On NILPOTENT AUTOMORPHISM GROUPS OF FUNCTION FIELDS

Nurdagül Anbar
(joint work with Burçin Güneş)
Sabancı University, İstanbul

3 March 2021, Carleton Finite Fields eSeminar
K : an algebraically closed field
Char (K) : the characteristic of K
F / K : a function field with constant field K
$g(F)$: the genus of F
\mathbb{P}_{F} : the set of places of F
K : an algebraically closed field
Char (K) : the characteristic of K
F / K : a function field with constant field K
$g(F)$: the genus of F
\mathbb{P}_{F} : the set of places of F
Definition: An automorphism σ of F / K is a field automorphism of F such that $\sigma(\alpha)=\alpha$ for all $\alpha \in K$. The automorphism group

$$
\operatorname{Aut}(F / K)=\{\sigma: \sigma \text { is an automorphism of } F\}
$$

K : an algebraically closed field
Char (K) : the characteristic of K
F / K : a function field with constant field K
$g(F)$: the genus of F
\mathbb{P}_{F} : the set of places of F
Definition: An automorphism σ of F / K is a field automorphism of F such that $\sigma(\alpha)=\alpha$ for all $\alpha \in K$. The automorphism group

$$
\operatorname{Aut}(F / K)=\{\sigma: \sigma \text { is an automorphism of } F\}
$$

Example: Rational Function Field, i.e., $F=K(x)$.
$\sigma: F \mapsto F$ defined by $x \mapsto \frac{a x+b}{c x+d}$ for some $a, b, c, d \in K$.
σ is an automorphism of $F \Longleftrightarrow a d-b c \neq 0$
In fact, $\operatorname{Aut}(F / K) \cong \operatorname{PGL}(2, K)$
K : an algebraically closed field
Char (K) : the characteristic of K
F / K : a function field with constant field K
$g(F)$: the genus of F
\mathbb{P}_{F} : the set of places of F
Definition: An automorphism σ of F / K is a field automorphism of F such that $\sigma(\alpha)=\alpha$ for all $\alpha \in K$. The automorphism group

$$
\operatorname{Aut}(F / K)=\{\sigma: \sigma \text { is an automorphism of } F\}
$$

Example: Rational Function Field, i.e., $F=K(x)$.
$\sigma: F \mapsto F$ defined by $x \mapsto \frac{a x+b}{c x+d}$ for some $a, b, c, d \in K$.
σ is an automorphism of $F \Longleftrightarrow a d-b c \neq 0$
In fact, $\operatorname{Aut}(F / K) \cong \operatorname{PGL}(2, K)$
If $g(F)=1$, then $\mathrm{Cl}^{0}(F) \subseteq \operatorname{Aut}(F / K)$.
K : an algebraically closed field
Char (K) : the characteristic of K
F / K : a function field with constant field K
$g(F)$: the genus of F
\mathbb{P}_{F} : the set of places of F
Definition: An automorphism σ of F / K is a field automorphism of F such that $\sigma(\alpha)=\alpha$ for all $\alpha \in K$. The automorphism group

$$
\operatorname{Aut}(F / K)=\{\sigma: \sigma \text { is an automorphism of } F\}
$$

Example: Rational Function Field, i.e., $F=K(x)$.
$\sigma: F \mapsto F$ defined by $x \mapsto \frac{a x+b}{c x+d}$ for some $a, b, c, d \in K$.
σ is an automorphism of $F \Longleftrightarrow a d-b c \neq 0$
In fact, $\operatorname{Aut}(F / K) \cong \operatorname{PGL}(2, K)$
If $g(F)=1$, then $\mathrm{Cl}^{0}(F) \subseteq \operatorname{Aut}(F / K)$.
That is, if $g(F)=0$ or 1 , then $\operatorname{Aut}(F / K)$ is infinite.

KNOWN BOUNDS FOR THE CASE $g(F) \geq 2$

If $g(F) \geq 2$, then $\operatorname{Aut}(F / K)$ is finite. (Hurwitz (1893) and Schmid (1938))

KNOWN BOUNDS FOR THE CASE $g(F) \geq 2$

If $g(F) \geq 2$, then $\operatorname{Aut}(F / K)$ is finite. (Hurwitz (1893) and Schmid (1938))
(I) (Hurwitz, 1893) If $K=\mathbb{C}$, then $|\operatorname{Aut}(F / K)| \leq 84(g(F)-1)$.

KNOWN BOUNDS FOR THE CASE $g(F) \geq 2$

If $g(F) \geq 2$, then $\operatorname{Aut}(F / K)$ is finite. (Hurwitz (1893) and Schmid (1938))
(I) (Hurwitz, 1893) If $K=\mathbb{C}$, then $|\operatorname{Aut}(F / K)| \leq 84(g(F)-1)$.
(ii) (Roquette, 1970) If $p=\operatorname{Char}(K)>0$ and $p \nmid|\operatorname{Aut}(F / K)|$, then $|\operatorname{Aut}(F / K)| \leq 84(g(F)-1)$.

KNOWN BOUNDS FOR THE CASE $g(F) \geq 2$

If $g(F) \geq 2$, then $\operatorname{Aut}(F / K)$ is finite. (Hurwitz (1893) and Schmid (1938))
(I) (Hurwitz, 1893) If $K=\mathbb{C}$, then $|\operatorname{Aut}(F / K)| \leq 84(g(F)-1)$.
(ii) (Roquette, 1970) If $p=\operatorname{Char}(K)>0$ and $p \nmid|\operatorname{Aut}(F / K)|$, then $|\operatorname{Aut}(F / K)| \leq 84(g(F)-1)$.
(III) (Stichtenoth, 1973) If $p=\operatorname{Char}(K)>0$ and $p||\operatorname{Aut}(F / K)|$, then

$$
|\operatorname{Aut}(F / K)| \leq 16 g(F)^{4}
$$

KNOWN BOUNDS FOR THE CASE $g(F) \geq 2$

If $g(F) \geq 2$, then $\operatorname{Aut}(F / K)$ is finite. (Hurwitz (1893) and Schmid (1938))
(I) (Hurwitz, 1893) If $K=\mathbb{C}$, then $|\operatorname{Aut}(F / K)| \leq 84(g(F)-1)$.
(ii) (Roquette, 1970) If $p=\operatorname{Char}(K)>0$ and $p \nmid|\operatorname{Aut}(F / K)|$, then $|\operatorname{Aut}(F / K)| \leq 84(g(F)-1)$.
(III) (Stichtenoth, 1973) If $p=\operatorname{Char}(K)>0$ and $p||\operatorname{Aut}(F / K)|$, then

$$
|\operatorname{Aut}(F / K)| \leq 16 g(F)^{4}
$$

with one exception: the Hermitian function fields \mathcal{H} defined by $y^{p^{n}}+y=x^{p^{n}+1}$.

$$
g(\mathcal{H})=\frac{p^{2 n}-p^{n}}{2} \quad \text { and } \quad|\operatorname{Aut}(\mathcal{H} / K)|=p^{3 n}\left(p^{2 n}-1\right)\left(p^{3 n}+1\right) .
$$

Special types of groups

Let F / K be a function field of $g(F) \geq 2$ and G a subgroup of $\operatorname{Aut}(F / K)$.

SPECIAL TYPES OF GROUPS

Let F / K be a function field of $g(F) \geq 2$ and G a subgroup of $\operatorname{Aut}(F / K)$.
(I) (Zomorrodian, 1985) If $K=\mathbb{C}$ and G is nilpotent, then $|G| \leq 16(g(F)-1)$. Moreover, if the equality holds, then $g(F)-1$ is a power of 2 .

SPECIAL TYPES OF GROUPS

Let F / K be a function field of $g(F) \geq 2$ and G a subgroup of $\operatorname{Aut}(F / K)$.
(I) (Zomorrodian, 1985) If $K=\mathbb{C}$ and G is nilpotent, then $|G| \leq 16(g(F)-1)$. Moreover, if the equality holds, then $g(F)-1$ is a power of 2 .
Conversely, if $g-1$ is a power of 2 , then there exists F / K of genus $g(F)=g$ with $|\operatorname{Aut}(F / K)|=16(g-1)$.

Special types of groups

Let F / K be a function field of $g(F) \geq 2$ and G a subgroup of $\operatorname{Aut}(F / K)$.
(I) (Zomorrodian, 1985) If $K=\mathbb{C}$ and G is nilpotent, then $|G| \leq 16(g(F)-1)$. Moreover, if the equality holds, then $g(F)-1$ is a power of 2 .
Conversely, if $g-1$ is a power of 2 , then there exists F / K of genus $g(F)=g$ with $|\operatorname{Aut}(F / K)|=16(g-1)$.
(iI) (Nakajima, 1987) If G is abelian, then $|G| \leq 4(g(F)+1)$.

SPECIAL TYPES OF GROUPS

Let F / K be a function field of $g(F) \geq 2$ and G a subgroup of $\operatorname{Aut}(F / K)$.
(I) (Zomorrodian, 1985) If $K=\mathbb{C}$ and G is nilpotent, then $|G| \leq 16(g(F)-1)$. Moreover, if the equality holds, then $g(F)-1$ is a power of 2 .
Conversely, if $g-1$ is a power of 2 , then there exists F / K of genus $g(F)=g$ with $|\operatorname{Aut}(F / K)|=16(g-1)$.
(iI) (Nakajima, 1987) If G is abelian, then $|G| \leq 4(g(F)+1)$.
(iii) (Korchmaros and Montanucci, 2020) If G has order power of a prime $\ell \geq 3$, with $\ell \neq \operatorname{Char}(K)$, then $|G| \leq 9(g(F)-1)$.

SPECIAL TYPES OF GROUPS

Let F / K be a function field of $g(F) \geq 2$ and G a subgroup of $\operatorname{Aut}(F / K)$.
(1) (Zomorrodian, 1985) If $K=\mathbb{C}$ and G is nilpotent, then $|G| \leq 16(g(F)-1)$. Moreover, if the equality holds, then $g(F)-1$ is a power of 2 .
Conversely, if $g-1$ is a power of 2 , then there exists F / K of genus $g(F)=g$ with $|\operatorname{Aut}(F / K)|=16(g-1)$.
(iI) (Nakajima, 1987) If G is abelian, then $|G| \leq 4(g(F)+1)$.
(III) (Korchmaros and Montanucci, 2020) If G has order power of a prime $\ell \geq 3$, with $\ell \neq \operatorname{Char}(K)$, then $|G| \leq 9(g(F)-1)$.

Question: Is there an upper bound for $|G|$ in terms of a linear polynomial in $g(F)$ when $\operatorname{Char}(K)>0$ and G is nilpotent?

Theorem:(A., Güneş) Let K be an algebraically closed field of characteristic $p>0$ and let F / K be a function field of genus $g \geq 2$. If G is a nilpotent subgroup of $\operatorname{Aut}(F / K)$, then

$$
|G| \leq 16(g-1)
$$

except the case that the fixed field F_{0} of G is rational such that F_{0} has a unique place ramified in F. Moreover, if the equality holds, then $g(F)-1$ is a power of 2.

Theorem:(A., Güneş) Let K be an algebraically closed field of characteristic $p>0$ and let F / K be a function field of genus $g \geq 2$. If G is a nilpotent subgroup of $\operatorname{Aut}(F / K)$, then

$$
|G| \leq 16(g-1)
$$

except the case that the fixed field F_{0} of G is rational such that F_{0} has a unique place ramified in F. Moreover, if the equality holds, then $g(F)-1$ is a power of 2.

Remark: In the exceptional case, G is a p-group and the unique ramified place of F_{0} is totally ramified in F. Then $|G| \leq \frac{4 p}{(p-1)^{2}} g(F)^{2}$ by a result of Stichtenoth (1973).

Main Tool: Galois extensions of function fields.

Setting:

Main Tool: Galois extensions of function fields.

Setting:

$G \leq \operatorname{Aut}(F / K)$
$F^{G}:=\{\beta \in F \mid \sigma(\beta)=\beta$ for all $\sigma \in G\} \subseteq F$
F^{G} is a function field over K.
F / F^{G} is a Galois extension of degree $|G|$.

Main Tool: Galois extensions of function fields.

Setting:

$G \leq \operatorname{Aut}(F / K)$
$F^{G}:=\{\beta \in F \mid \sigma(\beta)=\beta$ for all $\sigma \in G\} \subseteq F$
F^{G} is a function field over K.
F / F^{G} is a Galois extension of degree $|G|$.
By the Hurwitz genus formula,

$$
2 g(F)-2=|G|\left(2 g\left(F^{G}\right)-2\right)+\operatorname{deg}\left(\operatorname{Diff}\left(F / F^{G}\right)\right)
$$

Main Tool: Galois extensions of function fields.

Setting:

$G \leq \operatorname{Aut}(F / K)$
$F^{G}:=\{\beta \in F \mid \sigma(\beta)=\beta$ for all $\sigma \in G\} \subseteq F$
F^{G} is a function field over K.
F / F^{G} is a Galois extension of degree $|G|$.
By the Hurwitz genus formula,

$$
2 g(F)-2=|G|\left(2 g\left(F^{G}\right)-2\right)+\operatorname{deg}\left(\operatorname{Diff}\left(F / F^{G}\right)\right)
$$

That is, $|G|$ is closely related to genus and the ramification.

Properties of Galois extensions

Let F / E be a Galois extension of function fields. For $Q \in \mathbb{P}_{E}$ and $P \in \mathbb{P}_{F}$ such that $P \supseteq Q$, we write $P \mid Q$ and denote by $e(P \mid Q)$ the ramification index of $P \mid Q$, $d(P \mid Q)$ the different exponent of $P \mid Q$. $G=\operatorname{Gal}(F / E)$

Properties of Galois extensions

Let F / E be a Galois extension of function fields. For $Q \in \mathbb{P}_{E}$ and $P \in \mathbb{P}_{F}$ such that $P \supseteq Q$, we write $P \mid Q$ and denote by $e(P \mid Q)$ the ramification index of $P \mid Q$, $d(P \mid Q)$ the different exponent of $P \mid Q$. $G=\operatorname{Gal}(F / E)$
(I) Let $Q \in \mathbb{P}_{E}$ and $\mathcal{T}=\left\{P \in \mathbb{P}_{F}: P \mid Q\right\}=\left\{P_{1}, \ldots, P_{r}\right\}$. G acts transitively on \mathcal{T}. Hence, for all $i, j \in\{1, \ldots, r\}$, we have

$$
e\left(P_{i} \mid Q\right)=e\left(P_{j} \mid Q\right)=: e(Q) \quad d\left(P_{i} \mid Q\right)=d\left(P_{j} \mid Q\right)=: d(Q)
$$

By the Hurwitz genus formula,

Properties of Galois extensions

Let F / E be a Galois extension of function fields. For $Q \in \mathbb{P}_{E}$ and $P \in \mathbb{P}_{F}$ such that $P \supseteq Q$, we write $P \mid Q$ and denote by $e(P \mid Q)$ the ramification index of $P \mid Q$, $d(P \mid Q)$ the different exponent of $P \mid Q$. $G=\operatorname{Gal}(F / E)$
(I) Let $Q \in \mathbb{P}_{E}$ and $\mathcal{T}=\left\{P \in \mathbb{P}_{F}: P \mid Q\right\}=\left\{P_{1}, \ldots, P_{r}\right\}$. G acts transitively on \mathcal{T}. Hence, for all $i, j \in\{1, \ldots, r\}$, we have

$$
e\left(P_{i} \mid Q\right)=e\left(P_{j} \mid Q\right)=: e(Q) \quad d\left(P_{i} \mid Q\right)=d\left(P_{j} \mid Q\right)=: d(Q)
$$

(ii) By the "Fundamental Equality", $|G|=r e(Q)$, i.e., $e(Q)||G|$ and $r||G|$.

Properties of Galois extensions

Let F / E be a Galois extension of function fields. For $Q \in \mathbb{P}_{E}$ and $P \in \mathbb{P}_{F}$ such that $P \supseteq Q$, we write $P \mid Q$ and denote by $e(P \mid Q)$ the ramification index of $P \mid Q$, $d(P \mid Q)$ the different exponent of $P \mid Q$. $G=\operatorname{Gal}(F / E)$
(I) Let $Q \in \mathbb{P}_{E}$ and $\mathcal{T}=\left\{P \in \mathbb{P}_{F}: P \mid Q\right\}=\left\{P_{1}, \ldots, P_{r}\right\}$. G acts transitively on \mathcal{T}. Hence, for all $i, j \in\{1, \ldots, r\}$, we have

$$
e\left(P_{i} \mid Q\right)=e\left(P_{j} \mid Q\right)=: e(Q) \quad d\left(P_{i} \mid Q\right)=d\left(P_{j} \mid Q\right)=: d(Q)
$$

(ii) By the "Fundamental Equality", $|G|=r e(Q)$, i.e., $e(Q)||G|$ and $r||G|$.
(IiI) By the Hurwitz genus formula,

$$
2 g(F)-2=|G|\left(2 g(E)-2+\sum_{Q \in \mathbb{P}_{E}} \frac{d(Q)}{e(Q)}\right)
$$

Dedekind's Different Theorem: Let F / E be a Galois extension of function fields. For $Q \in \mathbb{P}_{E}$
(I) $d(Q) \geq e(Q)-1$
(II) $d(Q)=e(Q)-1$ if and only if $p \nmid e(Q)$.

Dedekind's Different Theorem: Let F / E be a Galois extension of function fields. For $Q \in \mathbb{P}_{E}$
(I) $d(Q) \geq e(Q)-1$
(II) $d(Q)=e(Q)-1$ if and only if $p \nmid e(Q)$.

Definition: We say, Q is "tamely ramified" if $p \nmid e(Q)$. Otherwise, it is called "wildly ramified".

Dedekind's Different Theorem: Let F / E be a Galois extension of function fields. For $Q \in \mathbb{P}_{E}$
(I) $d(Q) \geq e(Q)-1$
(II) $d(Q)=e(Q)-1$ if and only if $p \nmid e(Q)$.

Definition: We say, Q is "tamely ramified" if $p \nmid e(Q)$. Otherwise, it is called "wildly ramified".

Observartion:

(I) If Q is tamely ramified then $\frac{d(Q)}{e(Q)}=\frac{e(Q)-1}{e(Q)} \geq \frac{1}{2}$.
(II) If Q is widely ramified then $\frac{d(Q)}{e(Q)} \geq 1$.

Recall: F / K is a function field of genus $g \geq 2$ and $G \leq \operatorname{Aut}(F / K)$ nilpotent subgroup. Set $F_{0}=F^{G}$ and $g_{0}=g\left(F_{0}\right)$. By the Hurwitz genus formula,

$$
2 g-2=|G|\left(2 g_{0}-2+\sum_{Q \in \mathbb{P}_{F_{0}}} \frac{d(Q)}{e(Q)}\right) .
$$

Recall: F / K is a function field of genus $g \geq 2$ and $G \leq \operatorname{Aut}(F / K)$ nilpotent subgroup. Set $F_{0}=F^{G}$ and $g_{0}=g\left(F_{0}\right)$. By the Hurwitz genus formula,

$$
2 g-2=|G|\left(2 g_{0}-2+\sum_{Q \in \mathbb{P}_{F_{0}}} \frac{d(Q)}{e(Q)}\right) .
$$

Simple Case $g_{0} \geq 1$:
(I) $g_{0} \geq 2 \Longrightarrow 2 g-2 \geq|G|\left(2 g_{0}-2\right) \geq 2|G| \Longrightarrow|G| \leq(g-1)$

Recall: F / K is a function field of genus $g \geq 2$ and $G \leq \operatorname{Aut}(F / K)$ nilpotent subgroup. Set $F_{0}=F^{G}$ and $g_{0}=g\left(F_{0}\right)$. By the Hurwitz genus formula,

$$
2 g-2=|G|\left(2 g_{0}-2+\sum_{Q \in \mathbb{P}_{F_{0}}} \frac{d(Q)}{e(Q)}\right) .
$$

Simple Case $g_{0} \geq 1$:
(I) $g_{0} \geq 2 \Longrightarrow 2 g-2 \geq|G|\left(2 g_{0}-2\right) \geq 2|G| \Longrightarrow|G| \leq(g-1)$
(II) $g_{0}=1 \Longrightarrow$ there exits a ramified place $Q \in \mathbb{P}_{F_{0}} \Longrightarrow$

$$
2 g-2 \geq|G| \frac{d(Q)}{e(Q)} \geq \frac{|G|}{2} \Longrightarrow|G| \leq 4(g-1)
$$

Recall: F / K is a function field of genus $g \geq 2$ and $G \leq \operatorname{Aut}(F / K)$ nilpotent subgroup. Set $F_{0}=F^{G}$ and $g_{0}=g\left(F_{0}\right)$. By the Hurwitz genus formula,

$$
2 g-2=|G|\left(2 g_{0}-2+\sum_{Q \in \mathbb{P}_{F_{0}}} \frac{d(Q)}{e(Q)}\right) .
$$

Simple Case $g_{0} \geq 1$:
(I) $g_{0} \geq 2 \Longrightarrow 2 g-2 \geq|G|\left(2 g_{0}-2\right) \geq 2|G| \Longrightarrow|G| \leq(g-1)$
(II) $g_{0}=1 \Longrightarrow$ there exits a ramified place $Q \in \mathbb{P}_{F_{0}} \Longrightarrow$

$$
2 g-2 \geq|G| \frac{d(Q)}{e(Q)} \geq \frac{|G|}{2} \Longrightarrow|G| \leq 4(g-1)
$$

From now on, we suppose that $g_{0}=0$.

We investigate $g_{0}=0$ with respect to the number of ramified places.

We investigate $g_{0}=0$ with respect to the number of ramified places.
Definition: Let Q_{1}, \ldots, Q_{r} be all the ramified places of F_{0} in F / F_{0} with ramification indices e_{1}, \ldots, e_{r}, respectively. W.l.o.g., we assume that $e_{1} \leq \ldots \leq e_{r}$. We say that F is of type $\left(e_{1}, \ldots, e_{r}\right)$.

We investigate $g_{0}=0$ with respect to the number of ramified places.
Definition: Let Q_{1}, \ldots, Q_{r} be all the ramified places of F_{0} in F / F_{0} with ramification indices e_{1}, \ldots, e_{r}, respectively. W.l.o.g., we assume that $e_{1} \leq \ldots \leq e_{r}$. We say that F is of type $\left(e_{1}, \ldots, e_{r}\right)$.

Case $r \geq 5$: Set $d_{i}:=d\left(Q_{i}\right)$. By the Hurwitz genus formula,

$$
2 g-2=|G|\left(-2+\sum_{i=1}^{r} \frac{d_{i}}{e_{i}}\right) \geq|G|\left(-2+5 \cdot \frac{1}{2}\right)=\frac{|G|}{2},
$$

i.e., $|G| \leq 4(g-1)$.

We investigate $g_{0}=0$ with respect to the number of ramified places.
Definition: Let Q_{1}, \ldots, Q_{r} be all the ramified places of F_{0} in F / F_{0} with ramification indices e_{1}, \ldots, e_{r}, respectively. W.l.o.g., we assume that $e_{1} \leq \ldots \leq e_{r}$. We say that F is of type $\left(e_{1}, \ldots, e_{r}\right)$.

Case $r \geq 5$: Set $d_{i}:=d\left(Q_{i}\right)$. By the Hurwitz genus formula,

$$
2 g-2=|G|\left(-2+\sum_{i=1}^{r} \frac{d_{i}}{e_{i}}\right) \geq|G|\left(-2+5 \cdot \frac{1}{2}\right)=\frac{|G|}{2},
$$

i.e., $|G| \leq 4(g-1)$.

Therefore, we need to investigate $1 \leq r \leq 4$. That is, we investigate function fields of type $\left(e_{1}, e_{2}, e_{3}, e_{4}\right),\left(e_{1}, e_{2}, e_{3}\right),\left(e_{1}, e_{2}\right)$ and $\left(e_{1}\right)$.

We investigate $g_{0}=0$ with respect to the number of ramified places.
Definition: Let Q_{1}, \ldots, Q_{r} be all the ramified places of F_{0} in F / F_{0} with ramification indices e_{1}, \ldots, e_{r}, respectively. W.l.o.g., we assume that $e_{1} \leq \ldots \leq e_{r}$. We say that F is of type $\left(e_{1}, \ldots, e_{r}\right)$.

Case $r \geq 5$: Set $d_{i}:=d\left(Q_{i}\right)$. By the Hurwitz genus formula,

$$
2 g-2=|G|\left(-2+\sum_{i=1}^{r} \frac{d_{i}}{e_{i}}\right) \geq|G|\left(-2+5 \cdot \frac{1}{2}\right)=\frac{|G|}{2},
$$

i.e., $|G| \leq 4(g-1)$.

Therefore, we need to investigate $1 \leq r \leq 4$. That is, we investigate function fields of type $\left(e_{1}, e_{2}, e_{3}, e_{4}\right),\left(e_{1}, e_{2}, e_{3}\right),\left(e_{1}, e_{2}\right)$ and $\left(e_{1}\right)$.

Fact: If G is a finite nilpotent group, then G has a normal subgroup of order n for each divisor n of $|G|$.

The case $\left(2,4, e_{3}\right)$

Lemma: Let ℓ be a prime number. Then $\ell||G|$ if and only if $\ell| e_{i}$ for some i.

The case $\left(2,4, e_{3}\right)$

Lemma: Let ℓ be a prime number. Then $\ell||G|$ if and only if $\ell| e_{i}$ for some i.
Proof. Suppose that $\ell\left||G|\right.$ and $\ell \nmid e_{i}$ for any i. Let $H \triangleleft G$ such that $[G: H]=\ell$.

$$
\begin{gathered}
\left.\left.\left.{ }_{\operatorname{deg}=|H|}^{F}\right|_{\operatorname{deg}=\ell} ^{F^{H}}\right|_{F_{0}}\right) \text { Galois }
\end{gathered}
$$

THE CASE $\left(2,4, e_{3}\right)$

Lemma: Let ℓ be a prime number. Then $\ell||G|$ if and only if $\ell| e_{i}$ for some i.
Proof. Suppose that $\ell\left||G|\right.$ and $\ell \nmid e_{i}$ for any i. Let $H \triangleleft G$ such that $[G: H]=\ell$.

$\Longrightarrow F^{H} / F_{0}$ is an unramified Galois extension of degree ℓ
$\Longrightarrow 2 g\left(F^{H}\right)-2=-2 \ell$
$\Longrightarrow g\left(F^{H}\right)=-\ell+1<0$, a contradiction.

THE CASE $\left(2,4, e_{3}\right)$

Lemma: Let ℓ be a prime number. Then $\ell||G|$ if and only if $\ell| e_{i}$ for some i.
Proof. Suppose that $\ell\left||G|\right.$ and $\ell \nmid e_{i}$ for any i. Let $H \triangleleft G$ such that $[G: H]=\ell$.

$\Longrightarrow F^{H} / F_{0}$ is an unramified Galois extension of degree ℓ
$\Longrightarrow 2 g\left(F^{H}\right)-2=-2 \ell$
$\Longrightarrow g\left(F^{H}\right)=-\ell+1<0$, a contradiction.
IN FACT, if ℓ is a prime number, which divides exactly one of e_{i}, then $\ell=\operatorname{char}(K)$.

Lemma: Let $p=\operatorname{char}(K)$ and $|G|=p^{a} N$ with $a, N \geq 1$ and $\operatorname{gcd}(p, N)=1$. Let $e(Q)=p^{t} n$ such that $\operatorname{gcd}(p, n)=1$. Then $d(Q) \geq(e(Q)-1)+n\left(p^{t}-1\right)$.

Proof. Let $H \unlhd G$ of index p^{a}. Set $P^{\prime}=P \cap F^{H}$.

By the transitivity of different exponent,

$$
d(Q)=e_{1} d_{2}+d_{1} \geq 2 n\left(p^{t}-1\right)+n-1=(e(Q)-1)+n\left(p^{t}-1\right)
$$

The case $\left(2,4, e_{3}\right)$:
(I) $\operatorname{char}(K)=2 \Longrightarrow Q_{1}$ and Q_{2} are wildly ramified \Longrightarrow

$$
d_{1} / e_{1}, d_{2} / e_{2} \geq 1 \text { and } d_{3} / e_{3} \geq 1 / 2 \Longrightarrow|G| \leq 4(g-1)
$$

The case $\left(2,4, e_{3}\right)$:
(I) $\operatorname{char}(K)=2 \Longrightarrow Q_{1}$ and Q_{2} are wildly ramified \Longrightarrow

$$
d_{1} / e_{1}, d_{2} / e_{2} \geq 1 \text { and } d_{3} / e_{3} \geq 1 / 2 \Longrightarrow|G| \leq 4(g-1)
$$

(iI) $\operatorname{char}(K) \neq 2 \Longrightarrow e_{3}=2^{a} \ell^{b}$ for a prime $\ell>2$ and $a, b \geq 0$

- $b>0 \Longrightarrow \ell=\operatorname{Char}(K)$ and $d_{3} \geq\left(2^{a} \ell^{b}-1\right)+2^{a}\left(\ell^{b}-1\right) \Longrightarrow$ $|G|<3(g-1)$
- Suppose that $b=0$. Since $\operatorname{char}(K) \neq 2$,

$$
2 g-2=|G|\left(-2+\frac{1}{2}+\frac{3}{4}+\frac{2^{a}-1}{2^{a}}\right)=|G|\left(\frac{1}{4}-\frac{1}{2^{a}}\right) .
$$

Then the fact that $g \geq 2$ implies that $a \geq 3$; hence, $|G| \leq 16(g-1)$.

The case $\left(2,4, e_{3}\right)$:
(I) $\operatorname{char}(K)=2 \Longrightarrow Q_{1}$ and Q_{2} are wildly ramified \Longrightarrow

$$
d_{1} / e_{1}, d_{2} / e_{2} \geq 1 \text { and } d_{3} / e_{3} \geq 1 / 2 \Longrightarrow|G| \leq 4(g-1)
$$

(iI) $\operatorname{char}(K) \neq 2 \Longrightarrow e_{3}=2^{a} \ell^{b}$ for a prime $\ell>2$ and $a, b \geq 0$

- $b>0 \Longrightarrow \ell=\operatorname{Char}(K)$ and $d_{3} \geq\left(2^{a} \ell^{b}-1\right)+2^{a}\left(\ell^{b}-1\right) \Longrightarrow$ $|G|<3(g-1)$
- Suppose that $b=0$. Since $\operatorname{char}(K) \neq 2$,

$$
2 g-2=|G|\left(-2+\frac{1}{2}+\frac{3}{4}+\frac{2^{a}-1}{2^{a}}\right)=|G|\left(\frac{1}{4}-\frac{1}{2^{a}}\right) .
$$

Then the fact that $g \geq 2$ implies that $a \geq 3$; hence, $|G| \leq 16(g-1)$.
Remark:
$|G|=16(g-1) \Longleftrightarrow a=3$, i.e., F is of type $(2,4,8)$.

Theorem (A.-Güneş):

Let F / K be a function field of genus $g \geq 2$ and G a nilpotent subgroup of $\operatorname{Aut}(F / K)$. Suppose that $F_{0}:=F^{G}$ is rational.
(I) If there are exactly 4 ramified places of F_{0} in F / F_{0}, then $|G| \leq 8(g-1)$. Moreover, the equality holds when $\operatorname{Char}(K) \neq 2, F$ is of type $(2,2,2,4)$ and G is a 2 -group.
(ii) If there are exactly 3 ramified places of F_{0} in F / F_{0}, then $|G| \leq 16(g-1)$. Moreover, the equality holds when $\operatorname{Char}(K) \neq 2$, F is of type ($2,4,8$) and G is a 2-group.
(iii) If there are exactly 2 ramified places of F_{0} in F / F_{0}, then $|G| \leq 10(g-1)$. Moreover, the equality holds when F is either of type $(2,10)$ or $(5,10)$ and G is cyclic of order 10 .
(Iv) If there is exactly 1 ramified place of F_{0} in F / F_{0}, then G is a p-group and $|G| \leq \frac{4 p}{(p-1)^{2}} g^{2}$, where $p=\operatorname{Char}(K)$.

Example: $r=3$

Let $p \neq 2$ and $F=K(x, y)$ of $g(F)=2$ defined by $y^{2}=x\left(x^{4}-1\right)$. For ζ primitive 8 -th root of unity

$$
\sigma:\left\{\begin{array}{l}
x \mapsto \zeta^{2} x \\
y \mapsto \zeta y
\end{array} \quad \text { and } \quad \tau:\left\{\begin{array}{l}
x \mapsto-1 / x \\
y \mapsto y / x^{3}
\end{array} \quad \text { are in } \operatorname{Aut}(F / K) .\right.\right.
$$

- $G=\langle\sigma, \tau\rangle \leq \operatorname{Aut}(F / K)$ is a group of order 16, i.e.,

$$
|G|=16(g(F)-1) .
$$

- $F^{G}=K(t)$, where $t=\left(x^{8}+1\right) / 2 x^{4}$.
- $(t=-1),(t=1)$ and $(t=\infty)$ with ramification indices are $2,4,8$, respectively.

$$
\begin{gathered}
F=K(x, y) \\
=x\left(x^{4}-1\right) \mid \operatorname{deg}=2 \\
K(x) \\
t=\left.\frac{x^{8}+1}{2 x^{4}}\right|_{\mathrm{deg}=8} \\
K(t)
\end{gathered}
$$

For $m \geq 1$, the field F has a unique maximal unramified abelian extension F^{\prime} such that $\left[F^{\prime}: F\right]=2^{4 m}$.

For $m \geq 1$, the field F has a unique maximal unramified abelian extension F^{\prime} such that $\left[F^{\prime}: F\right]=2^{4 m}$.

- $\tilde{F}=F^{\prime}$, i.e., $F^{\prime} / K(t)$ is Galois.
- $\left[F^{\prime}: K(t)\right]=2^{4 m+4}$ and $g\left(F^{\prime}\right)=2^{4 m}+1$, i.e., $\operatorname{Gal}\left(F^{\prime} / K(t)\right)=16\left(g\left(F^{\prime}\right)-1\right)$
- $(t=-1),(t=1)$ and $(t=\infty)$ are the only ramified places of ramification indices are $2,4,8$, respectively.

Example: $r=4$

Example: $r=4$

- F is of type $(2,2,2,4)$.
- $g(F)=2^{4 m}+1$ and $|G|=|\operatorname{Gal}(F / K(w))|=2^{4 m+3}$, i.e., $\mid G) \mid=8(g(F)-1)$.

Example: $r=2$
(I) $p=5$ and $F=K(x, y)$ of genus 2 defined by $y^{5}-y=x^{2}$. Let $G=\langle\sigma\rangle$, where $\sigma(x)=-x$ and $\sigma(y)=y+1$. Then $|G|=10$ and $F^{G}=K(t)$ with $t=x^{2} .(t=0)$ and $(t=\infty)$ are the only ramified places with ramification indices 2,10 respectively. Therefore, F is of type $(2,10)$ with $|G|=10(g(F)-1)$.

Example: $r=2$
(I) $p=5$ and $F=K(x, y)$ of genus 2 defined by $y^{5}-y=x^{2}$. Let $G=\langle\sigma\rangle$, where $\sigma(x)=-x$ and $\sigma(y)=y+1$. Then $|G|=10$ and $F^{G}=K(t)$ with $t=x^{2} .(t=0)$ and $(t=\infty)$ are the only ramified places with ramification indices 2 , 10 respectively. Therefore, F is of type $(2,10)$ with $|G|=10(g(F)-1)$.
(II) $p=2$ and $F=K(x, y)$ of genus 2 defined by $y^{2}-y=x^{5}$. Let $G=\langle\sigma\rangle$, where $\sigma(x)=\zeta x$ and $\sigma(y)=y+1$, where ζ is a primitive 5 -th root of unity. Then $|G|=10$ and $F^{G}=K(t)$ with $t=x^{5}$. Similarly, $(t=0)$ and $(t=\infty)$ are the only ramified places with ramification indices 5,10 , respectively. Therefore, F is of type $(5,10)$ with $|G|=10(g(F)-1)$.

Example: $r=1$, Stichtenoth (1973)
Let $F=K(x, y)$ defined by $y^{p}+y=x^{p^{n}+1}$ where $p=\operatorname{Char}(K)$ and $n \geq 1$. Then $g(F)=\frac{p^{n}(p-1)}{2}$.

Let G be the automorphism group fixing the unique pole P of x and y.

Example: $r=1$, Stichtenoth (1973)
Let $F=K(x, y)$ defined by $y^{p}+y=x^{p^{n}+1}$ where $p=\operatorname{Char}(K)$ and $n \geq 1$. Then $g(F)=\frac{p^{n}(p-1)}{2}$.

Let G be the automorphism group fixing the unique pole P of x and y. G consists of automorphisms

$$
\sigma:\left\{\begin{array}{l}
x \mapsto x+d, \\
y \mapsto y+Q(x),
\end{array}\right.
$$

where $d \in K, \operatorname{deg} Q(x) \leq p^{n-1}$ such that
$Q(x)^{p}+Q(x)=(x+d)^{p^{n}+1}-x^{p^{n}+1}$.

Example: $r=1$, Stichtenoth (1973)
Let $F=K(x, y)$ defined by $y^{p}+y=x^{p^{n}+1}$ where $p=\operatorname{Char}(K)$ and $n \geq 1$. Then $g(F)=\frac{p^{n}(p-1)}{2}$.

Let G be the automorphism group fixing the unique pole P of x and y. G consists of automorphisms

$$
\sigma:\left\{\begin{array}{l}
x \mapsto x+d, \\
y \mapsto y+Q(x),
\end{array}\right.
$$

where $d \in K, \operatorname{deg} Q(x) \leq p^{n-1}$ such that
$Q(x)^{p}+Q(x)=(x+d)^{p^{n}+1}-x^{p^{n}+1}$.
$\Longrightarrow|G|=p^{2 n+1}$

Example: $r=1$, Stichtenoth (1973)
Let $F=K(x, y)$ defined by $y^{p}+y=x^{p^{n}+1}$ where $p=\operatorname{Char}(K)$ and $n \geq 1$. Then $g(F)=\frac{p^{n}(p-1)}{2}$.

Let G be the automorphism group fixing the unique pole P of x and y. G consists of automorphisms

$$
\sigma:\left\{\begin{array}{l}
x \mapsto x+d, \\
y \mapsto y+Q(x),
\end{array}\right.
$$

where $d \in K, \operatorname{deg} Q(x) \leq p^{n-1}$ such that
$Q(x)^{p}+Q(x)=(x+d)^{p^{n}+1}-x^{p^{n}+1}$.
$\Longrightarrow|G|=p^{2 n+1}$
$\Longrightarrow|G|=\frac{4 p}{(p-1)} g(F)^{2}$.

Example: $r=1$, Stichtenoth (1973)
Let $F=K(x, y)$ defined by $y^{p}+y=x^{p^{n}+1}$ where $p=\operatorname{Char}(K)$ and $n \geq 1$. Then $g(F)=\frac{p^{n}(p-1)}{2}$.

Let G be the automorphism group fixing the unique pole P of x and y. G consists of automorphisms

$$
\sigma:\left\{\begin{array}{l}
x \mapsto x+d, \\
y \mapsto y+Q(x),
\end{array}\right.
$$

where $d \in K, \operatorname{deg} Q(x) \leq p^{n-1}$ such that
$Q(x)^{p}+Q(x)=(x+d)^{p^{n}+1}-x^{p^{n}+1}$.
$\Longrightarrow|G|=p^{2 n+1}$
$\Longrightarrow|G|=\frac{4 p}{(p-1)} g(F)^{2}$.
OPEN PROBLEM: If $g-1$ is an integer of power 2 , then is there F / K of genus g with automorphism group of order $16(g-1)$?

We wish you healthy days!

