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Algebraic Quantum Codes: New challenges for classical coding theory?
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Algebraic Quantum Codes: New challenges for classical coding theory?

‘Classical & Quantum Information'

Classical information

often represented by a finite alphabet, e.g., bits 0 and 1

Quantum-bit (qubit)

basis states:
1 0
0" = |O> = ( > c (DQ, 1" = |1> = <1> c (DZ

general pure quantum state:

) = «|0) + 5|1) where o, 3 € C, |a]?* + |B]* =1

measurement (read-out):

result “0" with probability |a/|?

result “1" with probability |B|2
[T
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Algebraic Quantum Codes: New challenges for classical coding theory?

‘Classical & Quantum Information'

larger set of messages represented by bit strings of length n, i.e., x € {0,1}"

Bit strings

Quantum register
basis states:

general pure quantum state:

xc{0,1}"

— normalised vector in (C2)®" = C?"

n)

= |b) where b; € {0,1}

where lcel? =1

2.

xc{0,1}"

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

‘Classical & Quantum Information'

Larger alphabet

messages represented as vectors over a finite field, i.e., x € IFZ’

Qudit register
basis states:

‘b1> X ... |bn> = |b1 ce bn> = |b> where bz c Fq

general pure quantum state:

) = Z Ca | ) where Y ez =1

n

— normalised vector in (C?)*™ = C? = C[IF}]

(isomorphic as vector spaces)

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

‘Quantum Operations'
Unitary Operations

. . . . n .
invertible linear transformations on the space C? preserving the norm and hence

total probability

Local Operations
operations on C?1 ® C? ® ... ® C? acting nontrivially only on some of the tensor

factors

(von Neumann) Measurements
e set of orthogonal projections 1I;, II;1I; = 0;;11;, summing to identity
e projection II; is selected randomly “by Nature”
e result (“output”) is the classical index i
e re-normalized post-measurement state is supported on the image of II;

e probability p; for result 7 is given by the squared norm of the projection

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

‘The Basic Idea of QECCI

Classical codes Quantum codes
partition of the set of all words of orthogonal decomposition of the
length n over an alphabet of size ¢ vector space H®", where H=CH

@
N . . e { S
’H@m:C@El@,,,@
encoding: |¢) — Uenc(|¥)) ® |0))

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

‘ Interaction System/Environment I

“Closed” System

environment |g) ——

} — Uenv/sys (‘5> |¢>)

inter-
action

system |i)) —— .

“Channel”

Q: pin i= ‘¢><¢‘ ——> Pout ‘= W w‘ ZE’LIOmET

with Kraus operators (error operators) E;

Local/low correlated errors
e product channel Q®" where Q is “close” to identity

e Q can be expressed (approximated) with error operators F; such that each E;
acts on few subsystems, e. g. quantum gates [('T
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Algebraic Quantum Codes: New challenges for classical coding theory?

\ Knill-Laflamme Conditions'

[Knill & Laflamme, Physical Review A 55, 900—911 (1997)]

A subspace C of H with orthonormal basis {|c1),...,|ck)} is an error-correcting
code for the error operators £ = {E1, Fs, ...}, if there exists constants o ; € C
such that for all |¢;), |c¢;) and for all Ey, E; € &:

(il E{Eilej) = 6i jo.
interpretation:

(i) orthogonal states remain orthogonal under errors

(ii) errors “rotate” all basis states the same way

A A

Eqlcj)

‘Cj> errors Ek; |Cj>
O
/Ek |Cz>
2. >

) Bl [T
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Algebraic Quantum Codes: New challenges for classical coding theory?

Linearity of the Knill-Laflamme Conditions

Assume that C can correct the errors £ = {E1, F», .. .}.

New error-operators:

A= Z)\kEk and B := ZMZEZ
[

k
(il ATBlej) = > Nemlei ELEe;)
k.l
= ZA_k,ul(Si,jak,l
k.l

— 5@',]’ . Oé,(A, B)
It is sufficient to correct error operators that form a basis of the linear vector space
spanned by the operators £.

— only a finite set of errors ( “discretisation”) [{eT
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Algebraic Quantum Codes: New challenges for classical coding theory?

Error Basis.
Pauli Matrices
0 1 0 —i 1 0 1 0
Op 1= , Oy = | , Oy = , 1=
1 0 0 0 -1 0 1

e vector space basis of all 2 x 2 matrices

e unitary matrices which generate a finite group

Error Basis for many Qubits/Qudits
& error basis for subsystem of dimension d with I € £
— £9™ error basis with elements

F=F®..QQF,, I €&

weight of E: number of factors E; £ [

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

Quantum Error-Correcting Codes (QECC)I

e subspace C of a complex vector space H = CVN
usually: H2CIQCI®...@ C1=: (CH)®" “n qudits”

e errors: described by linear transformations acting non-trivially on
— some of the subsystems (local errors)

— many subsystems in the same way (correlated errors)

e notation: |C = (n, K,d)), |or |C = [n, k,d],

K-dimensional or ¢*-dimensional subspace C of (C4)®" =~ (4

n

e minimum distance d:
— detection of all errors acting nontrivially on d — 1 subsystems

— correction of all errors acting on |(d — 1)/2] subsystems

— correction of all erasures affecting up to d — 1 subsystems
[Grassl, Beth, & Pellizzari, Codes for the Quantum Erasure Channel, PRA 56, pp. 33-38

(1997)] [(.T
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Quantum Singleton Bound'

classical Singleton bound for C' = (n, K, d),:

d<n-—log, K+ 1

quantum Singleton bound for QECC C = ((n, K, d)),:

2d <n —log, K + 2 (1)
[E. Rains, Nonbinary Quantum Codes, IEEE-IT 45, pp. 1827-1832 (1999)]

Quantum MDS (QMDS) codes:
quantum codes C = ((n, ¢" 2724, d)), with equality in (1))

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

‘ QMDS Conjecture I
QMDS Conjecture:

The length of any QMDS code C = ((n, K, d)), with d > 3 is bounded by
n < ¢° + 1, with the exception of [¢° + 2, ¢* — 4,4], for ¢ = 2™, when n < ¢° + 2.

related results:
[F. Huber & M. Grassl, Quantum, vol. 4, June 2020, 284]

Theorem:
The weight enumerator of any QMDS code equals the weight enumerator of a

corresponding classical MDS code.

Theorem:
The length of a QMDS code C = ((n, K, d)), with d > 3 is at most n < ¢* + d — 2.

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

‘Quantum Stabilizer Codes'

[Gottesman, PRA 54 (1996); Calderbank, Rains, Shor, & Sloane, IEEE-IT 44 (1998)]

Basic Idea
Decomposition of the complex vector space into eigenspaces of operators.

Error Basis for Qudits
[A. Ashikhmin & E. Knill, Nonbinary quantum stabilizer codes, IEEE-IT 47 (2001)]

E = {XQZB5 a,B €Ty},
where (you may think of C? = C[IF,])

X*=> |z+a)z| foracl,

xEFq

and 2% =3 W e)(e| for B € Fy (w = wp = exp(2mi/p))
z€lFq

GQ)
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Stabilizer Codes'

common eigenspace of an Abelian subgroup § of the group G,, with elements

W (XM ZP) @ (X272 @ ... @ (X ZPr) = wTX*ZP,
where o, B € IFy, v € IF,.

guotient group:

Gn = Gn/(wl) = (F, xF)" =T x Y

S Abelian subgroup
— (a,8) % (o, 8") =0 for all w¥(X*ZP), ¥ (X' ZP) € S,
where x is a symplectic inner product on 'y X Iy,

Stabilizer codes correspond to symplectic self-orthogonal codes over
Iy x Iy,

GQ)
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‘Symplectic Self-Orthogonal Codes'

most general:
additive codes C' C I x IF that are self-orthogonal with respect to

n

(v,w) % (v, w') :=Tr(v -w —v  w) = Tr(z VW — vw;)
i=1

special cases:

IF-linear codes C C ¥ X ¥y that are self-orthogonal with respect to

mn
(v, w) * (v, w") ::v-w’—v’-wzz:viw,’b-—vgwi
i=1

IF ,2-linear Hermitian codes C' C I that are self-orthogonal with respect to

n
— E q
1=1

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

‘Quantum Codes from Classical Codes'

Hermitian self-orthogonal code

linear code C = [n, k,d'| 2 < 7, that is self-orthogonal with respect to the
Hermitian inner product

n
R E q
rxY .= L. Yi,
1=1

e, C<C*={zxely|VyeC:xzxy=0}

Theorem: (Hermitian construction)
Let C' = [n,k,d'],2 be a Hermitian self-orthogonal code and let

d := min{wgt(c): c € C* \ C} > dnin(C™).

Then there exists a quantum code C = [n,n — 2k, d|,.
[Ketkar et al., Nonbinary stabilizer codes over finite fields, |IEEE-IT 52, pp. 4892—-4914 (2006)]

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

‘Impure/Degenerate Codes (I)I

Theorem: (Hermitian construction)

recall:

Let C' = [n, k,d'] 2 be a Hermitian self-orthogonal code and let
d := min{wgt(c): c € C"\ C} > dmin(C™).

Then there exists a quantum code C = [n,n — 2k, d],.

Definition: A quantum code is “impure” or “degenerate”, when d > dpin(C*).

e elements in the classical code C' correspond to stabiliser operators that act
trivially on the complex vectors in the quantum code
—> we do not have to correct those “errors”

e the stabiliser operators take the role of check equations
—> a lower weight reduces the complexity of syndrome computation (LDPC)

e ingredients for other types of quantum codes
(hybrid codes, entanglement-assisted QECC) [(.T

17.03.2021 - 19— Markus Grassl
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Impure/Degenerate Codes (]I)I

“Coset codes”

Given a self-orthogonal code C' < C™, we consider the cosets of C' in C*:
{C+xy,C+2xq,...} with ; € C*
information is stored in the codes, i.e., 1 — x; + C

e we want the distance between the cosets to be large

e in particular, the covering radius of C' should be large

Open Problem:

Construct degenerate quantum codes [n, k, d]|, with d larger than (known)
pure/non-degenerate codes.

Example: [25,1,9]2 (upper bound d < 10, dpyre > 8)

GQ)

Markus Grassl
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‘Stabilizer QMDS Codes'

quantum Singleton bound for QECC C = [n, k, d];:

2d<n—k+2 (2)

Quantum MDS (QMDS) codes:
quantum codes C = [n,n + 2 — 2d, d], with equality in (2))

Hermitian construction
classical MDS code C' < C* = [n,n — k', d*] 2 yields C = [n,n — 2k’, d], with

MDS: d>d* =k +1
and by (2): d <Kk +1

— C is QMDS with d = k' + 1

as d = d*, a QMDS code is “pure” (holds for all QMDS codes)

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

Propagation Rules I

The existence of a quantum code C = ((n, K, d)), or C = [n, k,d], implies the
existence of

e C'=(n,K' d),withl < K' <K (subcode)
e C'=(n—1,K,d—1)), ford>1 (puncturing)

o C’ (n—1,¢9K,d— 1)), when C is pure
=[n—1,k+1,d— 1], when C is pure (stabilizer shortening)

only the last rule preserves the QMDS property

—> putative QMDS families with n + £ constant
[F. Huber & M. Grassl, Quantum, vol. 4, June 2020, 284]

[[67074]]2 — [[57 173]]2 — [[47 272]]2 — [[3737 1]]2

M_) [[8747 3]]3 — [[77 572]]3 — [[6767 1]]3
CQ)
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‘Shortening Stabilizer Codes'

[E. Rains, Nonbinary Quantum Codes, |IEEE-IT 45, pp. 1827-1832 (1999)]

e shortening of classical codes: C' = [n,k,d],2 =+ Cs = [n — 1,k — 1,d],

e for stabilizer codes:
shortening C* — C} = puncturing C — C), = C, £ (C,)* =C%
existence of C = [n, k, d]|, does not necessarily imply the
existence of C = [n — 1,k — 1,d],

General problem:

How to turn a non-self-orthogonal code into a self-orthogonal one?

Basic idea:

foé’yi + 0 for some x,y € C = [n, k,d'] 2
i=1

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

‘Shortening Stabilizer Codes'

[E. Rains, Nonbinary Quantum Codes, |IEEE-IT 45, pp. 1827-1832 (1999)]

e shortening of classical codes: C' = [n,k,d],2 =+ Cs = [n — 1,k — 1,d],

e for stabilizer codes:
shortening C* — C} = puncturing C — C), = C, £ (C,)* =C%
existence of C = [n, k, d]|, does not necessarily imply the
existence of C = [n — 1,k — 1,d],

General problem:

How to turn a non-self-orthogonal code into a self-orthogonal one?

Basic idea: find (a1, a2, ..., a,) € Yy such that

ngyiozi =0 for all z,y € C = [n, k,d'] 2
i=1

GQ)
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Puncture Code P(C)

[E. Rains, Nonbinary Quantum Codes, |IEEE-IT 45, pp. 1827-1832 (1999)]

puncture code of a linear code C over I 2:

1
P(C):= <(:c(fy1,acgy2 oxly )y € C> NIy
o= (ay,a,...,q,) € P(C) = Z(:cffyi)ozi =0 forallx,yeC
i=1

choose 3 € I, with 3,77 = a; = ) (Bixy)!(B)y; =0 forallz,yeC
1=1

— Hermitian self-orthogonal code

6 I= {(61561,62562, .. ,ﬁniﬁn)I T € C} < 6*

GQ)

17.03.2021 — 24— Markus Grassl
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‘Shortening Quantum Codes'

a € P(C) with wgt(a) = 7:

e delete the positions with a; = 0, resulting in Cv’p

~

e (), is still a Hermitian self-orthogonal code

— code ép of length n = r with ép < 6’;

Theorem:
Let C be a linear code over IF 2 with C* = [n, k,d] 2.

If a € P(C') with wgt(a) = r, then there exists a stabilizer code
C=[rk>r—2kd>d],
In particular:

C=[nk,dly=C=[rk>r—(n—k),d>d],

[Grassl, Beth, & Rotteler, On Optimal Quantum Codes, Int. J. Quantum Information 2, pp. 55-64

(2004)] [T

17.03.2021 — 25— Markus Grassl
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‘The Easy Case: QMDS Codes with n < g + 1'

[Rotteler, Grassl, and Beth, On Quantum MDS Codes, ISIT 2004, p. 356]

e start with a cyclic (constacyclic) MDS code C over F, of length ¢ + 1
o lift the code to IF 2, i.e., C = C| @ IF2; but in general, C £ C*

e however, P(C) is also a cyclic (constacyclic) MDS code which contains words
of “all” weights

Theorem:

Quantum MDS codes C = [n,n — 2d + 2, d], exist for all 2 <n < ¢+ 1 and
1<d<n/241.

GQ)

Markus Grassl
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The Harder Case: ¢ +1 <n < ¢* + 1'

[Grassl & Rotteler, Quantum MDS Codes over Small Fields, ISIT 2015, pp. 1104-1108]

e start with a cyclic (constacyclic) MDS code C over I 2 of length ¢* + 1
e in general, C' is not a Hermitian self-orthogonal code

I
o P(C) = ((ely)iy: 2,y €C) NE;

1
= <(fﬁiy§ + xly)is, @,y € C>

e P(C) is also a cyclic (constacyclic) code, but in general no MDS code
— analyse/sample which weights occur in P(C)

Open Problem:

Find efficient ways to determine which weights occur in a code.

GQ)
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Computational Results: QMDS Codes for

10 I | T i
|
|

d 9 1 -
|
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‘Special Cases'

[Grassl & Rotteler, Quantum MDS Codes over Small Fields, ISIT 2015, pp. 1104-1108]

Theorem:
Our construction yields QMDS codes C = [¢* + 1,¢* + 3 — 2d, d],
forall 1 <d < q+ 1 when ¢ is odd, or when ¢ is even and d is odd.

Remark:
Our construction does not yield a QMDS code [17,11,4]4, but QMDS codes
[4™ +1,4™ + 3 —2m+L 9m],,. for (at least) m = 3,4,5,6,7.

Theorem:
For ¢ = 2™, there exist QMDS codes C = [4™ + 2,4™ — 4, 4]om.
Proof: (main idea, see [Grassl & Rotteler arXiv:1502.05267 [quant-ph]])

Use the triple-extended Reed-Solomon code and show that P(C') contains a word
of weight ¢° + 2.

GQ)
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\Generalized Reed-Solomon Codes.

[S. Ball, Some constructions of quantum MDS codes, DCC, 2021]

Theorem:
There exists a QMDS code C = [¢° + 1,¢* + 1 — 2d,d], for all d < ¢ + 1 where
d+#q.

Proof: Construct a generalized RS code C' = [¢* + 1,d — 1], that is contained in its
Hermitian dual.

Theorem:

If £ > g+ 1 then a k-dimensional generalised Reed-Solomon code over IF' 2 is not
contained in its Hermitian dual.

—> no QMDS codes of distance d > ¢ + 1

Open Problem:

Construct QMDS codes C = [¢* + 1,¢* + 1 — 2q, ¢, for q even.
(The case q odd is covered by [Grassl & Rotteler, ISIT 2015].)

GQ)

Markus Grassl
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‘Sporadic QMDS Codes with d > g + 2'

QMDS codes from Hermitian self/dual codes:

[n, k,d], reference

[10,0,6]3 Glynn's code
[10,0,6]4 Grassl & Rotteler
[14,0,8]5 Ball, doubly circulant
[18,0,10]5 Ball, doubly circulant
[18,0,10]~ Ball, doubly circulant

plus the implied QMDS families

Open Problem:

Construct non-GRS MDS codes that are Hermitian self-orthogonal.

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

More Open Problems'

Can we find more QMDS codes with d > ¢ + 1 or even some families?

Assume that a QMDS code [n, k, d], exists.
Can we find QMDS codes [n’, k', d’], for all admissible n’ < n, k' < k7

So far, whenever a QMDS codes exists, we can construct one using a
Hermitian self-orthogonal MDS code.
Are there QMDS codes based on non-linear MDS codes (additive or even

non-additive) which can not be obtained from linear codes?
Are there QMDS codes that are not related to classical MDS codes?

Investigate QMDS codes when ¢ is not a power of a prime.

Prove/disprove or refine the QMDS conjecture.

GQ)
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Algebraic Quantum Codes: New challenges for classical coding theory?

Thank you!
Danke! Merci!
Dziekuje!
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