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Notation

1 Fq denotes the finite field of q elements, where q is a prime power.

2 Fqn is the unique n-degree extension of Fq.

3 χ usually denotes a (multiplicative) character of Fqn .

4 V ⊆ Fqn usually denotes an Fq-vector space.

5 A = u +V ⊆ Fqn usually denotes an Fq-affine space (we allow u = 0).

6 For a set S , |S | denotes its cardinality and IS denotes its indicator
function.
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Some basics

Definition

A multiplicative character of Fq is a homomorphism χ : F∗q → C×. An
additive character is defined in a similar way for the group (Fq,+).

1 The group F∗q is cyclic of order q − 1, and any generator is called
primitive.

2 Fix θ ∈ F∗q a primitive element and let 0 ≤ k ≤ q − 2. Then

χk = χθ,k : F∗q → C× with χk(θj) = ζ jk , is a multiplicative character

of Fq, where ζ = exp
(

2πi
q−1

)
is a primitive (q − 1)-th root of unity.

3 The latter describes the set of multiplicative characters of Fq; this set
is a (multiplicative) group with identity χ0, the trivial character:
χ0(a) = 1 for every a ∈ F∗q.

4 We usually extend χk to 0 by setting χk(0) = 0.
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Characters of finite fields have been extensively used to prove remarkable
results in finite fields related to topics such as Number Theory,
Combinatorics and Arithmetic Dynamics.

For a rich source of problems, techniques and results, see [P. Charpin,
A. Pott, A. Winterhof, Finite Fields and Their Applications - Character
Sums and Polynomials, De Grutyer (2013)].

When proving results with the help of characters (e.g., existence and
distribution results), a typical procedure is to obtain a character sum
formula for the indicator function of sets that are of our interest
(squares, normal, primitive, zero trace, etc).
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A typical problem: let A,B ⊂ F be sets comprising the elements of F with
some special property, and let IA and IB be their indicator functions.

The
number N = N(F,A,B) of elements in A ∩ B equals∑

y∈F
IA(y) · IB(y) =

∑
y∈A

IB(y) =
∑
y∈B

IA(y).

1 Existence results: N(F,A,B) > 0;

2 Distribution results: N(F,A,B) = |A|·|B|
|F| · (1 + o|F|(1)).

In particular, sometimes we need to bound (non trivially) a sum of the form

s(χ,S) :=
∑
x∈S

χ(x),

where S ⊆ F and χ is non trivial.

The trivial bound is |s(χ, S)| ≤ |S |, but we require something ”slightly
better”. For generic S , this is a hard problem.
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Some well-known results:

1 S is an interval of integers and χ is over Zp = Fp:

(Polya Vinogradov) |s(χ, S)| � √p log p;

(Burgess [1]) |s(χ,S)| � p−δ(ε)|S |, if |S | � p1/4+ε.

2 S ⊆ Fpk is a ”box”:

S =

{
k∑

i=1

aibi : ai ∈ Ii

}
,

each Ii a ”nice interval” and {b1, . . . ,bk} an Fp-basis for Fpk . Many
results (see [3, 4] and the references therein).

Remark

The results about ”boxes” do not apply to generic affine spaces in a finite
field.
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Bounds on character sums over affine spaces
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Bounds for some special Fp-vector spaces:

1 (Burgess [2]) If θ generates Fpk , i.e., Fpk = Fp(θ), then

|s(χ,S)| ≤ pm(1−δ(ε)), where

S =
m−1∑
i=0

θi · Fp,

and m > k(1/4 + ε).

2 (Chang [4]) For a ”sufficiently generic” Fp-vector space V ⊆ Fpk of
dimension m� k, the bound

|s(χ,S)| ≤ |S | · (log p)−δ,

holds under k � p · (log p)4.

Lucas Reis (UFMG) Character sums estimates over affine spaces applied to existence results in finite fieldsAugust 12 10 / 39



Bounds for some special Fp-vector spaces:

1 (Burgess [2]) If θ generates Fpk , i.e., Fpk = Fp(θ), then

|s(χ,S)| ≤ pm(1−δ(ε)), where

S =
m−1∑
i=0

θi · Fp,

and m > k(1/4 + ε).

2 (Chang [4]) For a ”sufficiently generic” Fp-vector space V ⊆ Fpk of
dimension m� k, the bound

|s(χ,S)| ≤ |S | · (log p)−δ,

holds under k � p · (log p)4.

Lucas Reis (UFMG) Character sums estimates over affine spaces applied to existence results in finite fieldsAugust 12 10 / 39



A general result:

Theorem (Swaenepoel [16])

Let A ⊆ Fqn be an Fq-affine space of dimension t and χ a non trivial
multiplicative character of Fqn . Then∣∣∣∣∣∑

a∈A
χ(a)

∣∣∣∣∣ ≤ qn−t − 1

qn−t
qn/2.

Main idea: ∑
a∈A

χ(a) =
∑
y∈Fqn

IA(x) · χ(x),

where the indicator function IA can be expressed in terms of additive
characters. The latter reduces to estimate Gauss sums
(additive+multiplicative characters in the sum) with traditional bounds.

Remark

Obstruction: the bound is trivial for t ≤ n/2.
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A new bound

Definition

An element α ∈ Fqn has degree n over Fq (or generates Fqn) if it is not
contained in any subfield Fqd , d < n.

The following result is crucial:

Theorem (Katz [9])

Let θ be an element of degree n over Fq and χ a non trivial multiplicative

character of Fqn . Then
∣∣∣∑a∈Fq

χ(θ + a)
∣∣∣ ≤ (n − 1)

√
q.

Non trivial for n − 1 <
√
q.
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A new bound

We obtain the following result:

Theorem (R., 2020)

Let A ⊆ Fqn be an Fq-affine space of dimension t ≥ 0, where n > 1. For
each divisor d of n, let nA,d be the number of elements in A whose degree
over Fq equals d . If χ is a nontrivial multiplicative character of Fqn , then∣∣∣∣∣∣

∑
b∈Fq

∑
a∈A

χ(a + b)

∣∣∣∣∣∣ ≤
∑
d |n

nA,d · δχ,d , (1)

where δχ,d = q if χ|F
qd

is trivial and δχ,d = min{q, (d − 1)
√
q},

otherwise.

In particular, if nA,n > 0, we have that∣∣∣∣∣∣
∑
b∈Fq

∑
a∈A

χ(a + b)

∣∣∣∣∣∣ < n · qt+1/2. (2)
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Alternative version of the previous theorem

Definition

An affine space A = u + V ⊆ Fqn is n-good if there exist y ∈ V and z ∈ A
such that zy−1 has degree n over Fq.

Theorem (R., 2020)

Let A be an n-good affine space of dimension t ≥ 1. If χ is a non trivial
multiplicative character of Fqn , we have that∣∣∣∣∣∑

a∈A
χ(a)

∣∣∣∣∣ ≤ n · qt−1/2. (3)
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Proof.

Let y ∈ V such that zy−1 has degree n for some z ∈ A and set
Ay = {ay−1 : a ∈ A}.

Since χ is multiplicative,∣∣∣∣∣∑
a∈A

χ(a)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
a∈Ay

χ(a)

∣∣∣∣∣∣ .
1 Ay = uy + Vy , where Vy is an Fq-vector space of dimension t

containing Fq;

2 Ay = Fq ⊕ B, where B is an Fq-affine space of dimension t − 1;

Therefore, the following holds:∑
a∈Ay

χ(a) =
∑
b∈Fq

∑
a∈B

χ(a + b).

From hypothesis, B contains an element whose degree over Fq equals n,
and so the result follows by the previous theorem.
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Theorem

Let A be an n-good affine space of dimension t ≥ 1. If χ is a non trivial
multiplicative character of Fqn , we have that∣∣∣∣∣∑

a∈A
χ(a)

∣∣∣∣∣ ≤ n · qt−1/2. (4)

Non trivial for n <
√
q.
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The ”n-goodness” property is not restrictive within the non trivial range
n ≤ √q:

Proposition

Fix q a prime power and n ≤ q. Then either A is n-good or A ⊆ y · Fqd

for some d |n with d < n and some y ∈ Fqn .

So if n ≤ √q and A is not n-good, we have that Ay := y−1 · A ⊆ Fqd .

However,
∣∣∑

a∈A χ(a)
∣∣ =

∣∣∣∑a∈Ay
χ(a)

∣∣∣, reducing the problem to a

character sum over Fqd .We then try to apply the theorem for Ay , checking
if χ|F

qd
is trivial or if Ay is d-good, and so on ...

After some iterations of this procedure we reduce to a character sum over
an affine space A∗ ⊆ Fqe such that either A∗ is e-good or χ|Fqe

is trivial.

Conclusion: either the theorem can be applied or |
∑

a∈A χ(a)| = |A|.
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Let pn be the smallest prime divisor of n. If d |n and d < n, then d ≤ n
pn

.

In particular, any Fq-affine space A ⊆ Fqn of dimension t > n
pn

is n-good.

Corollary

Let pn be the smallest prime divisor of n, then for every Fq-affine space
A ⊆ Fqn of dimension t > n/pn and every non trivial character χ of Fqn ,
we have that ∣∣∣∣∣∑

a∈A
χ(a)

∣∣∣∣∣ ≤ nqt−1/2.

Remark

Our bound is ”nice” if n is fixed and q → +∞: we improved the trivial

bound by
√
q
n .
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Primitive elements
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Recall that an element θ ∈ Fqn is primitive if it generates the cyclic group
F∗qn .

Vinogradov obtained the following formula for the indicator function of
primitivity: for every w ∈ Fqn , we have that

IP(w) =
ϕ(qn − 1)

qn − 1

∑
d |qn−1

µ(d)

ϕ(d)

∑
ord(χ)=d

χ(w) = 1,

if and only if w is primitive. Otherwise, this sum equals 0.

1 ϕ(t) is the Euler Totient function;

2 µ(t) is the Mobius function.
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We obtain the following:

Proposition

Let n be a positive integer and ε > 0. Then there exists a constant
c = c(ε, n) such that for every q > c and every n-good affine space
A ⊆ Fqn of dimension t ≥ 1, the number P(A) of primitive elements in A
satisfies

P(A) ≥ qt−ε.
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Proof.

Employing Vinogradov’s formula, we obtain that

(qn − 1) · P(A)

ϕ(qn − 1)
=
∑
a∈A

∑
d |qn−1

µ(d)

ϕ(d)

∑
ord(χ)=d

χ(a)

=
∑
a∈A

χ0(a) +
∑

d|qn−1
d 6=1

µ(d)

ϕ(d)

∑
ord(χ)

∑
a∈A

χ(a).
(5)

We have the bounds
∑

a∈A χ0(a) ≥ qt − 1 and
∣∣∑

a∈A χ(y)
∣∣ ≤ nqt−1/2 ,

hence

(qn − 1) · P(A)

ϕ(qn − 1)
> qt − n ·W (qn − 1) · qt−1/2.

To finish, we observe that if n is fixed and q is large, W (qn − 1) < qε and
ϕ(qn − 1) > qn−ε.
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A general result

Remark

From now and on, all the results are asymptotic in the following way: n is
fixed and q is large.

Theorem

For each n ≥ 2, and q > c(n) is large enough, an Fq-affine space
A =⊆ Fqn contains a primitive element if and only if one of the following
holds:

1 A is n-good;

2 there exists a primitive element y ∈ Fqn and divisor d < n of n such
that

y ∈ A ⊆ y · Fqd .

In particular, for q large, every A of dimension t > n
pn

contains a primitive
element.
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Primitive elements with prescribed digits

Lucas Reis (UFMG) Character sums estimates over affine spaces applied to existence results in finite fieldsAugust 12 24 / 39



Motivated by works of Mauduit and Rivat [11, 12] on the famous Gelfond
Problems about digits over the integers, Dartyge and Sarkozy [7]
introduced the notion of digits over finite fields.

Definition

If B = {b1, . . . , bn} is an Fq-basis for Fqn , then every y ∈ Fqn is written
uniquely as

y =
n∑

i=1

aibi ,

where ai ∈ Fq. The elements a1, . . . , an are called the digits of y with
respect to the basis B.

Prescribing digits: S = {
∑n

i=1 aibi : ai = ci ∈ Fq for i = j1, . . . , jk} .

Many questions on the existence of special elements (squares, polynomial
values, primitive elements, etc) with prescribed digits have been
discussed: see [16] and the references therein.
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Natural question:

Problem

For fixed n and large q, for what values of k ≤ n we can prescribe k digits
of a primitive element in Fqn (with respect to an arbitrary basis)?

In 2018, Swaenepoel [16] proved that any k < n/2 is admissible.

If we prescribe k digits (in certain k positions in {1, . . . , n}), the resulting
set is an Fq-affine space A of dimension n − k, that is n-good if

n − k >
n

pn
⇐⇒ k ≤ n − n

pn
− 1.

1 n even: we just recover the range k < n/2;

2 for n odd, we have a significant improvement: pn = 3⇒ k < 2n
3
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The bound n − n
pn
− 1 is sharp:

Let B0 = {b1, . . . , bn/pn} an Fq-basis for the field Fqn/pn ⊆ Fqn and extend
it to an Fq-basis for Fqn :

B = {b1, . . . , bn/pn , c1, . . . , cn−n/pn}.

In particular, if we prescribe the last n − n/pn digits to be = 0, the
corresponding elements are combinations of the bi ’s, hence all lie in Fqn/pn

and so none of them can be primitive!
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Primitive k-normal elements
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For β ∈ Fqn , let Vβ be the Fq-vector space generated by the Fq-conjugates
of β:

β, βq, . . . , βq
n−1
,

and let d(β) be the dimension of Vβ.

An element β ∈ Fqn is normal over Fq if d(β) = n, i.e., Vβ is an Fq-basis
for Fqn .

The Primitive Normal Basis Theorem (PNBT) ensures the existence of an
element β ∈ Fqn that is primitive and normal for every q ≥ 2 and every
n ≥ 1.

First proof by Lenstra and Schoof [10] (1987), computer-free proof was
later given by Cohen and Huczynska [6] (2003).
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Following the concept of normal elements, Huczynska, Mullen, Panario
and Thomson [8] introduced the notion of k-normal elements:

β ∈ Fqn is k-normal over Fq if d(β) = n − k.

In this context, 0-normal elements are the original normal elements and
0 ∈ Fqn is the unique n-normal element.

Motivated by the PNBT, they proposed a challenging problem (see
Problem 6.3 in [8]).

Problem

Determine the pairs (n, k) such that there exist primitive k-normal
elements in Fqn over Fq.
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Some basic tools

Lemma

For each element α ∈ Fqn , the set of polynomials
g(x) =

∑t
i=0 aix

i ∈ Fq[x ] such that

0 = g ◦ α :=
t∑

i=0

aiα
qi ,

is an ideal of Fq[x ]. This ideal is generated by a monic polynomial
mα,q(x), the Fq-order of α. Moreover, the following hold:

1 mα,q is a divisor of xn − 1;

2 α is k-normal over Fq if and only if mα,q(x) has degree n − k .
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Some remarks

Problem

Determine the pairs (n, k) such that there exist primitive k-normal
elements in Fqn over Fq.

Observe that k-normals (not necessarily primitive) exist if and only if
xn − 1 admits a k-degree divisor over Fq: this is always ensured only for
k = 0, 1, n − 1, n ( [8]).

1 Case k = 0 of the problem is the PNBT.

2 Positive answer for k = 1 (R., Thomson [14]).

3 Negative answer for k = n, n − 1 ( [8]).

Techniques employed so far: Vinogradov’s formula + additive character
sums for k-normality.
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Problem

Determine the pairs (n, k) such that there exist primitive k-normal
elements in Fqn over Fq.

Assuming that k-normal elements actually exist.

Theorem (R., [15])

If n is fixed and q is large, we have positive answer provided that
0 ≤ k < n/2 and k-normal elements exist in Fq.

It is sharp for n = 4 and q ≡ 3 (mod 4): no 2-normal element in Fq4 is
primitive.

Lucas Reis (UFMG) Character sums estimates over affine spaces applied to existence results in finite fieldsAugust 12 33 / 39



Problem

Determine the pairs (n, k) such that there exist primitive k-normal
elements in Fqn over Fq.

Assuming that k-normal elements actually exist.

Theorem (R., [15])

If n is fixed and q is large, we have positive answer provided that
0 ≤ k < n/2 and k-normal elements exist in Fq.

It is sharp for n = 4 and q ≡ 3 (mod 4): no 2-normal element in Fq4 is
primitive.

Lucas Reis (UFMG) Character sums estimates over affine spaces applied to existence results in finite fieldsAugust 12 33 / 39



Problem

Determine the pairs (n, k) such that there exist primitive k-normal
elements in Fqn over Fq.

Assuming that k-normal elements actually exist.

Theorem (R., [15])

If n is fixed and q is large, we have positive answer provided that
0 ≤ k < n/2 and k-normal elements exist in Fq.

It is sharp for n = 4 and q ≡ 3 (mod 4): no 2-normal element in Fq4 is
primitive.

Lucas Reis (UFMG) Character sums estimates over affine spaces applied to existence results in finite fieldsAugust 12 33 / 39



The non existence of primitive k-normal elements if k = n − 1 ( [8]) or
(n, k) = (4, 2) and q ≡ 3 (mod 4) ( [15]), use the fact that the Fq-order
of such elements are binomials.

This is extended as follows:

Lemma

Suppose that the Fq-order of α divides a binomial xd − δ ∈ Fq[x ] with
d < n. Then α cannot be a primitive element of Fqn .

Proof.

αqd − δα = (xd − δ) ◦ α = 0⇒ α(qd−1)(q−1) = 1.

And (qd − 1)(q − 1) < qn − 1 for every d < n.
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Motivated by the previous result, we have the following definition:

Definition

An element α ∈ Fqn is free of binomials if its Fq-order mα,q(x) does not
divide any binomial in Fq[x ] of degree < n. .

So the existence of a k-normal element, free of binomials, is necessary.
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For fixed n, and q large, this is also sufficient!

Theorem

Let n ≥ 2 be a positive integer. Then there exists a constant c(n) > 0
such that, for every q > c(n) and every 0 ≤ k ≤ n − 2, the following are
equivalent:

1 there exists a k-normal element in Fqn over Fq that is free of
binomials;

2 there exists a k-normal element in Fqn over Fq that is primitive.
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Proof.

We have proved (2)→ (1).

Sketch of the proof of (1)→ (2): let α be a k-normal element free of
binomials.

1 Let Aα ⊆ Fqn be the Fq-vector space generated by all the conjugates
of α: Aα has dimension n − k .

2 α is free of binomials ⇒ α−1 · αq = αq−1 has degree n over Fq.

3 Conclusion: Aα is n-good!

4 For q large, it contains at least qn−k−1/2 primitive elements.

5 For q large, the number of elements in Aα that are not k-normal is
< qn−k−1/2: it suffices to take q > 4n.
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A natural question:

Problem

Determine the pairs (n, k) such that xn − 1 has a divisor f ∈ Fq[x ] of
degree k that does not divide any binomial of degree < n.

Example: n = p, the characteristic of Fq and 0 ≤ k ≤ p − 2.

In particular, for q large, there exist primitive (p − 2)-normal elements in
Fqp (not expected).
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Obrigado! Thank you!
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