conditions ‘

Gold (1968) X2 n odd
AB binomials (2006) | x2*' + a2 ~'x2 27" | n =3k odd

Among all 480 known quadratic AB functions with n =7, only

Gold maps are CCZ-equivalent to permutations.
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Outline

e APN Constructions and Their Applications and Properties

@ Properties of APN Functions
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Exceptional APN functions

A function F is exceptional APN if it is APN over [Fan for infinitely
many values of n.

Gold and Kasami functions are the only known exceptional
APN functions.

It is conjectured by Aubry, McGuire and Rodier (2010) that
there are no more exceptional APN functions.

@ Proven for power functions [Hernando, McGuire 2010].

@ More partial results confirming this conjecture Jedlika,
Hernando, Aubry, McGuire, Rodier, Caullery, Delgado and
Janwa (2009-2016).
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Nonliniarity properties of known APN families

All known APN families, except inverse and Dobbertin
functions, have Gold-like Walsh spectra:

@ for nodd they are AB;
e for n even Walsh spectra are {0, £2"/2, +21/2+11,

Sporadic examples of APN functions with non-Gold like Walsh
spectra:
@ For n = 6 only one example of quadratic APN function with
{07 izn/Z’ 4-on/2+1 7 i2n/2+2}:

X3—‘ra11X5+a13X9+X17+a11X33+X48.

@ For n = 8 there are 499 out of 8180 quadratic APN
functions.
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Problems on Nonlinearity of APN functions

@ Find a family of quadratic APN polynomials with non-Gold
like nonliniarity.

@ The only family of APN power functions with unknown
Walsh spectrum is Dobbertin function:

o All Walsh coefficients are divisible by 2% but not by 25+
[Canteaut, Charpin, Dobbertin 2000].

e Walsh spectrum is conjectured by B., Calderini, Carlet,
Davidova, Kaleyski 2020.

@ What is a low bound for nonlinearity of APN functions?
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