On Nilpotent Automorphism groups of Function fields

Nurdagül Anbar (joint work with Burçin Güneş)

Sabancı University, İstanbul

3 March 2021, Carleton Finite Fields eSeminar

Definition: An automorphism σ of F/K is a field automorphism of F such that $\sigma(\alpha) = \alpha$ for all $\alpha \in K$. The automorphism group

 $\operatorname{Aut}(F/K) = \{ \sigma \ : \ \sigma \text{ is an automorphism of } F \}$

Example: Rational Function Field, i.e., F = K(x). $\sigma : F \mapsto F$ defined by $x \mapsto \frac{ax+b}{cx+d}$ for some $a, b, c, d \in K$. σ is an automorphism of $F \iff ad - bc \neq 0$ In fact, $\operatorname{Aut}(F/K) \cong \operatorname{PGL}(2, K)$

If g(F) = 1, then $\operatorname{Cl}^0(F) \subseteq \operatorname{Aut}(F/K)$. That is, if g(F) = 0 or 1, then $\operatorname{Aut}(F/K)$ is infinite

Definition: An automorphism σ of F/K is a field automorphism of F such that $\sigma(\alpha) = \alpha$ for all $\alpha \in K$. The automorphism group

 $\operatorname{Aut}(F/K) = \{ \sigma \ : \ \sigma \text{ is an automorphism of } F \}$

Example: Rational Function Field, i.e., F = K(x). $\sigma : F \mapsto F$ defined by $x \mapsto \frac{ax+b}{cx+d}$ for some $a, b, c, d \in K$. σ is an automorphism of $F \iff ad - bc \neq 0$ In fact, $\operatorname{Aut}(F/K) \cong \operatorname{PGL}(2, K)$

If g(F) = 1, then $\operatorname{Cl}^0(F) \subseteq \operatorname{Aut}(F/K)$. That is, if g(F) = 0 or 1, then $\operatorname{Aut}(F/K)$ is infinite

Definition: An automorphism σ of F/K is a field automorphism of F such that $\sigma(\alpha) = \alpha$ for all $\alpha \in K$. The automorphism group

 $\operatorname{Aut}(F/K) = \{ \sigma : \sigma \text{ is an automorphism of } F \}$

Example: Rational Function Field, i.e., F = K(x). $\sigma: F \mapsto F$ defined by $x \mapsto \frac{ax+b}{cx+d}$ for some $a, b, c, d \in K$. σ is an automorphism of $F \iff ad - bc \neq 0$ In fact, $\operatorname{Aut}(F/K) \cong \operatorname{PGL}(2, K)$

If g(F) = 1, then $\operatorname{Cl}^0(F) \subseteq \operatorname{Aut}(F/K)$. That is, if g(F) = 0 or 1, then $\operatorname{Aut}(F/K)$ is infinite

Definition: An automorphism σ of F/K is a field automorphism of F such that $\sigma(\alpha) = \alpha$ for all $\alpha \in K$. The automorphism group

 $\operatorname{Aut}(F/K) = \{ \sigma : \sigma \text{ is an automorphism of } F \}$

Example: Rational Function Field, i.e., F = K(x). $\sigma: F \mapsto F$ defined by $x \mapsto \frac{ax+b}{cx+d}$ for some $a, b, c, d \in K$. σ is an automorphism of $F \iff ad - bc \neq 0$ In fact, $\operatorname{Aut}(F/K) \cong \operatorname{PGL}(2, K)$

If g(F) = 1, then $\operatorname{Cl}^0(F) \subseteq \operatorname{Aut}(F/K)$.

Definition: An automorphism σ of F/K is a field automorphism of F such that $\sigma(\alpha) = \alpha$ for all $\alpha \in K$. The automorphism group

 $\operatorname{Aut}(F/K) = \{ \sigma : \sigma \text{ is an automorphism of } F \}$

Example: Rational Function Field, i.e., F = K(x). $\sigma: F \mapsto F$ defined by $x \mapsto \frac{ax+b}{cx+d}$ for some $a, b, c, d \in K$. σ is an automorphism of $F \iff ad - bc \neq 0$ In fact, $\operatorname{Aut}(F/K) \cong \operatorname{PGL}(2, K)$

If g(F) = 1, then $\operatorname{Cl}^0(F) \subseteq \operatorname{Aut}(F/K)$. That is, if g(F) = 0 or 1, then $\operatorname{Aut}(F/K)$ is infinite.

If $g(F) \ge 2$, then $\operatorname{Aut}(F/K)$ is finite. (Hurwitz (1893) and Schmid (1938))

(I) (Hurwitz, 1893) If $K = \mathbb{C}$, then $|\operatorname{Aut}(F/K)| \le 84(g(F) - 1)$.

(II) (Roquette, 1970) If $p = \operatorname{Char}(K) > 0$ and $p \nmid |\operatorname{Aut}(F/K)|$, then $|\operatorname{Aut}(F/K)| \le 84(g(F) - 1)$.

(III) (Stichtenoth, 1973) If $p = \operatorname{Char}(K) > 0$ and $p \mid |\operatorname{Aut}(F/K)|$, then $|\operatorname{Aut}(F/K)| \le 16q(F)^4$

$$g(\mathcal{H}) = \frac{p^{2n} - p^n}{2}$$
 and $|\operatorname{Aut}(\mathcal{H}/K)| = p^{3n}(p^{2n} - 1)(p^{3n} + 1).$

If $g(F) \ge 2$, then Aut(F/K) is finite. (Hurwitz (1893) and Schmid (1938))

(I) (Hurwitz, 1893) If $K = \mathbb{C}$, then $|\operatorname{Aut}(F/K)| \le 84(g(F) - 1)$.

(II) (Roquette, 1970) If $p = \operatorname{Char}(K) > 0$ and $p \nmid |\operatorname{Aut}(F/K)|$, then $|\operatorname{Aut}(F/K)| \le 84(g(F) - 1)$.

(III) (Stichtenoth, 1973) If $p = \operatorname{Char}(K) > 0$ and $p \mid |\operatorname{Aut}(F/K)|$, then $|\operatorname{Aut}(F/K)| \le 16q(F)^4$

$$g(\mathcal{H}) = \frac{p^{2n} - p^n}{2}$$
 and $|\operatorname{Aut}(\mathcal{H}/K)| = p^{3n}(p^{2n} - 1)(p^{3n} + 1).$

If $g(F) \ge 2$, then Aut(F/K) is finite. (Hurwitz (1893) and Schmid (1938))

- (I) (Hurwitz, 1893) If $K = \mathbb{C}$, then $|\operatorname{Aut}(F/K)| \le 84(g(F) 1)$.
- (II) (Roquette, 1970) If p = Char(K) > 0 and $p \nmid |\text{Aut}(F/K)|$, then $|\text{Aut}(F/K)| \le 84(g(F) 1)$.

(III) (Stichtenoth, 1973) If p = Char(K) > 0 and $p \mid |\text{Aut}(F/K)|$, then $|\text{Aut}(F/K)| \le 16g(F)^4$

$$g(\mathcal{H}) = \frac{p^{2n} - p^n}{2}$$
 and $|\operatorname{Aut}(\mathcal{H}/K)| = p^{3n}(p^{2n} - 1)(p^{3n} + 1).$

If $g(F) \ge 2$, then $\operatorname{Aut}(F/K)$ is finite. (Hurwitz (1893) and Schmid (1938))

- (I) (Hurwitz, 1893) If $K = \mathbb{C}$, then $|\operatorname{Aut}(F/K)| \le 84(g(F) 1)$.
- (II) (Roquette, 1970) If p = Char(K) > 0 and $p \nmid |\text{Aut}(F/K)|$, then $|\text{Aut}(F/K)| \le 84(g(F) 1)$.

(III) (Stichtenoth, 1973) If $p = \operatorname{Char}(K) > 0$ and $p \mid |\operatorname{Aut}(F/K)|$, then

 $|\operatorname{Aut}(F/K)| \le 16g(F)^4$

$$g(\mathcal{H}) = \frac{p^{2n} - p^n}{2}$$
 and $|\operatorname{Aut}(\mathcal{H}/K)| = p^{3n}(p^{2n} - 1)(p^{3n} + 1).$

If $g(F) \ge 2$, then $\operatorname{Aut}(F/K)$ is finite. (Hurwitz (1893) and Schmid (1938))

- (I) (Hurwitz, 1893) If $K = \mathbb{C}$, then $|\operatorname{Aut}(F/K)| \le 84(g(F) 1)$.
- (II) (Roquette, 1970) If p = Char(K) > 0 and $p \nmid |\text{Aut}(F/K)|$, then $|\text{Aut}(F/K)| \le 84(g(F) 1)$.

(III) (Stichtenoth, 1973) If p = Char(K) > 0 and $p \mid |\text{Aut}(F/K)|$, then

$$|\operatorname{Aut}(F/K)| \le 16g(F)^4$$

$$g(\mathcal{H}) = \frac{p^{2n} - p^n}{2}$$
 and $|\operatorname{Aut}(\mathcal{H}/K)| = p^{3n}(p^{2n} - 1)(p^{3n} + 1).$

Let F/K be a function field of $g(F) \geq 2$ and G a subgroup of $\operatorname{Aut}(F/K).$

- (1) (Zomorrodian, 1985) If $K = \mathbb{C}$ and G is nilpotent, then $|G| \leq 16(g(F) - 1)$. Moreover, if the equality holds, then g(F) - 1 is a power of 2. Conversely, if g - 1 is a power of 2, then there exists F/K of genus
 - Conversely, if g 1 is a power of 2, then there exists F/K of genus g(F) = g with $|\operatorname{Aut}(F/K)| = 16(g 1)$.
- (II) (Nakajima, 1987) If G is abelian, then $|G| \leq 4(g(F)+1).$
- (III) (Korchmaros and Montanucci, 2020) If G has order power of a prime $\ell \geq 3$, with $\ell \neq \operatorname{Char}(K)$, then $|G| \leq 9(g(F) 1)$.

Let F/K be a function field of $g(F) \ge 2$ and G a subgroup of $\operatorname{Aut}(F/K)$.

(1) (Zomorrodian, 1985) If $K = \mathbb{C}$ and G is nilpotent, then $|G| \leq 16(g(F) - 1)$. Moreover, if the equality holds, then g(F) - 1 is a power of 2.

Conversely, if g - 1 is a power of 2, then there exists F/K of genus g(F) = g with $|\operatorname{Aut}(F/K)| = 16(g - 1)$.

- (II) (Nakajima, 1987) If G is abelian, then $|G| \le 4(g(F) + 1)$.
- (111) (Korchmaros and Montanucci, 2020) If G has order power of a prime $\ell \geq 3$, with $\ell \neq \operatorname{Char}(K)$, then $|G| \leq 9(g(F) 1)$.

Let F/K be a function field of $g(F) \ge 2$ and G a subgroup of $\operatorname{Aut}(F/K)$.

- (I) (Zomorrodian, 1985) If $K = \mathbb{C}$ and G is nilpotent, then $|G| \leq 16(g(F) - 1)$. Moreover, if the equality holds, then g(F) - 1 is a power of 2. Conversely, if g - 1 is a power of 2, then there exists F/K of genus q(F) = q with $|\operatorname{Aut}(F/K)| = 16(q - 1)$.
- (II) (Nakajima, 1987) If G is abelian, then $|G| \leq 4(g(F) + 1)$.
- (III) (Korchmaros and Montanucci, 2020) If G has order power of a prime $\ell \geq 3$, with $\ell \neq \operatorname{Char}(K)$, then $|G| \leq 9(g(F) 1)$.

SPECIAL TYPES OF GROUPS

Let F/K be a function field of $g(F) \ge 2$ and G a subgroup of $\operatorname{Aut}(F/K)$.

- (I) (Zomorrodian, 1985) If $K = \mathbb{C}$ and G is nilpotent, then $|G| \leq 16(g(F) - 1)$. Moreover, if the equality holds, then g(F) - 1 is a power of 2. Conversely, if g - 1 is a power of 2, then there exists F/K of genus g(F) = g with $|\operatorname{Aut}(F/K)| = 16(g - 1)$.
- (II) (Nakajima, 1987) If G is abelian, then $|G| \le 4(g(F) + 1)$.
- (III) (Korchmaros and Montanucci, 2020) If G has order power of a prime $\ell \geq 3$, with $\ell \neq \operatorname{Char}(K)$, then $|G| \leq 9(g(F) 1)$.

Let F/K be a function field of $g(F) \ge 2$ and G a subgroup of $\operatorname{Aut}(F/K)$.

- (I) (Zomorrodian, 1985) If $K = \mathbb{C}$ and G is nilpotent, then $|G| \leq 16(g(F) - 1)$. Moreover, if the equality holds, then g(F) - 1 is a power of 2. Conversely, if g - 1 is a power of 2, then there exists F/K of genus g(F) = g with $|\operatorname{Aut}(F/K)| = 16(g - 1)$.
- (II) (Nakajima, 1987) If G is abelian, then $|G| \le 4(g(F) + 1)$.
- (III) (Korchmaros and Montanucci, 2020) If G has order power of a prime $\ell \geq 3$, with $\ell \neq \operatorname{Char}(K)$, then $|G| \leq 9(g(F) 1)$.

Let F/K be a function field of $g(F) \ge 2$ and G a subgroup of $\operatorname{Aut}(F/K)$.

- (I) (Zomorrodian, 1985) If $K = \mathbb{C}$ and G is nilpotent, then $|G| \leq 16(g(F) - 1)$. Moreover, if the equality holds, then g(F) - 1 is a power of 2. Conversely, if g - 1 is a power of 2, then there exists F/K of genus g(F) = g with $|\operatorname{Aut}(F/K)| = 16(g - 1)$.
- (II) (Nakajima, 1987) If G is abelian, then $|G| \le 4(g(F) + 1)$.
- (III) (Korchmaros and Montanucci, 2020) If G has order power of a prime $\ell \geq 3$, with $\ell \neq \operatorname{Char}(K)$, then $|G| \leq 9(g(F) 1)$.

Theorem:(A., Güneş) Let K be an algebraically closed field of characteristic p > 0 and let F/K be a function field of genus $g \ge 2$. If G is a nilpotent subgroup of $\operatorname{Aut}(F/K)$, then

 $|G| \le 16(g-1)$

except the case that the fixed field F_0 of G is rational such that F_0 has a unique place ramified in F. Moreover, if the equality holds, then g(F) - 1 is a power of 2.

Remark: In the exceptional case, G is a p-group and the unique ramified place of F_0 is totally ramified in F. Then $|G| \leq \frac{4p}{(p-1)^2}g(F)^2$ by a result of Stichtenoth (1973).

Theorem:(A., Güneş) Let K be an algebraically closed field of characteristic p > 0 and let F/K be a function field of genus $g \ge 2$. If G is a nilpotent subgroup of $\operatorname{Aut}(F/K)$, then

 $|G| \leq 16(g-1)$

except the case that the fixed field F_0 of G is rational such that F_0 has a unique place ramified in F. Moreover, if the equality holds, then g(F) - 1 is a power of 2.

Remark: In the exceptional case, G is a p-group and the unique ramified place of F_0 is totally ramified in F. Then $|G| \leq \frac{4p}{(p-1)^2}g(F)^2$ by a result of Stichtenoth (1973).

Setting:

 $G \leq \operatorname{Aut}(F/K)$ $F^{G} := \{\beta \in F \mid \sigma(\beta) = \beta \text{ for all } \sigma \in G\} \subseteq F$ $F^{G} \text{ is a function field over } K.$ $F/F^{G} \text{ is a Galois extension of degree } |G|.$

By the Hurwitz genus formula,

 $2g(F) - 2 = |G|(2g(F^G) - 2) + \operatorname{deg}\left(\operatorname{Diff}(F/F^G)\right)$

Setting:

 $G \leq \operatorname{Aut}(F/K)$ $F^{G} := \{\beta \in F \mid \sigma(\beta) = \beta \text{ for all } \sigma \in G\} \subseteq F$ $F^{G} \text{ is a function field over } K.$ $F/F^{G} \text{ is a Galois extension of degree } |G|.$

By the Hurwitz genus formula,

 $2g(F) - 2 = |G|(2g(F^G) - 2) + \operatorname{deg}\left(\operatorname{Diff}(F/F^G)\right)$

Setting:

$$\begin{split} G &\leq \operatorname{Aut}(F/K) \\ F^G &:= \{\beta \in F \mid \sigma(\beta) = \beta \text{ for all } \sigma \in G\} \subseteq F \\ F^G \text{ is a function field over } K. \\ F/F^G \text{ is a Galois extension of degree } |G|. \end{split}$$

By the Hurwitz genus formula,

$$2g(F) - 2 = |G|(2g(F^G) - 2) + \operatorname{deg}\left(\operatorname{Diff}(F/F^G)\right)$$

Setting:

 $G \leq \operatorname{Aut}(F/K)$ $F^{G} := \{\beta \in F \mid \sigma(\beta) = \beta \text{ for all } \sigma \in G\} \subseteq F$ $F^{G} \text{ is a function field over } K.$ $F/F^{G} \text{ is a Galois extension of degree } |G|.$

By the Hurwitz genus formula,

$$2g(F) - 2 = |G|(2g(F^G) - 2) + \operatorname{deg}\left(\operatorname{Diff}(F/F^G)\right)$$

Let F/E be a Galois extension of function fields. For $Q \in \mathbb{P}_E$ and $P \in \mathbb{P}_F$ such that $P \supseteq Q$, we write P|Q and denote by e(P|Q) the ramification index of P|Q, d(P|Q) the different exponent of P|Q. $G = \operatorname{Gal}(F/E)$

(1) Let $Q \in \mathbb{P}_E$ and $\mathcal{T} = \{P \in \mathbb{P}_F : P|Q\} = \{P_1, \dots, P_r\}.$ G acts transitively on \mathcal{T} . Hence, for all $i, j \in \{1, \dots, r\}$, we have $e(P_i|Q) = e(P_j|Q) =: e(Q) \quad d(P_i|Q) = d(P_j|Q) =: d(Q)$

- (II) By the "Fundamental Equality", |G| = re(Q), i.e., $e(Q) \mid |G|$ and $r \mid |G|$.
- (III) By the Hurwitz genus formula,

$$2g(F) - 2 = |G| \left(2g(E) - 2 + \sum_{Q \in \mathbb{P}_E} \frac{d(Q)}{e(Q)} \right).$$

Let F/E be a Galois extension of function fields. For $Q \in \mathbb{P}_E$ and $P \in \mathbb{P}_F$ such that $P \supseteq Q$, we write P|Q and denote by e(P|Q) the ramification index of P|Q, d(P|Q) the different exponent of P|Q. $G = \operatorname{Gal}(F/E)$

- (1) Let $Q \in \mathbb{P}_E$ and $\mathcal{T} = \{P \in \mathbb{P}_F : P|Q\} = \{P_1, \dots, P_r\}.$ G acts transitively on \mathcal{T} . Hence, for all $i, j \in \{1, \dots, r\}$, we have $e(P_i|Q) = e(P_j|Q) =: e(Q) \quad d(P_i|Q) = d(P_j|Q) =: d(Q)$
- (11) By the "Fundamental Equality", |G| = re(Q), i.e., $e(Q) \mid |G|$ and $r \mid |G|$.

(III) By the Hurwitz genus formula,

$$2g(F) - 2 = |G| \left(2g(E) - 2 + \sum_{Q \in \mathbb{P}_E} \frac{d(Q)}{e(Q)} \right).$$

Let F/E be a Galois extension of function fields. For $Q \in \mathbb{P}_E$ and $P \in \mathbb{P}_F$ such that $P \supseteq Q$, we write P|Q and denote by e(P|Q) the ramification index of P|Q, d(P|Q) the different exponent of P|Q. $G = \operatorname{Gal}(F/E)$

- (1) Let $Q \in \mathbb{P}_E$ and $\mathcal{T} = \{P \in \mathbb{P}_F : P|Q\} = \{P_1, \dots, P_r\}.$ G acts transitively on \mathcal{T} . Hence, for all $i, j \in \{1, \dots, r\}$, we have $e(P_i|Q) = e(P_j|Q) =: e(Q) \quad d(P_i|Q) = d(P_j|Q) =: d(Q)$
- (II) By the "Fundamental Equality", |G| = re(Q), i.e., $e(Q) \mid |G|$ and $r \mid |G|$.

(III) By the Hurwitz genus formula,

$$2g(F) - 2 = |G| \left(2g(E) - 2 + \sum_{Q \in \mathbb{P}_E} \frac{d(Q)}{e(Q)} \right)$$

Let F/E be a Galois extension of function fields. For $Q \in \mathbb{P}_E$ and $P \in \mathbb{P}_F$ such that $P \supseteq Q$, we write P|Q and denote by e(P|Q) the ramification index of P|Q, d(P|Q) the different exponent of P|Q. $G = \operatorname{Gal}(F/E)$

- (1) Let $Q \in \mathbb{P}_E$ and $\mathcal{T} = \{P \in \mathbb{P}_F : P|Q\} = \{P_1, \dots, P_r\}.$ G acts transitively on \mathcal{T} . Hence, for all $i, j \in \{1, \dots, r\}$, we have $e(P_i|Q) = e(P_j|Q) =: e(Q) \quad d(P_i|Q) = d(P_j|Q) =: d(Q)$
- (II) By the "Fundamental Equality", |G| = re(Q), i.e., $e(Q) \mid |G|$ and $r \mid |G|$.
- (III) By the Hurwitz genus formula,

$$2g(F) - 2 = |G| \left(2g(E) - 2 + \sum_{Q \in \mathbb{P}_E} \frac{d(Q)}{e(Q)} \right).$$

Dedekind's Different Theorem: Let F/E be a Galois extension of function fields. For $Q \in \mathbb{P}_E$

(I)
$$d(Q) \ge e(Q) - 1$$

(II) d(Q) = e(Q) - 1 if and only if $p \nmid e(Q)$.

Definition: We say, Q is "tamely ramified" if $p \nmid e(Q)$. Otherwise, it is called "wildly ramified".

Observartion:

(I) If Q is tamely ramified then $\frac{d(Q)}{e(Q)} = \frac{e(Q)-1}{e(Q)} \ge \frac{1}{2}$.

(II) If Q is widely ramified then $\frac{d(Q)}{e(Q)} \ge 1$.

Dedekind's Different Theorem: Let F/E be a Galois extension of function fields. For $Q \in \mathbb{P}_E$

(I)
$$d(Q) \ge e(Q) - 1$$

(II)
$$d(Q) = e(Q) - 1$$
 if and only if $p \nmid e(Q)$.

Definition: We say, Q is "tamely ramified" if $p \nmid e(Q)$. Otherwise, it is called "wildly ramified".

Observartion:

(I) If Q is tamely ramified then $\frac{d(Q)}{e(Q)} = \frac{e(Q)-1}{e(Q)} \ge \frac{1}{2}$.

(II) If Q is widely ramified then $\frac{d(Q)}{e(Q)} \ge 1$.

Dedekind's Different Theorem: Let F/E be a Galois extension of function fields. For $Q \in \mathbb{P}_E$

(I)
$$d(Q) \ge e(Q) - 1$$

(II)
$$d(Q) = e(Q) - 1$$
 if and only if $p \nmid e(Q)$.

Definition: We say, Q is "tamely ramified" if $p \nmid e(Q)$. Otherwise, it is called "wildly ramified".

Observartion:

(I) If Q is tamely ramified then $\frac{d(Q)}{e(Q)} = \frac{e(Q)-1}{e(Q)} \ge \frac{1}{2}$.

(II) If Q is widely ramified then $\frac{d(Q)}{e(Q)} \ge 1$.

$$2g - 2 = |G| \left(2g_0 - 2 + \sum_{Q \in \mathbb{P}_{F_0}} \frac{d(Q)}{e(Q)} \right).$$

Simple Case $g_0 \ge 1$:

(I) $g_0 \ge 2 \Longrightarrow 2g - 2 \ge |G|(2g_0 - 2) \ge 2|G| \Longrightarrow |G| \le (g - 1)$

(II) $g_0 = 1 \Longrightarrow$ there exits a ramified place $Q \in \mathbb{P}_{F_0} \Longrightarrow 2g - 2 \ge |G| \frac{d(Q)}{e(Q)} \ge \frac{|G|}{2} \Longrightarrow |G| \le 4(g - 1)$

$$2g - 2 = |G| \left(2g_0 - 2 + \sum_{Q \in \mathbb{P}_{F_0}} \frac{d(Q)}{e(Q)} \right).$$

Simple Case $g_0 \ge 1$:

(I)
$$g_0 \ge 2 \Longrightarrow 2g - 2 \ge |G|(2g_0 - 2) \ge 2|G| \Longrightarrow |G| \le (g - 1)$$

(II) $g_0 = 1 \Longrightarrow$ there exits a ramified place $Q \in \mathbb{P}_{F_0} \Longrightarrow 2g - 2 \ge |G| \frac{d(Q)}{e(Q)} \ge \frac{|G|}{2} \Longrightarrow |G| \le 4(g - 1)$

$$2g - 2 = |G| \left(2g_0 - 2 + \sum_{Q \in \mathbb{P}_{F_0}} \frac{d(Q)}{e(Q)} \right).$$

Simple Case $g_0 \ge 1$:

(I)
$$g_0 \ge 2 \Longrightarrow 2g - 2 \ge |G|(2g_0 - 2) \ge 2|G| \Longrightarrow |G| \le (g - 1)$$

(II)
$$g_0 = 1 \Longrightarrow$$
 there exits a ramified place $Q \in \mathbb{P}_{F_0} \Longrightarrow 2g - 2 \ge |G| \frac{d(Q)}{e(Q)} \ge \frac{|G|}{2} \Longrightarrow |G| \le 4(g - 1)$

$$2g - 2 = |G| \left(2g_0 - 2 + \sum_{Q \in \mathbb{P}_{F_0}} \frac{d(Q)}{e(Q)} \right).$$

Simple Case $g_0 \ge 1$:

(I)
$$g_0 \ge 2 \Longrightarrow 2g - 2 \ge |G|(2g_0 - 2) \ge 2|G| \Longrightarrow |G| \le (g - 1)$$

(II)
$$g_0 = 1 \Longrightarrow$$
 there exits a ramified place $Q \in \mathbb{P}_{F_0} \Longrightarrow 2g - 2 \ge |G| \frac{d(Q)}{e(Q)} \ge \frac{|G|}{2} \Longrightarrow |G| \le 4(g - 1)$

We investigate $g_0 = 0$ with respect to the number of ramified places.

Definition: Let Q_1, \ldots, Q_r be all the ramified places of F_0 in F/F_0 with ramification indices e_1, \ldots, e_r , respectively. W.l.o.g., we assume that $e_1 \leq \ldots \leq e_r$. We say that F is of type (e_1, \ldots, e_r) .

Case $r \geq 5$: Set $d_i := d(Q_i)$. By the Hurwitz genus formula,

$$2g - 2 = |G| \left(-2 + \sum_{i=1}^{r} \frac{d_i}{e_i} \right) \ge |G| \left(-2 + 5 \cdot \frac{1}{2} \right) = \frac{|G|}{2},$$
$$| \le 4(g - 1).$$

Therefore, we need to investigate $1 \leq r \leq 4$. That is, we investigate function fields of type (e_1, e_2, e_3, e_4) , (e_1, e_2, e_3) , (e_1, e_2) and (e_1) .

Fact: If G is a finite nilpotent group, then G has a normal subgroup of order n for each divisor n of |G|.

We investigate $g_0 = 0$ with respect to the number of ramified places.

Definition: Let Q_1, \ldots, Q_r be all the ramified places of F_0 in F/F_0 with ramification indices e_1, \ldots, e_r , respectively. W.l.o.g., we assume that $e_1 \leq \ldots \leq e_r$. We say that F is of type (e_1, \ldots, e_r) .

Case $r \geq 5$: Set $d_i := d(Q_i)$. By the Hurwitz genus formula,

$$2g - 2 = |G| \left(-2 + \sum_{i=1}^{r} \frac{d_i}{e_i} \right) \ge |G| \left(-2 + 5 \cdot \frac{1}{2} \right) = \frac{|G|}{2},$$

$$r'| \le 4(g - 1).$$

Therefore, we need to investigate $1 \le r \le 4$. That is, we investigate function fields of type (e_1, e_2, e_3, e_4) , (e_1, e_2, e_3) , (e_1, e_2) and (e_1) .

Fact: If G is a finite nilpotent group, then G has a normal subgroup of order n for each divisor n of |G|.

We investigate $g_0 = 0$ with respect to the number of ramified places.

Definition: Let Q_1, \ldots, Q_r be all the ramified places of F_0 in F/F_0 with ramification indices e_1, \ldots, e_r , respectively. W.l.o.g., we assume that $e_1 \leq \ldots \leq e_r$. We say that F is of type (e_1, \ldots, e_r) .

Case $r \geq 5$: Set $d_i := d(Q_i)$. By the Hurwitz genus formula,

$$2g - 2 = |G| \left(-2 + \sum_{i=1}^{r} \frac{d_i}{e_i} \right) \ge |G| \left(-2 + 5 \cdot \frac{1}{2} \right) = \frac{|G|}{2},$$
 i.e., $|G| \le 4(g - 1).$

Therefore, we need to investigate $1 \le r \le 4$. That is, we investigate function fields of type (e_1, e_2, e_3, e_4) , (e_1, e_2, e_3) , (e_1, e_2) and (e_1) .

Fact: If G is a finite nilpotent group, then G has a normal subgroup of order n for each divisor n of |G|.

We investigate $g_0 = 0$ with respect to the number of ramified places.

Definition: Let Q_1, \ldots, Q_r be all the ramified places of F_0 in F/F_0 with ramification indices e_1, \ldots, e_r , respectively. W.l.o.g., we assume that $e_1 \leq \ldots \leq e_r$. We say that F is of type (e_1, \ldots, e_r) .

Case $r \geq 5$: Set $d_i := d(Q_i)$. By the Hurwitz genus formula,

$$2g - 2 = |G| \left(-2 + \sum_{i=1}^{r} \frac{d_i}{e_i} \right) \ge |G| \left(-2 + 5 \cdot \frac{1}{2} \right) = \frac{|G|}{2},$$

i.e., $|G| \le 4(g - 1).$

Therefore, we need to investigate $1 \le r \le 4$. That is, we investigate function fields of type (e_1, e_2, e_3, e_4) , (e_1, e_2, e_3) , (e_1, e_2) and (e_1) .

Fact: If G is a finite nilpotent group, then G has a normal subgroup of order n for each divisor n of |G|.

We investigate $g_0 = 0$ with respect to the number of ramified places.

Definition: Let Q_1, \ldots, Q_r be all the ramified places of F_0 in F/F_0 with ramification indices e_1, \ldots, e_r , respectively. W.l.o.g., we assume that $e_1 \leq \ldots \leq e_r$. We say that F is of type (e_1, \ldots, e_r) .

Case $r \geq 5$: Set $d_i := d(Q_i)$. By the Hurwitz genus formula,

$$2g - 2 = |G| \left(-2 + \sum_{i=1}^{r} \frac{d_i}{e_i} \right) \ge |G| \left(-2 + 5 \cdot \frac{1}{2} \right) = \frac{|G|}{2},$$
 i.e., $|G| \le 4(g - 1).$

Therefore, we need to investigate $1 \le r \le 4$. That is, we investigate function fields of type (e_1, e_2, e_3, e_4) , (e_1, e_2, e_3) , (e_1, e_2) and (e_1) .

Fact: If G is a finite nilpotent group, then G has a normal subgroup of order n for each divisor n of |G|.

THE CASE $(2, 4, e_3)$

Lemma: Let ℓ be a prime number. Then $\ell \mid |G|$ if and only if $\ell \mid e_i$ for some *i*.

 $[G:H] = \ell.$

 $\implies F^{H}/F_{0} \text{ is an unramified Galois extension of degree } \ell$ $\implies 2g(F^{H}) - 2 = -2\ell$ $\implies g(F^{H}) = -\ell + 1 < 0, \text{ a contradiction.}$ **IN FACT**, if ℓ is a prime number, which divides **exactly** one of e_{i} then $\ell = \operatorname{char}(K)$.

THE CASE $(2, 4, e_3)$

Lemma: Let ℓ be a prime number. Then $\ell \mid |G|$ if and only if $\ell \mid e_i$ for some *i*. *Proof.* Suppose that $\ell \mid |G|$ and $\ell \nmid e_i$ for any *i*. Let $H \triangleleft G$ such that

 $[G:H] = \ell.$

 $\implies F^{H}/F_{0} \text{ is an unramified Galois extension of degree } \ell$ $\implies 2g(F^{H}) - 2 = -2\ell$ $\implies g(F^{H}) = -\ell + 1 < 0, \text{ a contradiction.}$ IN FACT if ℓ is a prime number, which divides exactly of

IN FACT, if ℓ is a prime number, which divides **exactly** one of e_i , then $\ell = \operatorname{char}(K)$.

THE CASE $(2,4,e_3)$

Lemma: Let ℓ be a prime number. Then $\ell \mid |G|$ if and only if $\ell \mid e_i$ for some *i*. *Proof.* Suppose that $\ell \mid |G|$ and $\ell \nmid e_i$ for any *i*. Let $H \triangleleft G$ such that

 $[G:H] = \ell.$

$$\begin{array}{c} F \\ \\ \mathbf{deg} = |H| \\ F^{H} \\ \\ \mathbf{deg} = \ell \\ F_{0} \\ \end{array} \right) \mathbf{Galois}$$

 $\implies F^{H}/F_{0} \text{ is an unramified Galois extension of degree } \ell \\ \implies 2g(F^{H}) - 2 = -2\ell \\ \implies g(F^{H}) = -\ell + 1 < 0, \text{ a contradiction.} \\ \text{IN FACT, if } \ell \text{ is a prime number, which divides exactly one of } \ell \\ \text{then } \ell = \operatorname{char}(K). \end{cases}$

The case $(2, 4, e_3)$

Lemma: Let ℓ be a prime number. Then $\ell \mid |G|$ if and only if $\ell \mid e_i$ for some *i*. *Proof.* Suppose that $\ell \mid |G|$ and $\ell \nmid e_i$ for any *i*. Let $H \triangleleft G$ such that

 $[G:H] = \ell.$

$$\begin{array}{c} F \\ \\ \mathbf{deg} = |H| \\ F^{H} \\ \\ \mathbf{deg} = \ell \\ F_{0} \\ \end{array} \right) \mathbf{Galois}$$

 $\implies F^{H}/F_{0} \text{ is an unramified Galois extension of degree } \ell \\ \implies 2g(F^{H}) - 2 = -2\ell \\ \implies g(F^{H}) = -\ell + 1 < 0, \text{ a contradiction.} \\ \text{IN FACT, if } \ell \text{ is a prime number, which divides exactly one of } e_{i}, \\ \text{then } \ell = \text{char}(K). \end{cases}$

Lemma: Let $p = \operatorname{char}(K)$ and $|G| = p^a N$ with $a, N \ge 1$ and $\operatorname{gcd}(p, N) = 1$. Let $e(Q) = p^t n$ such that $\operatorname{gcd}(p, n) = 1$. Then $d(Q) \ge (e(Q) - 1) + n(p^t - 1)$.

Proof. Let $H \leq G$ of index p^a . Set $P' = P \cap F^H$.

$$\begin{array}{ccc} F & P \\ & \\ \deg=N & & \\ F^{H} & P' \\ & \\ \deg=p^{a} & & \\ F_{0} & Q \end{array}$$

By the transitivity of different exponent,

$$d(Q) = e_1 d_2 + d_1 \ge 2n(p^t - 1) + n - 1 = (e(Q) - 1) + n(p^t - 1)$$

The case $(2, 4, e_3)$:

(I) $\operatorname{char}(K) = 2 \Longrightarrow Q_1$ and Q_2 are wildly ramified $\Longrightarrow d_1/e_1, d_2/e_2 \ge 1$ and $d_3/e_3 \ge 1/2 \Longrightarrow |G| \le 4(g-1)$

(II) $\operatorname{char}(K) \neq 2 \Longrightarrow e_3 = 2^a \ell^b$ for a prime $\ell > 2$ and $a, b \ge 0$

- $b > 0 \Longrightarrow \ell = \operatorname{Char}(K)$ and $d_3 \ge (2^a \ell^b 1) + 2^a (\ell^b 1) \Longrightarrow |G| < 3(g-1)$
- Suppose that b = 0. Since $char(K) \neq 2$,

$$2g - 2 = |G|\left(-2 + \frac{1}{2} + \frac{3}{4} + \frac{2^a - 1}{2^a}\right) = |G|\left(\frac{1}{4} - \frac{1}{2^a}\right).$$

Then the fact that $g \ge 2$ implies that $a \ge 3$; hence, $|G| \le 16(g-1)$.

Remark:

 $|G| = 16(g-1) \iff a = 3$, i.e., F is of type (2,4,8).

The case $(2, 4, e_3)$:

(I) $\operatorname{char}(K) = 2 \Longrightarrow Q_1$ and Q_2 are wildly ramified $\Longrightarrow d_1/e_1, d_2/e_2 \ge 1$ and $d_3/e_3 \ge 1/2 \Longrightarrow |G| \le 4(g-1)$

(II) $\operatorname{char}(K) \neq 2 \Longrightarrow e_3 = 2^a \ell^b$ for a prime $\ell > 2$ and $a, b \ge 0$

- $b > 0 \Longrightarrow \ell = \operatorname{Char}(K)$ and $d_3 \ge (2^a \ell^b 1) + 2^a (\ell^b 1) \Longrightarrow |G| < 3(g 1)$
- Suppose that b = 0. Since $char(K) \neq 2$,

$$2g - 2 = |G|\left(-2 + \frac{1}{2} + \frac{3}{4} + \frac{2^a - 1}{2^a}\right) = |G|\left(\frac{1}{4} - \frac{1}{2^a}\right).$$

Then the fact that $g \ge 2$ implies that $a \ge 3$; hence, $|G| \le 16(g-1)$.

Remark:

 $|G| = 16(g-1) \iff a = 3$, i.e., F is of type (2, 4, 8).

The case $(2, 4, e_3)$:

(I) $\operatorname{char}(K) = 2 \Longrightarrow Q_1$ and Q_2 are wildly ramified $\Longrightarrow d_1/e_1, d_2/e_2 \ge 1$ and $d_3/e_3 \ge 1/2 \Longrightarrow |G| \le 4(g-1)$

(II) $\operatorname{char}(K) \neq 2 \Longrightarrow e_3 = 2^a \ell^b$ for a prime $\ell > 2$ and $a, b \ge 0$

- $b > 0 \Longrightarrow \ell = \operatorname{Char}(K)$ and $d_3 \ge (2^a \ell^b 1) + 2^a (\ell^b 1) \Longrightarrow$ |G| < 3(g - 1)
- Suppose that b = 0. Since $char(K) \neq 2$,

$$2g - 2 = |G|\left(-2 + \frac{1}{2} + \frac{3}{4} + \frac{2^a - 1}{2^a}\right) = |G|\left(\frac{1}{4} - \frac{1}{2^a}\right).$$

Then the fact that $g \ge 2$ implies that $a \ge 3$; hence, $|G| \le 16(g-1)$.

Remark:

$$|G| = 16(g-1) \iff a = 3$$
, i.e., F is of type $(2,4,8)$.

Theorem (A.-Güneş):

Let F/K be a function field of genus $g \ge 2$ and G a nilpotent subgroup of $\operatorname{Aut}(F/K)$. Suppose that $F_0 := F^G$ is rational.

- (I) If there are exactly 4 ramified places of F_0 in F/F_0 , then $|G| \leq 8(g-1)$. Moreover, the equality holds when $\operatorname{Char}(K) \neq 2$, F is of type (2, 2, 2, 4) and G is a 2-group.
- (II) If there are exactly 3 ramified places of F_0 in F/F_0 , then $|G| \leq 16(g-1)$. Moreover, the equality holds when $\operatorname{Char}(K) \neq 2$, F is of type (2, 4, 8) and G is a 2-group.
- (III) If there are exactly 2 ramified places of F_0 in F/F_0 , then $|G| \leq 10(g-1)$. Moreover, the equality holds when F is either of type (2, 10) or (5, 10) and G is cyclic of order 10.
- (IV) If there is exactly 1 ramified place of F_0 in F/F_0 , then G is a p-group and $|G| \leq \frac{4p}{(p-1)^2}g^2$, where p = Char(K).

Let $p \neq 2$ and F = K(x, y) of g(F) = 2 defined by $y^2 = x(x^4 - 1)$. For ζ primitive 8-th root of unity

$$\sigma: \begin{cases} x \mapsto \zeta^2 x & \text{and} \quad \tau: \begin{cases} x \mapsto -1/x \\ y \mapsto \zeta y & \text{are in Aut}(F/K). \end{cases}$$

• $G = \langle \sigma, \tau \rangle \leq \text{Aut}(F/K) \text{ is a group of order 16, i.e.,}$
 $|G| = 16(g(F) - 1).$
• $F^G = K(t), \text{ where } t = (x^8 + 1)/2x^4.$

• (t = -1), (t = 1) and $(t = \infty)$ with ramification indices are 2, 4, 8, respectively.

$$F = K(x, y)$$

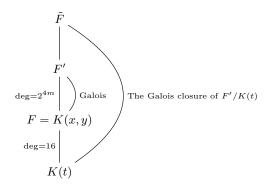
$$y^{2} = x(x^{4} - 1) \quad | \quad \deg = 2$$

$$K(x)$$

$$t = \frac{x^{8} + 1}{2x^{4}} \quad | \quad \deg = 8$$

$$K(t)$$

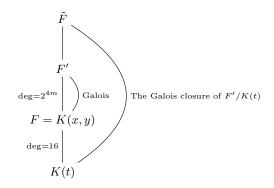
For $m \ge 1$, the field F has a unique maximal unramified abelian extension F' such that $[F':F] = 2^{4m}$.



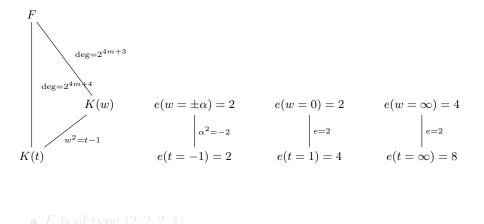
- $\tilde{F} = F'$, i.e., F'/K(t) is Galois.
- $[F': K(t)] = 2^{4m+4}$ and $g(F') = 2^{4m} + 1$, i.e., Gal(F'/K(t)) = 16(g(F') - 1)
- (t = -1), (t = 1) and $(t = \infty)$ are the only ramified places of ramification indices are 2, 4, 8, respectively.

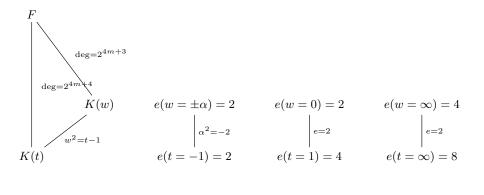
Examples

For $m \ge 1$, the field F has a unique maximal unramified abelian extension F' such that $[F':F] = 2^{4m}$.



- $\tilde{F} = F'$, i.e., F'/K(t) is Galois.
- $[F': K(t)] = 2^{4m+4}$ and $g(F') = 2^{4m} + 1$, i.e., $\operatorname{Gal}(F'/K(t)) = 16(g(F') 1)$
- (t = -1), (t = 1) and $(t = \infty)$ are the only ramified places of ramification indices are 2, 4, 8, respectively.





F is of type (2, 2, 2, 4).
g(F) = 2^{4m} + 1 and |G| = |Gal(F/K(w))| = 2^{4m+3}, i.e., |G)| = 8(g(F) − 1).

(1) p = 5 and F = K(x, y) of genus 2 defined by $y^5 - y = x^2$. Let $G = \langle \sigma \rangle$, where $\sigma(x) = -x$ and $\sigma(y) = y + 1$. Then |G| = 10 and $F^G = K(t)$ with $t = x^2$. (t = 0) and $(t = \infty)$ are the only ramified places with ramification indices 2, 10 respectively. Therefore, F is of type (2, 10) with |G| = 10(g(F) - 1).

(II) p = 2 and F = K(x, y) of genus 2 defined by y² - y = x⁵. Let G = ⟨σ⟩, where σ(x) = ζx and σ(y) = y + 1, where ζ is a primitive 5-th root of unity. Then |G| = 10 and F^G = K(t) with t = x⁵. Similarly, (t = 0) and (t = ∞) are the only ramified places with ramification indices 5, 10, respectively. Therefore, F is of type (5, 10) with |G| = 10(g(F) - 1).

- (I) p = 5 and F = K(x, y) of genus 2 defined by $y^5 y = x^2$. Let $G = \langle \sigma \rangle$, where $\sigma(x) = -x$ and $\sigma(y) = y + 1$. Then |G| = 10 and $F^G = K(t)$ with $t = x^2$. (t = 0) and $(t = \infty)$ are the only ramified places with ramification indices 2, 10 respectively. Therefore, F is of type (2, 10) with |G| = 10(g(F) 1).
- (II) p = 2 and F = K(x, y) of genus 2 defined by $y^2 y = x^5$. Let $G = \langle \sigma \rangle$, where $\sigma(x) = \zeta x$ and $\sigma(y) = y + 1$, where ζ is a primitive 5-th root of unity. Then |G| = 10 and $F^G = K(t)$ with $t = x^5$. Similarly, (t = 0) and $(t = \infty)$ are the only ramified places with ramification indices 5, 10, respectively. Therefore, F is of type (5, 10) with |G| = 10(g(F) 1).

Let G be the automorphism group fixing the unique pole P of x and y. G consists of automorphisms

$$\sigma : \begin{cases} x \mapsto x + d, \\ y \mapsto y + Q(x), \end{cases}$$

where $d \in K$, $\deg Q(x) \le p^{n-1}$ such that
 $Q(x)^p + Q(x) = (x+d)^{p^n+1} - x^{p^n+1}.$
 $\implies |G| = p^{2n+1}$

$$\implies |G| = \frac{4p}{(p-1)}g(F)^2.$$

Let G be the automorphism group fixing the unique pole P of x and y. G consists of automorphisms

$$\sigma: \begin{cases} x \mapsto x+d, \\ y \mapsto y+Q(x), \end{cases}$$

where $d \in K$, $\deg Q(x) \le p^{n-1}$ such that
 $Q(x)^p + Q(x) = (x+d)^{p^n+1} - x^{p^n+1}.$
 $\implies |G| = p^{2n+1}$
 $\implies |G| = \frac{4p}{(p-1)}g(F)^2.$

Let G be the automorphism group fixing the unique pole P of x and y. G consists of automorphisms

$$\sigma: \begin{cases} x \mapsto x + d, \\ y \mapsto y + Q(x), \end{cases}$$

where $d \in K$, $\deg Q(x) \le p^{n-1}$ such that
 $Q(x)^p + Q(x) = (x+d)^{p^n+1} - x^{p^n+1}.$
 $\implies |G| = p^{2n+1}$
 $\implies |G| = \frac{4p}{(p-1)}g(F)^2.$

Let G be the automorphism group fixing the unique pole P of x and y. G consists of automorphisms

$$\sigma: \begin{cases} x \mapsto x+d, \\ y \mapsto y+Q(x), \end{cases}$$

where $d \in K$, $\deg Q(x) \le p^{n-1}$ such that
 $Q(x)^p + Q(x) = (x+d)^{p^n+1} - x^{p^n+1}.$
 $\implies |G| = p^{2n+1}$
 $\implies |G| = \frac{4p}{(p-1)}g(F)^2.$

Let G be the automorphism group fixing the unique pole P of x and y. G consists of automorphisms

$$\sigma: \begin{cases} x \mapsto x+d, \\ y \mapsto y+Q(x), \end{cases}$$

where $d \in K$, $\deg Q(x) \le p^{n-1}$ such that
 $Q(x)^p + Q(x) = (x+d)^{p^n+1} - x^{p^n+1}.$
 $\implies |G| = p^{2n+1}$
 $\implies |G| = \frac{4p}{(p-1)}g(F)^2.$

We wish you healthy days!