Locally recoverable codes

Carleton online Seminar on Finite Fields 2020

Luciane Quoos
Federal University of Rio de Janeiro - UFRJ - Brazil

Rio de Janeiro, 17 de junho de 2020

Let \mathbb{F}_{q} be a finite field with q elements.
A linear code \mathcal{C} is an \mathbb{F}_{q} subspace of \mathbb{F}_{q}^{n} of dimension k.
The parameters of a code:
(1) length n,
(2) dimension k and
(3) minimum distance d (Hamming distance).

Singleton bound: $d \leq n-k+1$

A Locally Recoverable Code is a code such that the value of an
erased coordinate of a codeword can be recovered from the
values of a small subset of size r of other coordinates.

Let \mathbb{F}_{q} be a finite field with q elements.
A linear code \mathcal{C} is an \mathbb{F}_{q} subspace of \mathbb{F}_{q}^{n} of dimension k.
The parameters of a code:
(1) length n,
(2) dimension k and
(3) minimum distance d (Hamming distance).

Singleton bound: $d \leq n-k+1$.
Singleton defect: $n+1-k-d \geq 0$.
A Locally Recoverable Code is a code such that the value of an
erased coordinate of a codeword can be recovered from the
values of a small subset of size r of other coordinates.
[$n, k, d ; r]$-code

Let \mathbb{F}_{q} be a finite field with q elements.
A linear code \mathcal{C} is an \mathbb{F}_{q} subspace of \mathbb{F}_{q}^{n} of dimension k.
The parameters of a code:
(1) length n,
(2) dimension k and
(3) minimum distance d (Hamming distance).

Singleton bound: $d \leq n-k+1$.
Singleton defect: $n+1-k-d \geq 0$.
A Locally Recoverable Code is a code such that the value of an erased coordinate of a codeword can be recovered from the values of a small subset of size r of other coordinates.

$$
[n, k, d ; r] \text {-code }
$$

In 2012, Gopalan, Huang, Simitci and Huseyin proved a bound for LRC codes.

Let \mathcal{C} be an $[n, k, d ; r]$-code, then

$$
\begin{equation*}
d \leq n-k-\left\lceil\frac{k}{r}\right\rceil+2 \tag{1}
\end{equation*}
$$

Some constructions of Optimal LRC codes:
(1) using particular types of polynomials over $q[x]$ (Tamo and Barg 2014),
(2) cyclic codes(Luo, Xing, and Yuan 2019),
(3) over the rational function field $\mathbb{F}_{q}(x)$ (of ger us 0) (Jin, Ma,

Xing, 2019).

In 2012, Gopalan, Huang, Simitci and Huseyin proved a bound for LRC codes.

Let \mathcal{C} be an $[n, k, d ; r]$-code, then

$$
\begin{equation*}
d \leq n-k-\left\lceil\frac{k}{r}\right\rceil+2 ; \tag{1}
\end{equation*}
$$

When $r=k$ we have the Singleton bound.
A code that achieves equality in (1) is called an optimal LRC code.

Some constructions of Optimal LRC codes:
(1) using particular types of polynomials over $\mathbb{F}_{q}[x]$ (Tamo and Barg 2014),
(2) cyclic codes(Luo, Xing, and Yuan 2019),
(3) over the rational function field $\mathbb{F}_{q}(x)$ (of genus 0)(Jin, Ma, Xing, 2019).
(1) elliptic curves(LLX2019).(of genus 1)

However, the local repair may not be performed when some of the r coordinates are also erased.

A linear code \mathcal{C} with length n, dimension k, minimum distance
d, and $\left(r_{1} \ldots, r_{\delta}\right)$-locality is denoted bv

However, the local repair may not be performed when some of the r coordinates are also erased.

We can work with δ non overlapping repair sets of size no more than r_{i} for a coordinate.

Definition

The i-th coordinate, where $1 \leq i \leq n$, of an $[n, k, d]$ linear code \mathcal{C} whose generator matrix is $\left(g_{1}, \ldots, g_{n}\right)$ is said to have $\left(r_{1}, \ldots, r_{\delta}\right)$-locality if there exist pairwise disjoint repair sets $R_{1}^{(i)}, \ldots, R_{\delta}^{(i)} \in\{1, \ldots, n\} \backslash\{i\}$ such that for each $1 \leq j \leq \delta$
(1) $\# R_{j}^{(i)}=r_{i}$;
(1) $g_{i} \in\left\langle g_{\ell} \mid \ell \in R_{j}^{(i)}\right\rangle$.

A linear code \mathcal{C} with length n, dimension k, minimum distance d, and $\left(r_{1}, \ldots, r_{\delta}\right)$-locality is denoted by

$$
\left[n, k, d ; r_{1}, r_{2}, \ldots, r_{\delta}\right]
$$

- L. Jin, H. Kan, Y. Zhang, "Constructions of locally repairable codes with multiple recovering sets via rational function fields," IEEE Trans. Inform. Theory, 66(1), 202-209, 2020.
- L. Jin, L. Ma, C. Xing, "Construction of optimal locally repairable codes via automorphism groups of rational function fields," IEEE Trans. Inform. Theory, 66(1), 210-221, 2020.
- L. Jin, H. Kan, Y. Zhang, "Constructions of locally repairable codes with multiple recovering sets via rational function fields," IEEE Trans. Inform. Theory, 66(1), 202-209, 2020.
- L. Jin, L. Ma, C. Xing, "Construction of optimal locally repairable codes via automorphism groups of rational function fields," IEEE Trans. Inform. Theory, 66(1), 210-221, 2020. Bounds on the min. dist. for $\left[n, k, d ; r_{1}, r_{2}, \ldots, r_{\delta}\right]$ codes with more than one recoverability

In 2014 we have a result from A. Wang, and Z. Zhang:

- L. Jin, H. Kan, Y. Zhang, "Constructions of locally repairable codes with multiple recovering sets via rational function fields," IEEE Trans. Inform. Theory, 66(1), 202-209, 2020.
- L. Jin, L. Ma, C. Xing, "Construction of optimal locally repairable codes via automorphism groups of rational function fields," IEEE Trans. Inform. Theory, 66(1), 210-221, 2020.
Bounds on the min. dist. for $\left[n, k, d ; r_{1}, r_{2}, \ldots, r_{\delta}\right]$ codes with more than one recoverability
For $\delta \geq 1$ and $r=r_{1}=\cdots=r_{\delta}$:

From Tamo, Barg and Frolov in 2017:

- L. Jin, H. Kan, Y. Zhang, "Constructions of locally repairable codes with multiple recovering sets via rational function fields," IEEE Trans. Inform. Theory, 66(1), 202-209, 2020.
- L. Jin, L. Ma, C. Xing, "Construction of optimal locally
repairable codes via automorphism groups of rational function fields," IEEE Trans. Inform. Theory, 66(1), 210-221, 2020.
Bounds on the min. dist. for $\left[n, k, d ; r_{1}, r_{2}, \ldots, r_{\delta}\right]$ codes with more than one recoverability
For $\delta \geq 1$ and $r=r_{1}=\cdots=r_{\delta}$:
In 2014 we have a result from A. Wang, and Z. Zhang:

$$
\begin{equation*}
d \leq n-k+2-\left\lceil\frac{(k-1) \delta+1}{(r-1) \delta+1}\right\rceil \tag{2}
\end{equation*}
$$

From Tamo, Barg and Frolov in 2017:

- L. Jin, H. Kan, Y. Zhang, "Constructions of locally repairable codes with multiple recovering sets via rational function fields," IEEE Trans. Inform. Theory, 66(1), 202-209, 2020.
- L. Jin, L. Ma, C. Xing, "Construction of optimal locally
repairable codes via automorphism groups of rational function fields," IEEE Trans. Inform. Theory, 66(1), 210-221, 2020.
Bounds on the min. dist. for $\left[n, k, d ; r_{1}, r_{2}, \ldots, r_{\delta}\right]$ codes with more than one recoverability
For $\delta \geq 1$ and $r=r_{1}=\cdots=r_{\delta}$:
In 2014 we have a result from A. Wang, and Z. Zhang:

$$
\begin{equation*}
d \leq n-k+2-\left\lceil\frac{(k-1) \delta+1}{(r-1) \delta+1}\right\rceil \tag{2}
\end{equation*}
$$

From Tamo, Barg and Frolov in 2017:

$$
\begin{equation*}
d \leq n-\sum_{i=0}^{\delta}\left\lfloor\frac{k-1}{r^{i}}\right\rfloor \tag{3}
\end{equation*}
$$

In our work we obtain a bound on the minimum distance for a [$n, k, d ; r_{1}, r_{2}, \ldots, r_{\delta}$]- code.

$$
\begin{equation*}
d \leq n-k-\left\lceil\frac{(k-1) \delta+1}{1+\sum_{i=1}^{\delta} r_{i}}\right\rceil+2 \tag{4}
\end{equation*}
$$

For $\delta=1$ we have $d \leq n-k-\left\lceil\frac{k}{1+r}\right\rceil+2$

Obtain a lower bound for the max using the repairing sets.

In our work we obtain a bound on the minimum distance for a [$n, k, d ; r_{1}, r_{2}, \ldots, r_{\delta}$]- code.

$$
\begin{equation*}
d \leq n-k-\left\lceil\frac{(k-1) \delta+1}{1+\sum_{i=1}^{\delta} r_{i}}\right\rceil+2 \tag{4}
\end{equation*}
$$

For $\delta=1$ we have $d \leq n-k-\left\lceil\frac{k}{1+r}\right\rceil+2$
Mac Willians Lemma: if $G=\left(g_{1}, \ldots, g_{n}\right)$ is a generator matrix for an $[n, k, d]$ code, then

$$
d=n-\max \left\{\# N: N \subset\{1, \ldots, n\}, \operatorname{rank}\left(\left\langle g_{j} \mid j \in N\right\rangle\right)<k\right\} .
$$

Obtain a lower bound for the max using the repairing sets.

Relative defect for an $\left[n, k, d ; r_{1}, \ldots, r_{\delta}\right]$-code

$$
\Delta(\mathcal{C})=\frac{1}{n}\left(n-k-d+2-\left\lceil\frac{(k-1) \delta+1}{1+\sum_{i=1}^{\delta} r_{i}}\right\rceil\right) .
$$

Algebraic geometry codes

For a divisor D in \mathcal{F} the Riemann-Roch \mathbb{F}_{q}-vector space:

$$
\mathcal{L}(D)=\{z \in \mathcal{F}:(z) \geq-D\} \cup\{0\}
$$

The $\mathcal{C}_{\mathcal{L}}(D, G)$ code has length n and the classical bound on the

minimum distance d is
$d \geq n-\operatorname{deg}(G)$

Algebraic geometry codes

Function field $\mathcal{F} \mid \mathbb{F}_{q}$.

For a divisor D in \mathcal{F} the Riemann-Roch \mathbb{F}_{q}-vector space:

$$
\mathcal{L}(D)=\{z \in \mathcal{F}:(z) \geq-D\} \cup\{0\}
$$

Let G be a divisor on \mathcal{F} and $P_{1}, P_{2}, \ldots, P_{n}$ be pairwise distinct rational places on \mathcal{F}, with $P_{i} \notin \operatorname{supp}(G)$ for all i. Define
$D=\sum_{i=1}^{n} P_{i}$. The linear algebraic geometry code $\mathcal{C}_{\mathcal{L}}(D, G)$ is defined as the image of the evaluation function

$$
e v: \mathcal{L}(G) \rightarrow \mathbb{F}_{q}^{n}, f \mapsto\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{n}\right)\right) .
$$

The $\mathcal{C}_{\mathcal{L}}(D, G)$ code has length n and the classical bound on the minimum distance d is

Algebraic geometry codes

Function field $\mathcal{F} \mid \mathbb{F}_{q}$.

For a divisor D in \mathcal{F} the Riemann-Roch \mathbb{F}_{q}-vector space:

$$
\mathcal{L}(D)=\{z \in \mathcal{F}:(z) \geq-D\} \cup\{0\}
$$

Let G be a divisor on \mathcal{F} and $P_{1}, P_{2}, \ldots, P_{n}$ be pairwise distinct rational places on \mathcal{F}, with $P_{i} \notin \operatorname{supp}(G)$ for all i. Define
$D=\sum_{i=1}^{n} P_{i}$. The linear algebraic geometry code $\mathcal{C}_{\mathcal{L}}(D, G)$ is defined as the image of the evaluation function

$$
e v: \mathcal{L}(G) \rightarrow \mathbb{F}_{q}^{n}, f \mapsto\left(f\left(P_{1}\right), f\left(P_{2}\right), \ldots, f\left(P_{n}\right)\right) .
$$

The $\mathcal{C}_{\mathcal{L}}(D, G)$ code has length n and the classical bound on the minimum distance d is

$$
\begin{equation*}
d \geq n-\operatorname{deg}(G) . \tag{5}
\end{equation*}
$$

Hermitian function field: $\mathcal{F}=\mathbb{F}_{q^{2}}(x, y)$ with $y^{q+1}=x^{q}+x$ and $\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right)$ its automorphism group.

Hermitian function field: $\mathcal{F}=\mathbb{F}_{q^{2}}(x, y)$ with $y^{q+1}=x^{q}+x$ and $\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right)$ its automorphism group.
Let $a \in \mathbb{F}_{q^{2}}^{*}$ of order $u \mid(q+1)$.

$$
\begin{aligned}
\mathcal{H}_{1} & :=\left\{(x, y) \mapsto(x+c, y) \mid c \in \mathbb{F}_{q^{2}}, c^{q}+c=0\right\}<\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right) \\
\mathcal{H}_{2} & :=\left\{(x, y) \mapsto\left(x, a^{i} y\right) \mid i=0, \ldots, u-1\right\}<\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right)
\end{aligned}
$$

Hermitian function field: $\mathcal{F}=\mathbb{F}_{q^{2}}(x, y)$ with $y^{q+1}=x^{q}+x$ and $\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right)$ its automorphism group.
Let $a \in \mathbb{F}_{q^{2}}^{*}$ of order $u \mid(q+1)$.

$$
\begin{aligned}
\mathcal{H}_{1} & :=\left\{(x, y) \mapsto(x+c, y) \mid c \in \mathbb{F}_{q^{2}}, c^{q}+c=0\right\}<\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right) \\
\mathcal{H}_{2} & :=\left\{(x, y) \mapsto\left(x, a^{i} y\right) \mid i=0, \ldots, u-1\right\}<\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right) \\
\# \mathcal{H}_{1} & =q, \quad \mathcal{F}^{\mathcal{H}_{1}}=\mathbb{F}_{q^{2}}(y) \text { and }
\end{aligned}
$$

Hermitian function field: $\mathcal{F}=\mathbb{F}_{q^{2}}(x, y)$ with $y^{q+1}=x^{q}+x$ and $\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right)$ its automorphism group.
Let $a \in \mathbb{F}_{q^{2}}^{*}$ of order $u \mid(q+1)$.

$$
\begin{aligned}
& \mathcal{H}_{1}:=\left\{(x, y) \mapsto(x+c, y) \mid c \in \mathbb{F}_{q^{2}}, c^{q}+c=0\right\}<\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right) \text {, } \\
& \mathcal{H}_{2}:=\left\{(x, y) \mapsto\left(x, a^{i} y\right) \mid i=0, \ldots, u-1\right\}<\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right) \text {. } \\
& \# \mathcal{H}_{1}=q, \quad \mathcal{F}^{\mathcal{H}_{1}}=\mathbb{F}_{q^{2}}(y) \text { and } \# \mathcal{H}_{2}=u, \quad \mathcal{F}^{\mathcal{H}_{2}}=\mathbb{F}_{q^{2}}\left(x, y^{u}\right) . \\
& \mathcal{G}=\mathcal{H}_{1} \times \mathcal{H}_{2}, \quad \mathcal{F}^{\mathcal{G}}=\mathbb{F}_{q^{2}}\left(y^{u}\right)
\end{aligned}
$$

Hermitian function field: $\mathcal{F}=\mathbb{F}_{q^{2}}(x, y)$ with $y^{q+1}=x^{q}+x$ and $\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right)$ its automorphism group.
Let $a \in \mathbb{F}_{q^{2}}^{*}$ of order $u \mid(q+1)$.

$$
\begin{aligned}
& \mathcal{H}_{1}:=\left\{(x, y) \mapsto(x+c, y) \mid c \in \mathbb{F}_{q^{2}}, c^{q}+c=0\right\}<\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right) \text {, } \\
& \mathcal{H}_{2}:=\left\{(x, y) \mapsto\left(x, a^{i} y\right) \mid i=0, \ldots, u-1\right\}<\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right) \text {. } \\
& \# \mathcal{H}_{1}=q, \quad \mathcal{F}^{\mathcal{H}_{1}}=\mathbb{F}_{q^{2}}(y) \text { and } \# \mathcal{H}_{2}=u, \quad \mathcal{F}^{\mathcal{H}_{2}}=\mathbb{F}_{q^{2}}\left(x, y^{u}\right) . \\
& \mathcal{G}=\mathcal{H}_{1} \times \mathcal{H}_{2}, \quad \mathcal{F}^{\mathcal{G}}=\mathbb{F}_{q^{2}}\left(y^{u}\right)
\end{aligned}
$$

Let P_{∞} be the unique pole of x and $y \in \mathcal{F}$.
$Q_{\infty}^{i}=P_{\infty} \cap \mathcal{F}^{\mathcal{H}_{i}}$, for $i=1,2$.

We have $n=q\left(q^{2}-1\right)$ (length) places in \mathcal{F} totally split in $\mathcal{F} / \mathcal{F}^{\mathcal{G}}:\left\{P_{1}, \ldots P_{n}\right\}$
for a CERTAIN vector space $V \subseteq \mathcal{F}$

We have $n=q\left(q^{2}-1\right)$ (length) places in \mathcal{F} totally split in $\mathcal{F} / \mathcal{F}^{\mathcal{G}}:\left\{P_{1}, \ldots P_{n}\right\}$

The code will given by:

$$
\begin{aligned}
\left.e_{\mathcal{P}}: \quad \begin{array}{rl}
V & \rightarrow \mathbb{F}_{q}^{n} \\
f & \mapsto e_{\mathcal{P}}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) .
\end{array} . . \begin{array}{ll}
\end{array}\right)
\end{aligned}
$$

for a CERTAIN vector space $V \subseteq \mathcal{F}$

$$
K=\mathbb{F}_{q^{2}} \quad y^{q+1}=x^{q}+x
$$

$$
\begin{aligned}
& V_{1}:=\left\{\sum_{\ell=0}^{q-2}\left(\sum_{j=0}^{t_{1}} a_{\ell, j} y^{j}\right) x^{\ell}: a_{\ell, j} \in \mathbb{F}_{q^{2}}\right\} \text { and } \\
& V_{2}:=\left\{\sum_{\ell=0}^{u-2}\left(\sum_{j=0}^{t_{2}} a_{\ell, j} y^{u j}\right) y^{\ell}: a_{\ell, j} \in \mathbb{F}_{q^{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}:=\left\{\sum_{\ell=0}^{q-2}\left(\sum_{j=0}^{t_{1}} a_{\ell, j} y^{j}\right) x^{\ell}: a_{\ell, j} \in \mathbb{F}_{q^{2}}\right\} \text { and } \\
& V_{2}:=\left\{\sum_{\ell=0}^{u-2}\left(\sum_{j=0}^{t_{2}} a_{\ell, j} y^{u j}\right) y^{\ell}: a_{\ell, j} \in \mathbb{F}_{q^{2}}\right\}
\end{aligned}
$$

$\operatorname{dim}_{\mathbb{F}_{q^{2}}} V_{1}=(q-1)\left(t_{1}+1\right)$ and $\operatorname{dim}_{\mathbb{F}^{2}} V_{2}=(u-1)\left(t_{2}+1\right)$.
$\bullet z \in V_{1} \Longrightarrow \operatorname{deg}(z)_{\infty} \leq q^{2}-q-2+t_{1} q$
$\bullet z \in V_{2} \Longrightarrow \operatorname{deg}(z)_{\infty} \leq q\left((u-1) t_{2}+u-2\right)$

$$
\begin{aligned}
& V_{1}:=\left\{\sum_{\ell=0}^{q-2}\left(\sum_{j=0}^{t_{1}} a_{\ell, j} y^{j}\right) x^{\ell}: a_{\ell, j} \in \mathbb{F}_{q^{2}}\right\} \text { and } \\
& V_{2}:=\left\{\sum_{\ell=0}^{u-2}\left(\sum_{j=0}^{t_{2}} a_{\ell, j} y^{u j}\right) y^{\ell}: a_{\ell, j} \in \mathbb{F}_{q^{2}}\right\}
\end{aligned}
$$

$\operatorname{dim}_{\mathbb{F}_{q^{2}}} V_{1}=(q-1)\left(t_{1}+1\right)$ and $\operatorname{dim}_{\mathbb{F}_{q^{2}}} V_{2}=(u-1)\left(t_{2}+1\right)$.
$\bullet z \in V_{1} \Longrightarrow \operatorname{deg}(z)_{\infty} \leq q^{2}-q-2+t_{1} q$
$\bullet z \in V_{2} \Longrightarrow \operatorname{deg}(z)_{\infty} \leq q\left((u-1) t_{2}+u-2\right)$
Choose $t_{1}, t_{2}, 1 \leq d \leq n$ such that

$$
V:=V_{1} \cap V_{2} \subseteq \mathcal{L}\left((n-d) P_{\infty}\right)
$$

and

$$
\operatorname{dim}_{\mathbb{F}_{q}} V=q \geq 1
$$

The code is given by:

$$
\begin{aligned}
e_{\mathcal{P}}: V & \rightarrow \mathbb{F}_{q}^{n} \\
f & \mapsto e_{\mathcal{P}}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) .
\end{aligned}
$$

For every 1
there exists a
recoverable code \mathcal{C}_{1}

For every $1<u, u\left(t_{2}+1\right)=q+1, t_{1} \geq 2$ and $\left(t_{1}, t_{2}\right) \neq(1,1)$
there exists a
recoverable code \mathcal{C}_{2}.

The code is given by:

$$
\begin{aligned}
e_{\mathcal{P}}: V & \rightarrow \mathbb{F}_{q}^{n} \\
f & \mapsto e_{\mathcal{P}}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) .
\end{aligned}
$$

For every $1<u$ a divisor of $q+1$ and $\frac{2 q^{2}-q u-2}{q(u-1)} \leq t_{2}<\frac{q^{2}}{u-1}-1$ there exists a

$$
\left[q\left(q^{2}-1\right), q, \geq q\left(q^{2}-1\right)-q\left(u t_{2}+u-t_{2}-2\right) ; q-1, u-1\right]
$$

recoverable code \mathcal{C}_{1}.
Relative defect: $\Delta\left(\mathcal{C}_{1}\right) \leq \frac{q\left(u t_{2}+u-t_{2}-3\right)+1}{q\left(q^{2}-1\right)}$.
recoverable code \mathcal{C}_{2}

The code is given by:

$$
\begin{aligned}
e_{\mathcal{P}}: V & \rightarrow \mathbb{F}_{q}^{n} \\
f & \mapsto e_{\mathcal{P}}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) .
\end{aligned}
$$

For every $1<u$ a divisor of $q+1$ and $\frac{2 q^{2}-q u-2}{q(u-1)} \leq t_{2}<\frac{q^{2}}{u-1}-1$ there exists a

$$
\left[q\left(q^{2}-1\right), q, \geq q\left(q^{2}-1\right)-q\left(u t_{2}+u-t_{2}-2\right) ; q-1, u-1\right]
$$

recoverable code \mathcal{C}_{1}.

$$
\text { Relative defect: } \Delta\left(\mathcal{C}_{1}\right) \leq \frac{q\left(u t_{2}+u-t_{2}-3\right)+1}{q\left(q^{2}-1\right)}
$$

For every $1<u, u\left(t_{2}+1\right)=q+1, t_{1} \geq 2$ and $\left(t_{1}, t_{2}\right) \neq(1,1)$ there exists a

$$
\left[q\left(q^{2}-1\right), q, \geq q\left(q^{2}-1\right)-\left(q^{2}-q-2+t_{1} q\right) ; q-1, u-1\right]
$$

recoverable code \mathcal{C}_{2}.

$$
\Delta\left(\mathcal{C}_{2}\right) \leq=\frac{q^{2}-2 q+t_{1} q-1}{n^{(2}} \simeq \frac{q+t_{1}}{n^{2}}
$$

Theorem

Let $\mathcal{F} \mid \mathbb{F}_{q}$ be a FF of genus g $\mathcal{H}_{i}<\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right), \# \mathcal{H}_{i}=r_{i}+1$, and $\mathcal{G} \simeq \bigotimes_{i=1}^{s} \mathcal{H}_{i}$ is isomorphic to the internal direct product of $\mathcal{H}_{1}, \ldots, \mathcal{H}_{s}$.

Theorem

Let $\mathcal{F} \mid \mathbb{F}_{q}$ be a FF of genus g $\mathcal{H}_{i}<\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right), \# \mathcal{H}_{i}=r_{i}+1$, and $\mathcal{G} \simeq \bigotimes_{i=1}^{s} \mathcal{H}_{i}$ is isomorphic to the internal direct product of $\mathcal{H}_{1}, \ldots, \mathcal{H}_{s}$.

Let \mathcal{P} be a set of places in \mathcal{F} lying over m rational places in the fixed field $\mathcal{F}^{\mathcal{G}}$ that are completely split in the extension $\mathcal{F} \mid \mathcal{F}^{\mathcal{G}}$. $n=m \prod_{i=1}^{S}\left(r_{i}+1\right)$

Theorem

Let $\mathcal{F} \mid \mathbb{F}_{q}$ be a FF of genus g
$\mathcal{H}_{i}<\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right), \# \mathcal{H}_{i}=r_{i}+1$, and $\mathcal{G} \simeq \bigotimes_{i=1}^{s} \mathcal{H}_{i}$ is isomorphic to the internal direct product of $\mathcal{H}_{1}, \ldots, \mathcal{H}_{s}$.

Let \mathcal{P} be a set of places in \mathcal{F} lying over m rational places in the fixed field $\mathcal{F}^{\mathcal{G}}$ that are completely split in the extension $\mathcal{F} \mid \mathcal{F}^{\mathcal{G}}$. $n=m \prod_{i=1}^{S}\left(r_{i}+1\right)$
Suppose that there exists a place P_{∞} of \mathcal{F} which is completely ramified in $\mathcal{F} \mid \mathcal{F}^{\mathcal{G}}$ and let $Q_{\infty}^{(i)}$ be the unique place in $\mathcal{F}^{\mathcal{H}_{i}}$ lying under P_{∞}.

Theorem

Let $\mathcal{F} \mid \mathbb{F}_{q}$ be a FF of genus g
$\mathcal{H}_{i}<\operatorname{Aut}\left(\mathcal{F} \mid \mathbb{F}_{q}\right), \# \mathcal{H}_{i}=r_{i}+1$, and $\mathcal{G} \simeq \bigotimes_{i=1}^{s} \mathcal{H}_{i}$ is isomorphic to the internal direct product of $\mathcal{H}_{1}, \ldots, \mathcal{H}_{s}$.

Let \mathcal{P} be a set of places in \mathcal{F} lying over m rational places in the fixed field $\mathcal{F}^{\mathcal{G}}$ that are completely split in the extension $\mathcal{F} \mid \mathcal{F}^{\mathcal{G}}$. $n=m \prod_{i=1}^{s}\left(r_{i}+1\right)$
Suppose that there exists a place P_{∞} of \mathcal{F} which is completely ramified in $\mathcal{F} \mid \mathcal{F}^{\mathcal{G}}$ and let $Q_{\infty}^{(i)}$ be the unique place in $\mathcal{F}^{\mathcal{H}_{i}}$ lying under P_{∞}. For $i=1, \ldots$, s suppose further there exist functions z_{i}, w_{i}, such that
(1) $z_{i} \in \mathcal{F}^{\mathcal{H}_{i}}, \operatorname{supp}\left(\left(z_{i}\right)_{\infty}\right)=\left\{Q_{\infty}^{(i)}\right\}$;
(1) $w_{i} \in \mathcal{F} \backslash \mathcal{F}^{\mathcal{H}_{i}}, \operatorname{supp}\left(\left(w_{i}\right)_{\infty}\right)=\left\{P_{\infty}\right\}$;
(II) for any $P \in\left\{P_{1}, \ldots, P_{n}\right\}, P^{\mathcal{H}_{i}} \cap P^{\mathcal{H}_{j}}=\{P\}$ for $i \neq j$;
(0) $w_{i}: P^{\mathcal{H}_{i}} \rightarrow \mathbb{F}_{q}$ is injective.

Theorem

For each $i=1, \ldots, s$ let $t_{i} \geq 1$ be such that

$$
V_{i}:=\left\{\sum_{\ell=0}^{r_{i}-1}\left(\sum_{j=0}^{t_{i}} a_{\ell j}^{(i)} z_{i}^{j}\right) w_{i}^{\ell} \in \mathcal{F} \mid a_{\ell j}^{(i)} \in \mathbb{F}_{q}\right\}
$$

is contained in $\mathcal{L}\left((n-d) P_{\infty}\right)$ for some $1 \leq d \leq n$.

If $\operatorname{dim}_{\mathbb{F}_{q}}(V)>0$, then there exists an

Theorem

For each $i=1, \ldots, s$ let $t_{i} \geq 1$ be such that

$$
V_{i}:=\left\{\sum_{\ell=0}^{r_{i}-1}\left(\sum_{j=0}^{t_{i}} a_{\ell j}^{(i)} z_{i}^{j}\right) w_{i}^{\ell} \in \mathcal{F} \mid a_{\ell j}^{(i)} \in \mathbb{F}_{q}\right\}
$$

is contained in $\mathcal{L}\left((n-d) P_{\infty}\right)$ for some $1 \leq d \leq n$.
Let $V=\bigcap_{i=1}^{s} V_{i} \subset \mathcal{L}\left((n-d) P_{\infty}\right)$.
If $\operatorname{dim}_{\mathbb{F}_{q}}(V)>0$, then there exists an
$\left[n, \operatorname{dim}_{\mathbb{F}_{q}}(V), \geq d ; r_{1}, \ldots, r_{s}\right]$-recoverable code.

Codes from algebraic curves with many rational places
Given a function field \mathcal{F} of genus g, by Hasse-Weill we have

$$
\# \mathcal{F}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q}
$$

where $\mathcal{F}\left(\mathbb{F}_{q}\right)$ is the set of \mathbb{F}_{q} rational places in \mathcal{F}.
We say a function field \mathcal{F} over $\mathbb{F}_{a^{2}}$ is maximal if it attains the
HW upper bound

Codes from algebraic curves with many rational places

Given a function field \mathcal{F} of genus g, by Hasse-Weill we have

$$
\# \mathcal{F}\left(\mathbb{F}_{q}\right) \leq q+1+2 g \sqrt{q}
$$

where $\mathcal{F}\left(\mathbb{F}_{q}\right)$ is the set of \mathbb{F}_{q} rational places in \mathcal{F}.
We say a function field \mathcal{F} over $\mathbb{F}_{q^{2}}$ is maximal if it attains the HW upper bound

$$
\# \mathcal{F}\left(\mathbb{F}_{q}\right)=q^{2}+1+2 g q
$$

LRC codes from maximal curves:

- the rational function field.
- Hermitian function field:

$$
y^{q+1}=x^{q}+x, \quad \# \mathcal{F}\left(\mathbb{F}_{q}\right)=q^{3}+1, \quad g=\frac{q(q-1)}{2} .
$$

$\mathcal{F}=\mathbb{F}_{q^{6}}(x, y, z)$ be the function field of the Giullieti-Korchmaros curve

$$
\left\{\begin{array}{l}
Z^{q^{2}-q+1}=Y q^{2}-Y \\
Y^{q+1}=X^{q}+X
\end{array}\right.
$$

Maximal over $\mathbb{F}_{q^{6}}$ with $q^{8}-q^{6}+q^{5}+1$ rational places and only one place P_{∞} at infinity.

Consider the following subgroups of $\operatorname{Aut}(\mathcal{F} \mid K)$
$\mathcal{F}=\mathbb{F}_{q^{6}}(x, y, z)$ be the function field of the Giullieti-Korchmaros curve

$$
\left\{\begin{array}{l}
Z^{q^{2}-q+1}=Y q^{2}-Y \\
Y^{q+1}=X^{q}+X
\end{array}\right.
$$

Maximal over $\mathbb{F}_{q^{6}}$ with $q^{8}-q^{6}+q^{5}+1$ rational places and only one place P_{∞} at infinity.
$A<\left\{a \in \mathbb{F}_{q^{6}}: a^{q}+a=0\right\}$ and $\eta, \omega \in \mathbb{F}_{q^{6}}$, with
$\operatorname{ord}(\eta)\left|q^{3}+1, \operatorname{ord}(\omega)\right| q^{2}-q+1$ and $\operatorname{gcd}(\operatorname{ord}(\eta), \operatorname{ord}(\omega))=1$
$\mathcal{F}=\mathbb{F}_{q^{6}}(x, y, z)$ be the function field of the Giullieti-Korchmaros curve

$$
\left\{\begin{array}{l}
Z^{q^{2}-q+1}=Y q^{2}-Y \\
Y^{q+1}=X^{q}+X
\end{array}\right.
$$

Maximal over $\mathbb{F}_{q^{6}}$ with $q^{8}-q^{6}+q^{5}+1$ rational places and only one place P_{∞} at infinity.
$A<\left\{a \in \mathbb{F}_{q^{6}}: a^{q}+a=0\right\}$ and $\eta, \omega \in \mathbb{F}_{q^{6}}$, with
$\operatorname{ord}(\eta)\left|q^{3}+1, \operatorname{ord}(\omega)\right| q^{2}-q+1$ and $\operatorname{gcd}(\operatorname{ord}(\eta), \operatorname{ord}(\omega))=1$
Consider the following subgroups of $\operatorname{Aut}(\mathcal{F} \mid K)$:
$\mathcal{H}_{1}:=\left\{\sigma_{a}:(x, y, z) \mapsto(x+a, y, z): a \in A\right\} ;$
$\mathcal{H}_{2}:=\left\{\sigma_{i}:(x, y, z) \mapsto\left(x, \eta^{i\left(q^{2}-q+1\right)} y, \eta^{i} z\right): i=0, \ldots, \operatorname{ord}(\eta)-1\right\} ;$
$\mathcal{H}_{3}:=\left\{\sigma_{i}:(x, y, z) \mapsto\left(x, y, \omega^{i} z\right): i=0, \ldots, \operatorname{ord}(\omega)-1\right\}$,

Let $q=p^{\ell}, p$ prime. Then for any
(1) $a=p^{h}, 1 \leq h \leq \ell$,
(1) $\operatorname{ord}(\eta)\left|q^{3}+1, \operatorname{ord}(\omega)\right| q^{2}-q+1$, with $\operatorname{gcd}(\operatorname{ord}(\eta), \operatorname{ord}(\omega))=1$,
(II) $0<t_{1}<q^{2}\left(q^{2}-1\right)\left(q^{3}+1\right)-q^{3}+2 q^{2}-1,0<t_{2}<$ $q^{3}\left(q^{2}-1\right)-q, 0<t_{3}<q^{3}\left(q^{2}-1\right)-1$,
(D) $N_{1}=\min \left\{a-2, t_{2}, t_{3}\right\}$,

$$
M_{1}=\min \left\{t_{1}, \operatorname{ord}(\eta)-2, \operatorname{ord}(\omega)-2\right\}, \text { and }
$$

(D) $S=\max \left\{(a-2)\left(q^{3}+1\right)+t_{1} q, t_{2}\left(q^{3}+1\right)+(\operatorname{ord}(\eta)-\right.$ 2) $\left.q, t_{3}\left(q^{3}+1\right)+(\operatorname{ord}(\omega)-2) q\right\}$,
there exists a

$$
\left[n,\left(M_{1}+1\right)\left(N_{1}+1\right), \geq n-S ; a-1, \operatorname{ord}(\eta)-1, \operatorname{ord}(\omega)-1\right]
$$

recoverable code \mathcal{C}_{3} over $\mathbb{F}_{q^{6}}$, where $n=q^{8}-q^{6}+q^{5}-q^{3}$.

Generalized Hermitian curve: q odd, $S: y^{q+1}=x^{q}+x$ over $\mathbb{F}_{q^{2 \ell}}$ with $\ell \geq 1$ odd has $\# S\left(\mathbb{F}_{q^{2 \ell}}\right)=\mathbb{F}_{q}^{2 \ell+1}+1$ and $g=q^{\ell}(q-1) / 2$. Consider two subgroups of the automorphism group of the curve given by

$$
\begin{aligned}
& \mathcal{H}_{1}:=\left\{(x, y) \mapsto(x+a, y) \mid a^{q}+a=0 \text { and } a \in \mathbb{F}_{q^{2 \ell}}\right\}, \text { and } \\
& \mathcal{H}_{2}:=\left\{(x, y) \mapsto(x, \lambda y) \mid \lambda \in \mathbb{F}_{q^{2 \ell}} \text { and } \lambda^{q^{\ell}+1}=1\right\},
\end{aligned}
$$

Generalized Hermitian curve: q odd, $S: y^{q^{\ell}+1}=x^{q}+x$ over $\mathbb{F}_{q^{2 \ell}}$ with $\ell \geq 1$ odd has $\# S\left(\mathbb{F}_{q^{2 \ell}}\right)=\mathbb{F}_{q}^{2 \ell+1}+1$ and
$g=q^{\ell}(q-1) / 2$. Consider two subgroups of the automorphism group of the curve given by

$$
\begin{aligned}
& \mathcal{H}_{1}:=\left\{(x, y) \mapsto(x+a, y) \mid a^{q}+a=0 \text { and } a \in \mathbb{F}_{q^{2 \ell}}\right\}, \text { and } \\
& \mathcal{H}_{2}:=\left\{(x, y) \mapsto(x, \lambda y) \mid \lambda \in \mathbb{F}_{q^{2 \ell}} \text { and } \lambda^{q^{\ell}+1}=1\right\},
\end{aligned}
$$

Proposition

Consider $0 \leq t_{i}, i=1,2$ satisfying that

$$
S=M_{1} q+M_{2}\left(q^{\ell}-1\right) \leq q^{2 \ell+1}-q
$$

for $M_{1}=\max \left\{t_{1}, q^{\ell}-1\right\}$ and $M_{2}=\max \left\{t_{2}, q-2\right\}$. Let $m_{1}=\min \left\{t_{1}, q^{\ell}-1\right\}, m_{2}=\min \left\{t_{2}, q-2\right\}$, we get a

$$
\left[q^{2 \ell+1}-q,\left(m_{1}+1\right)\left(m_{2}+1\right), \geq q^{2 \ell+1}-q-S ; q-1, q^{\ell}\right]-\text { code }
$$

Theorem

Let $\mathcal{F} \mid \mathbb{F}_{q}$ be a function field of genus g. Consider s non trivial subgroups \mathcal{H}_{i} of the automorphism group of $\mathcal{F} \mid \mathbb{F}_{q}$ satisfying
(i) $\mathcal{G} \simeq \prod_{i=1}^{S} \mathcal{H}_{i}$ is a group; and let
(ii) $\#\left(\mathcal{H}_{i} \backslash\left(\bigcup_{j<i} \mathcal{H}_{j}\right)\right)=r_{i}$.

引
then there exists an

$$
\left[n, \operatorname{dim}_{\mathbb{F}_{q}}(V), \geq d ; r_{1}, r_{2}, \ldots, r_{s}\right] \text {-recoverable code. }
$$

With the same notation as in Theorem 5, changing the hypothesis (ii) by
(ii') there exists $m \geq 1$ such that $1 \leq \#\left(\mathcal{H}_{i} \cap\left(\bigcup_{j \neq i} \mathcal{H}_{j}\right)\right) \leq m$, with $\# \mathcal{H}_{i}=r_{i}+m$.
we also have the existence of an

$$
\left[n, \operatorname{dim}_{\mathbb{F}_{q}}(V), \geq d ; r_{1}, r_{2}, \ldots, r_{s}\right] \text {-recoverable code. }
$$

Table: Examples of the locally recoverable codes over $\mathbb{F}_{2^{12}}$.

Code \mathcal{C}	$\Delta(\mathcal{C})$
$[262080,64, \geq 253952 ; 63,4]$	0.03076
$[262080,910, \geq 257152 ; 63,12]$	0.01524
$[62400,12, \geq 62226 ; 3,4,12]$	0.00259
$[4193280,1395372, \geq 2738 ; 1364,1023]$	0.66630

