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Algebraic Quantum Codes: New challenges for classical coding theory?

Overview

• a (qu)bit of quantum mechanics

• general quantum error-correcting codes (QECC)

• quantum Singleton bound

• quantum codes from classical codes

• degenerate/impure codes

• quantum MDS codes

• open problems
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Algebraic Quantum Codes: New challenges for classical coding theory?

Classical & Quantum Information

Classical information

often represented by a finite alphabet, e. g., bits 0 and 1

Quantum-bit (qubit)

basis states:

“0” =̂ |0〉 =

(
1

0

)
∈ C2, “1” =̂ |1〉 =

(
0

1

)
∈ C2

general pure quantum state:

|Ψ〉 = α|0〉+ β|1〉 where α, β ∈ C, |α|2 + |β|2 = 1

measurement (read-out):

result “0” with probability |α|2

result “1” with probability |β|2
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Algebraic Quantum Codes: New challenges for classical coding theory?

Classical & Quantum Information

Bit strings

larger set of messages represented by bit strings of length n, i. e., x ∈ {0, 1}n

Quantum register

basis states:

|b1〉 ⊗ . . .⊗ |bn〉 =: |b1 . . . bn〉 = |b〉 where bi ∈ {0, 1}

general pure quantum state:

|ψ〉 =
∑

x∈{0,1}n

cx|x〉 where
∑

x∈{0,1}n

|cx|
2 = 1

−→ normalised vector in (C2)⊗n ∼= C2
n
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Algebraic Quantum Codes: New challenges for classical coding theory?

Classical & Quantum Information

Larger alphabet

messages represented as vectors over a finite field, i. e., x ∈ Fn
q

Qudit register

basis states:

|b1〉 ⊗ . . .⊗ |bn〉 =: |b1 . . . bn〉 = |b〉 where bi ∈ Fq

general pure quantum state:

|ψ〉 =
∑

x∈Fn
q

cx|x〉 where
∑

x∈Fn
q

|cx|
2 = 1

−→ normalised vector in (Cq)⊗n ∼= Cqn ∼= C[Fn
q ]

(isomorphic as vector spaces)
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Quantum Operations

Unitary Operations

invertible linear transformations on the space Cqn preserving the norm and hence

total probability

Local Operations

operations on Cq ⊗ Cq ⊗ . . .⊗ Cq acting nontrivially only on some of the tensor

factors

(von Neumann) Measurements

• set of orthogonal projections Πi, ΠiΠj = δijΠi, summing to identity

• projection Πi is selected randomly “by Nature”

• result (“output”) is the classical index i

• re-normalized post-measurement state is supported on the image of Πi

• probability pi for result i is given by the squared norm of the projection
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The Basic Idea of QECC

Classical codes Quantum codes

partition of the set of all words of

length n over an alphabet of size q

orthogonal decomposition of the

vector space H⊗n, where H∼=Cq

•

•
•

•
•
•

•

•

•

•

••
•

•

•

• •
•

•
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Cqn













































 C

E1

Ei

Eqn-k−1

• codewords

• errors of bounded weight

• other errors

H⊗n = C ⊕ E1 ⊕ . . .⊕ Eqn−k−1

encoding: |ψ〉 7→ Uenc(|ψ〉 ⊗ |0〉)
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Interaction System/Environment

“Closed” System

environment |ε〉

system |ψ〉 in
te
r-

a
ct
io
n

}
= Uenv/sys

(
|ε〉|ψ〉

)

“Channel”

Q : ρin := |ψ〉〈ψ| 7−→ ρout := Q(|ψ〉〈ψ|) :=
∑

i

EiρinE
†
i

with Kraus operators (error operators) Ei

Local/low correlated errors

• product channel Q⊗n where Q is “close” to identity

• Q can be expressed (approximated) with error operators Ẽi such that each Ẽi

acts on few subsystems, e. g. quantum gates
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Knill-Laflamme Conditions
[Knill & Laflamme, Physical Review A 55, 900–911 (1997)]

A subspace C of H with orthonormal basis {|c1〉, . . . , |cK〉} is an error-correcting

code for the error operators E = {E1, E2, . . .}, if there exists constants αk,l ∈ C

such that for all |ci〉, |cj〉 and for all Ek, El ∈ E :

〈ci|E
†
kEl|cj〉 = δi,jαk,l

interpretation:

(i) orthogonal states remain orthogonal under errors

(ii) errors “rotate” all basis states the same way

✲
|ci〉

✻

|cj〉 errors
=⇒

✲❳❳❳❳❳③
✏✏✏✶

✻✻

✄
✄
✄
✄✄✗

❇
❇
❇▼

Eℓ|cj〉

Eℓ|ci〉

Ek|cj〉

Ek|ci〉
α

α
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Linearity of the Knill-Laflamme Conditions

Assume that C can correct the errors E = {E1, E2, . . .}.

New error-operators:

A :=
∑

k

λkEk and B :=
∑

l

µlEl

〈ci|A
†B|cj〉 =

∑

k,l

λkµl〈ci|E
†
kEl|cj〉

=
∑

k,l

λkµlδi,jαk,l

= δi,j · α
′(A,B)

It is sufficient to correct error operators that form a basis of the linear vector space

spanned by the operators E .

=⇒ only a finite set of errors (“discretisation”)

17.03.2021 – 10– Markus Grassl
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Error Basis

Pauli Matrices

σx :=

(
0 1

1 0

)
, σy :=

(
0 −i

i 0

)
, σz :=

(
1 0

0 −1

)
, I :=

(
1 0

0 1

)

• vector space basis of all 2× 2 matrices

• unitary matrices which generate a finite group

Error Basis for many Qubits/Qudits

E error basis for subsystem of dimension d with I ∈ E

=⇒ E⊗n error basis with elements

E := E1 ⊗ . . .⊗ En, Ei ∈ E

weight of E: number of factors Ei 6= I
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Quantum Error-Correcting Codes (QECC)

• subspace C of a complex vector space H ∼= CN

usually: H ∼= Cq ⊗ Cq ⊗ . . .⊗ Cq =: (Cq)⊗n “n qudits”

• errors: described by linear transformations acting non-trivially on

– some of the subsystems (local errors)

– many subsystems in the same way (correlated errors)

• notation: C = ((n,K, d))q or C = [[n, k, d]]q

K-dimensional or qk-dimensional subspace C of (Cq)⊗n ∼= Cqn

• minimum distance d:

– detection of all errors acting nontrivially on d− 1 subsystems

– correction of all errors acting on ⌊(d− 1)/2⌋ subsystems

– correction of all erasures affecting up to d− 1 subsystems
[Grassl, Beth, & Pellizzari, Codes for the Quantum Erasure Channel, PRA 56, pp. 33–38

(1997)]
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Quantum Singleton Bound

classical Singleton bound for C = (n,K, d)q:

d ≤ n− logqK + 1

quantum Singleton bound for QECC C = ((n,K, d))q:

2d ≤ n− logqK + 2 (1)

[E. Rains, Nonbinary Quantum Codes, IEEE-IT 45, pp. 1827–1832 (1999)]

Quantum MDS (QMDS) codes:

quantum codes C = ((n, qn+2−2d, d))q with equality in (1)
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QMDS Conjecture

QMDS Conjecture:

The length of any QMDS code C = ((n,K, d))q with d ≥ 3 is bounded by

n ≤ q2 + 1, with the exception of [[q2 + 2, q2 − 4, 4]]q for q = 2m, when n ≤ q2 + 2.

related results:

[F. Huber & M. Grassl, Quantum, vol. 4, June 2020, 284]

Theorem:

The weight enumerator of any QMDS code equals the weight enumerator of a

corresponding classical MDS code.

Theorem:

The length of a QMDS code C = ((n,K, d))q with d ≥ 3 is at most n ≤ q2 + d− 2.
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Quantum Stabilizer Codes

[Gottesman, PRA 54 (1996); Calderbank, Rains, Shor, & Sloane, IEEE-IT 44 (1998)]

Basic Idea

Decomposition of the complex vector space into eigenspaces of operators.

Error Basis for Qudits

[A. Ashikhmin & E. Knill, Nonbinary quantum stabilizer codes, IEEE-IT 47 (2001)]

E = {XαZβ : α, β ∈ Fq},

where (you may think of Cq ∼= C[Fq])

Xα =
∑

x∈Fq

|x+ α〉〈x| for α ∈ Fq

and Zβ =
∑

z∈Fq

ωTr(βz)|z〉〈z| for β ∈ Fq (ω = ωp = exp(2πi/p))
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Stabilizer Codes

common eigenspace of an Abelian subgroup S of the group Gn with elements

ωγ(Xα1Zβ1)⊗ (Xα2Zβ2)⊗ . . .⊗ (XαnZβn) =: ωγXαZβ,

where α,β ∈ Fn
q , γ ∈ Fp.

quotient group:

Gn := Gn/〈ωI〉 ∼= (Fq × Fq)
n ∼= F

n
q × F

n
q

S Abelian subgroup

⇐⇒ (α,β) ⋆ (α′,β′) = 0 for all ωγ(XαZβ), ωγ′

(Xα′

Zβ′

) ∈ S,

where ⋆ is a symplectic inner product on Fn
q × Fn

q .

Stabilizer codes correspond to symplectic self-orthogonal codes over

Fn
q × Fn

q .
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Symplectic Self-Orthogonal Codes

most general:

additive codes C ⊂ Fn
q × Fn

q that are self-orthogonal with respect to

(v,w) ⋆ (v′,w′) := Tr(v ·w′ − v′ ·w) = Tr(
n∑

i=1

viw
′
i − v′iwi)

special cases:

Fq-linear codes C ⊂ Fn
q × Fn

q that are self-orthogonal with respect to

(v,w) ⋆ (v′,w′) := v ·w′ − v′ ·w =
n∑

i=1

viw
′
i − v′iwi

Fq2 -linear Hermitian codes C ⊂ Fn
q2 that are self-orthogonal with respect to

x ⋆ y :=
n∑

i=1

xqi yi
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Quantum Codes from Classical Codes

Hermitian self-orthogonal code

linear code C = [n, k, d′]q2 ≤ Fn
q2 that is self-orthogonal with respect to the

Hermitian inner product

x ⋆ y :=

n∑

i=1

xqi yi,

i. e., C ≤ C⋆ = {x ∈ Fn
q2 | ∀y ∈ C : x ⋆ y = 0}

Theorem: (Hermitian construction)

Let C = [n, k, d′]q2 be a Hermitian self-orthogonal code and let

d := min{wgt(c) : c ∈ C⋆ \ C} ≥ dmin(C
⋆).

Then there exists a quantum code C = [[n, n− 2k, d]]q.

[Ketkar et al., Nonbinary stabilizer codes over finite fields, IEEE-IT 52, pp. 4892–4914 (2006)]
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Impure/Degenerate Codes (I)

recall:

Theorem: (Hermitian construction)

Let C = [n, k, d′]q2 be a Hermitian self-orthogonal code and let

d := min{wgt(c) : c ∈ C⋆ \ C} ≥ dmin(C
⋆).

Then there exists a quantum code C = [[n, n− 2k, d]]q.

Definition: A quantum code is “impure” or “degenerate”, when d > dmin(C
⋆).

• elements in the classical code C correspond to stabiliser operators that act

trivially on the complex vectors in the quantum code

=⇒ we do not have to correct those “errors”

• the stabiliser operators take the role of check equations

=⇒ a lower weight reduces the complexity of syndrome computation (LDPC)

• ingredients for other types of quantum codes

(hybrid codes, entanglement-assisted QECC)
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Impure/Degenerate Codes (II)

“Coset codes”

Given a self-orthogonal code C ≤ C⋆, we consider the cosets of C in C⋆:

{C + x0, C + x1, . . .} with xi ∈ C⋆

information is stored in the codes, i.e., i 7→ xi + C

• we want the distance between the cosets to be large

• in particular, the covering radius of C should be large

Open Problem:

Construct degenerate quantum codes [[n, k, d]]q with d larger than (known)

pure/non-degenerate codes.

Example: [[25, 1, 9]]2 (upper bound d ≤ 10, dpure ≥ 8)
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Stabilizer QMDS Codes

quantum Singleton bound for QECC C = [[n, k, d]]q:

2d ≤ n− k + 2 (2)

Quantum MDS (QMDS) codes:

quantum codes C = [[n, n+ 2− 2d, d]]q with equality in (2)

Hermitian construction

classical MDS code C ≤ C⋆ = [n, n− k′, d⋆]q2 yields C = [[n, n− 2k′, d]]q with

MDS: d ≥ d⋆ = k′ + 1

and by (2): d ≤ k′ + 1



 =⇒ C is QMDS with d = k′ + 1

as d = d∗, a QMDS code is “pure” (holds for all QMDS codes)
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Propagation Rules

The existence of a quantum code C = ((n,K, d))q or C = [[n, k, d]]q implies the

existence of

• C′ = ((n,K′, d))q with 1 < K′ ≤ K (subcode)

• C′ = ((n− 1, K, d− 1))q for d > 1 (puncturing)

• C′ = ((n− 1, qK, d− 1))q when C is pure

C′ = [[n− 1, k + 1, d− 1]]q when C is pure (stabilizer shortening)

only the last rule preserves the QMDS property

=⇒ putative QMDS families with n+ k constant

[F. Huber & M. Grassl, Quantum, vol. 4, June 2020, 284]

[[6, 0, 4]]2 → [[5, 1, 3]]2 → [[4, 2, 2]]2 → [[3, 3, 1]]2

✘
✘

✘
✘[[9, 3, 4]]3 → [[8, 4, 3]]3 → [[7, 5, 2]]3 → [[6, 6, 1]]3
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Shortening Stabilizer Codes

[E. Rains, Nonbinary Quantum Codes, IEEE-IT 45, pp. 1827–1832 (1999)]

• shortening of classical codes: C = [n, k, d]q2 → Cs = [n− 1, k − 1, d]q2

• for stabilizer codes:

shortening C⋆ → C⋆
s =⇒ puncturing C → Cp =⇒ Cp 6≤ (Cp)

⋆ = C⋆
s

existence of C = [[n, k, d]]q does not necessarily imply the

existence of C = [[n− 1, k − 1, d]]q

General problem:

How to turn a non-self-orthogonal code into a self-orthogonal one?

Basic idea:

n∑

i=1

xqi yi 6= 0 for some x,y ∈ C = [n, k, d′]q2
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Shortening Stabilizer Codes

[E. Rains, Nonbinary Quantum Codes, IEEE-IT 45, pp. 1827–1832 (1999)]

• shortening of classical codes: C = [n, k, d]q2 → Cs = [n− 1, k − 1, d]q2

• for stabilizer codes:

shortening C⋆ → C⋆
s =⇒ puncturing C → Cp =⇒ Cp 6≤ (Cp)

⋆ = C⋆
s

existence of C = [[n, k, d]]q does not necessarily imply the

existence of C = [[n− 1, k − 1, d]]q

General problem:

How to turn a non-self-orthogonal code into a self-orthogonal one?

Basic idea: find (α1, α2, . . . , αn) ∈ Fn
q such that

n∑

i=1

xqi yiαi = 0 for all x,y ∈ C = [n, k, d′]q2
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Puncture Code P (C)

[E. Rains, Nonbinary Quantum Codes, IEEE-IT 45, pp. 1827–1832 (1999)]

puncture code of a linear code C over Fq2 :

P (C) :=
〈
(xq1y1, x

q
2y2 . . . , x

q
nyn) : x,y ∈ C

〉⊥
∩ F

n
q

α = (α1, α2, . . . , αn) ∈ P (C) =⇒
n∑

i=1

(xqi yi)αi = 0 for all x,y ∈ C

choose β ∈ F
n
q2 with βi

q+1 = αi =⇒
n∑

i=1

(βixi)
q(βi)yi = 0 for all x,y ∈ C

=⇒ Hermitian self-orthogonal code

C̃ := {(β1x1, β2x2, . . . , βnxn) : x ∈ C} ≤ C̃⋆
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Shortening Quantum Codes

α ∈ P (C) with wgt(α) = r:

• delete the positions with αi = 0, resulting in C̃p

• C̃p is still a Hermitian self-orthogonal code

=⇒ code C̃p of length ñ = r with C̃p ≤ C̃⋆
p

Theorem:

Let C be a linear code over Fq2 with C⋆ = [n, k, d]q2 .

If α ∈ P (C) with wgt(α) = r, then there exists a stabilizer code

C = [[r, k̃ ≥ r − 2k, d̃ ≥ d]]q.

In particular:

C = [[n, k, d]]q
α
−→ C̃ = [[r, k̃ ≥ r − (n− k), d̃ ≥ d]]q

[Grassl, Beth, & Rötteler, On Optimal Quantum Codes, Int. J. Quantum Information 2, pp. 55–64

(2004)]
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The Easy Case: QMDS Codes with n ≤ q + 1

[Rötteler, Grassl, and Beth, On Quantum MDS Codes, ISIT 2004, p. 356]

• start with a cyclic (constacyclic) MDS code C1 over Fq of length q + 1

• lift the code to Fq2 , i. e., C = C1 ⊗ Fq2 ; but in general, C 6≤ C⋆

• however, P (C) is also a cyclic (constacyclic) MDS code which contains words

of “all” weights

Theorem:

Quantum MDS codes C = [[n, n− 2d+ 2, d]]q exist for all 2 ≤ n ≤ q + 1 and

1 ≤ d ≤ n/2 + 1.
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The Harder Case: q + 1 < n ≤ q2 + 1

[Grassl & Rötteler, Quantum MDS Codes over Small Fields, ISIT 2015, pp. 1104–1108]

• start with a cyclic (constacyclic) MDS code C over Fq2 of length q2 + 1

• in general, C is not a Hermitian self-orthogonal code

• P (C) =
〈
(xqi yi)

n
i=1 : x,y ∈ C

〉⊥
∩ F

n
q

=
〈
(xiy

q
i + xqi yi)

n
i=1 : x,y ∈ C

〉⊥

• P (C) is also a cyclic (constacyclic) code, but in general no MDS code

=⇒ analyse/sample which weights occur in P (C)

Open Problem:

Find efficient ways to determine which weights occur in a code.
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Computational Results: QMDS Codes for q = 8

d✻

n
✲q2+1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  10  20  30  40  50  60  70

— quantum Singleton bound — conjectured bound

✷ direct construction, + via P (C)
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Special Cases

[Grassl & Rötteler, Quantum MDS Codes over Small Fields, ISIT 2015, pp. 1104–1108]

Theorem:

Our construction yields QMDS codes C = [[q2 + 1, q2 + 3− 2d, d]]q

for all 1 ≤ d ≤ q + 1 when q is odd, or when q is even and d is odd.

Remark:

Our construction does not yield a QMDS code [[17, 11, 4]]4, but QMDS codes

[[4m + 1, 4m + 3− 2m+1, 2m]]2m for (at least) m = 3, 4, 5, 6, 7.

Theorem:

For q = 2m, there exist QMDS codes C = [[4m + 2, 4m − 4, 4]]2m .

Proof: (main idea, see [Grassl & Rötteler arXiv:1502.05267 [quant-ph]])

Use the triple-extended Reed-Solomon code and show that P (C) contains a word

of weight q2 + 2.
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Generalized Reed-Solomon Codes
[S. Ball, Some constructions of quantum MDS codes, DCC, 2021]

Theorem:

There exists a QMDS code C = [[q2 + 1, q2 + 1− 2d, d]]q for all d ≤ q + 1 where

d 6= q.

Proof: Construct a generalized RS code C = [q2 +1, d− 1]q that is contained in its

Hermitian dual.

Theorem:

If k ≥ q + 1 then a k-dimensional generalised Reed-Solomon code over Fq2 is not

contained in its Hermitian dual.

=⇒ no QMDS codes of distance d > q + 1

Open Problem:

Construct QMDS codes C = [[q2 + 1, q2 + 1− 2q, q]]q for q even.

(The case q odd is covered by [Grassl & Rötteler, ISIT 2015].)
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Sporadic QMDS Codes with d ≥ q + 2

QMDS codes from Hermitian self/dual codes:

[[n, k, d]]q reference

[[10, 0, 6]]3 Glynn’s code

[[10, 0, 6]]4 Grassl & Rötteler

[[14, 0, 8]]5 Ball, doubly circulant

[[18, 0, 10]]5 Ball, doubly circulant

[[18, 0, 10]]7 Ball, doubly circulant

plus the implied QMDS families

Open Problem:

Construct non-GRS MDS codes that are Hermitian self-orthogonal.
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More Open Problems

• Can we find more QMDS codes with d > q + 1 or even some families?

• Assume that a QMDS code [[n, k, d]]q exists.

Can we find QMDS codes [[n′, k′, d′]]q for all admissible n′ ≤ n, k′ ≤ k?

• So far, whenever a QMDS codes exists, we can construct one using a

Hermitian self-orthogonal MDS code.

Are there QMDS codes based on non-linear MDS codes (additive or even

non-additive) which can not be obtained from linear codes?

• Are there QMDS codes that are not related to classical MDS codes?

• Investigate QMDS codes when q is not a power of a prime.

• Prove/disprove or refine the QMDS conjecture.

17.03.2021 – 32– Markus Grassl



Algebraic Quantum Codes: New challenges for classical coding theory?

Thank you!
Danke! Merci!

Dziekuje!
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