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K an algebraically closed field

Char(K): the characteristic of K

F/K: a function field with constant field K
g(F): the genus of F

Pp: the set of places of F'

Definition: An automorphism o of F//K is a field automorphism of F’
such that o(a) = a for all @ € K. The automorphism group

Aut(F/K) = {0 : o is an automorphism of F'}

Example: Rational Function Field, i.e., F' = K(z).
o : F— F defined by = — ‘éfig for some a,b,c,d € K.
o is an automorphism of F' <= ad — bc # 0

In fact, Aut(F/K) = PGL(2, K)

If g(F) = 1, then CI°(F) C Aut(F/K).
That is, if g(F) = 0 or 1, then Aut(F/K) is infinite.
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KNOWN BOUNDS FOR THE CASE ¢(F') > 2

If g(F) > 2, then Aut(F'/K) is finite. (Hurwitz (1893) and Schmid
(1938))

(1) (Hurwitz, 1893) If K = C, then |Aut(F/K)| < 84(g(F) — 1).

(11) (Roquette, 1970) If p = Char(K) > 0 and p { [Aut(F/K)|, then
|Aus(F/K)| < 84(g(F) — 1).

(1) (Stichtenoth, 1973) If p = Char(K) > 0 and p | |[Aut(F/K)|, then
|Aut(F/K)| < 169(F)’
with one exception: the Hermitian function fields H defined by
Yty ="t

2n __ ,n
g(H) = Z% and  |Aut(H/K)| = p3n<p2n _ 1)(173" 1),
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SPECIAL TYPES OF GROUPS

Let F'/K be a function field of g(F) > 2 and G a subgroup of
Aut(F/K).
(1) (Zomorrodian, 1985) If K = C and G is nilpotent, then
|G| < 16(g(F) — 1). Moreover, if the equality holds, then g(F') — 1
is a power of 2.

Conversely, if g — 1 is a power of 2, then there exists F'/K of genus
g(F) = g with |Aut(F/K)| = 16(g — 1).

(1) (Nakajima, 1987) If G is abelian, then |G| < 4(g(F') + 1).
(111) (Korchmaros and Montanucci, 2020) If G has order power of a
prime ¢ > 3, with ¢ # Char(K), then |G| < 9(g(F) — 1).

Question: Is there an upper bound for |G| in terms of a linear
polynomial in g(F') when Char(K) > 0 and G is nilpotent?
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Theorem:(A., Giineg) Let K be an algebraically closed field of
characteristic p > 0 and let F//K be a function field of genus g > 2. If
G is a nilpotent subgroup of Aut(F/K), then

|G <16(9 —1)

except the case that the fixed field Fy of G is rational such that Fy has
a unique place ramified in F'. Moreover, if the equality holds, then
g(F) —11is a power of 2.

Remark: In the exceptional case, GG is a p-group and the umque
ramified place of Fj is totally ramified in F'. Then |G| <7 )2 g(F)? by

a result of Stichtenoth (1973).
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Main Tool: Galois extensions of function fields.

Setting:

G < Aut(F/K)
FC.={peF|oB)=pforallc c G} CF
F% is a function field over K.

F/F% is a Galois extension of degree |G].
By the Hurwitz genus formula,

2(F) — 2 = |G|(2g(F€) — 2) + deg (Diff (F/F))

That is, |G| is closely related to genus and the ramification.
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Let F//E be a Galois extension of function fields. For @ € Pg and
P € Pg such that P O @, we write P|@ and denote by
e(P|Q) the ramification index of P|Q),
d(P|Q) the different exponent of P|Q.
G = Gal(F/FE)
(I) Let Q € Pp and T = {PEPF : P’Q} = {PI;---7PT}-
G acts transitively on 7. Hence, for all 7,5 € {1,...,7}, we have

e(Fi|Q) = e(Pj|Q) =: ¢(Q)  d(P]Q) = d(P5|Q) =: d(Q)

(11) By the “Fundamental Equality”, |G| = re(Q), i.e., e(Q) | |G| and
r||G|.

(111) By the Hurwitz genus formula,

2(F)2G( f2+z )
QEePE
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Dedekind’s Different Theorem: Let F'/E be a Galois extension of
function fields. For Q) € Pg

(1) d(@Q) = e(Q) — 1

(11) d(Q) = e(Q) — 1 if and only if p 1 e(Q).

Definition: We say, @ is “tamely ramified” if p{ e(Q). Otherwise, it is
called “wildly ramified”.

Observartion:
(1) If @ is tamely ramified then zgg; = 6(:(222;1 >

(11) If @ is widely ramified then iggg > 1.




Preliminary Results

Recall: F/K is a function field of genus g > 2 and G < Aut(F/K)
nilpotent subgroup. Set Fy = F¢ and go = g(Fp). By the Hurwitz
genus formula,

d(Q)
29 —2 =G| | 299 — 2 E —
! 1| ! QePp, e(Q)



Preliminary Results

Recall: F/K is a function field of genus g > 2 and G < Aut(F/K)
nilpotent subgroup. Set Fy = F¢ and go = g(Fp). By the Hurwitz
genus formula,

d(Q)
29 —2 =G| | 299 — 2 E —
! 1| ! QePp, e(Q)

Simple Case gy > 1:
(1) go=22=29-22|G|(290 — 2) 2 2|G| = |G| < (9 — 1)



Preliminary Results

Recall: F/K is a function field of genus g > 2 and G < Aut(F/K)
nilpotent subgroup. Set Fy = F¢ and go = g(Fp). By the Hurwitz
genus formula,

d(Q)
20 —-2=|G| | 290 —2+ ——
QZP Q)

Simple Case gy > 1:
(1) go=22=29-22|G|(290 — 2) 2 2|G| = |G| < (9 — 1)

(11) go = 1 = there exits a ramified place Q € P, —
d G
29-22 G148 = 5 = |Gl < 49— 1)



Preliminary Results

Recall: F/K is a function field of genus g > 2 and G < Aut(F/K)
nilpotent subgroup. Set Fy = F¢ and go = g(Fp). By the Hurwitz
genus formula,

d(Q)
20 —-2=|G| | 290 —2+ ——
QZP Q)

Simple Case gy > 1:
(1) go=22=29-22|G|(290 — 2) 2 2|G| = |G| < (9 — 1)

(11) go = 1 = there exits a ramified place Q € P, —
d G
29-22 G148 = 5 = |Gl < 49— 1)

From now on, we suppose that gg = 0.
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We investigate go = 0 with respect to the number of ramified places.

Definition: Let Q1,...,Q, be all the ramified places of Fyy in F/Fj
with ramification indices ey, ..., e, respectively. W.l.o.g., we assume
that e; <...<e,. We say that F' is of type (e1,...,e).

Case r > 5: Set d; := d(Q;). By the Hurwitz genus formula,
i G
29 —2=G| (—2+2§:1 d—) > |Gl (—2+5-3) =19,

ie., |G| <4(9g—1).

Therefore, we need to investigate 1 < r < 4. That is, we investigate
function fields of type (e1,e2,e3,e4), (e1,€2,e3), (e1,e2) and (eq).

Fact: If G is a finite nilpotent group, then G has a normal subgroup of
order n for each divisor n of |G].
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Preliminary Results

THE CASE (2,4, ¢e3)

Lemma: Let ¢ be a prime number. Then ¢ | |G| if and only if £ | e; for

some 1.
Proof. Suppose that ¢ | |G| and ¢ { e; for any i. Let H < G such that
G:H| =1/

F

deg=|H]|

FH
> Galois

— FH/Fy is an unramified Galois extension of degree /

— 2g(FH) —2=—-2¢

— g(FH) = —¢+1 <0, a contradiction.

IN FACT, if £ is a prime number, which divides exactly one of e;,
then ¢ = char(K).

deg=¢(

Fo



Preliminary Results

Lemma: Let p = char(K) and |G| = p*N with a, N > 1 and
ged(p, N) = 1. Let e(Q) = p'n such that ged(p,n) = 1. Then
d(Q) = (e(Q) — 1) +n(p' — 1).

Proof. Let H < G of index p®. Set P' = PN F1.

F P

deg=N e;j=n, dj=n—1
FH P/

deg=p” ea=p’, da>2(p'—1)

Iy Q

By the transitivity of different exponent,

dQ)=eda+dy >2n(p' —1)+n—-1=(e(Q) —1) +n(p' — 1)
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The case (2,4,¢3) :

(1) char(K) =2 = @ and Q2 are wildly ramified =
dl/el,d2/€2 >1 and d3/€3 > 1/2 — |G| < 4(g— 1)

(11) char(K) # 2 = ez = 2%" for a prime £ > 2 and a,b >0

o b>0=>(=Char(K) and dg > (2%0° — 1) +29(f* — 1) =
Gl <3(g—1)

o Suppose that b = 0. Since char(K) # 2,
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Then the fact that g > 2 implies that a > 3; hence, |G| < 16(g — 1).
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The case (2,4,¢3) :

(1) char(K) =2 = @ and Q2 are wildly ramified =
dl/el,d2/€2 >1 and d3/€3 > 1/2 — |G| < 4(g— 1)

(11) char(K) # 2 = ez = 2%" for a prime £ > 2 and a,b >0

o b>0=>(=Char(K) and dg > (2%0° — 1) +29(f* — 1) =
Gl <3(g—1)

o Suppose that b = 0. Since char(K) # 2,

1 3 2¢ — 1 1 1
20 —-2=|G|| =2+ -+ - =Gl = - —].
s-2=16l( ~24 3+ 3+ T =16l(1 - 5)

Then the fact that g > 2 implies that a > 3; hence, |G| < 16(g — 1).

Remark:
|G| =16(9 — 1) <= a = 3, i.e., F is of type (2,4, 8).



The case (2,4, e3)

Theorem (A.-Giines):
Let F//K be a function field of genus g > 2 and G a nilpotent subgroup
of Aut(F/K). Suppose that F := F¢ is rational.

(1) If there are exactly 4 ramified places of Fy in F/Fj, then
|G| < 8(g — 1). Moreover, the equality holds when Char(K) # 2, F
is of type (2,2,2,4) and G is a 2-group.

(11) If there are exactly 3 ramified places of Fy in F'/Fp, then
|G| < 16(g — 1). Moreover, the equality holds when Char(K) # 2,
F is of type (2,4,8) and G is a 2-group.

(111) If there are exactly 2 ramified places of Fy in F'/Fy, then
|G| < 10(g — 1). Moreover, the equality holds when F is either of
type (2,10) or (5,10) and G is cyclic of order 10.

(1v) If there is exactly 1 ramiﬁed place of Fy in F'/Fp, then G is a

p-group and |G| < = 1)29 where p = Char(K).



Example: r =3
Let p# 2 and F = K(z,y) of g(F) = 2 defined by y? = x(z* — 1). For
¢ primitive 8-th root of unity
2, _
U:{QUHC and 7:4 ° Lz are in Aut(F/K).
Yy y = y/z®
o G={(o,7) <Aut(F/K) is a group of order 16, i.e.,
G| = 16(g(F) — 1).
o F& = K(t), where t = (2% + 1)/22%.
o (t=—1), (t=1) and (¢t = co) with ramification indices are 2, 4, 8,
respectively.

F=K(z,y)

y?=x(z*-1) | deg=2

t:18+1

o deg=8

K(t)



Examples

For m > 1, the field F has a unique maximal unramified abelian
extension F” such that [F': F] = 2%™.

F

F/
deg=24" > Galois The Galois closure of F’ /K (t)
F=K(z,y)

deg=16

K(t)



Examples

For m > 1, the field F has a unique maximal unramified abelian
extension F” such that [F': F] = 2%™.

F

F/
deg=24" > Galois The Galois closure of F’ /K (t)
F=K(z,y)

deg=16

K(t)

o F=F' ie., F'/K(t) is Galois.

o [F': K(t)] = 2%+ and g(F') = 2™ 4+ 1, i.e.,
Gal(F'/K(t)) = 16(g(F') — 1)

o (t=-1), (t=1) and (¢t = c0) are the only ramified places of
ramification indices are 2, 4, 8, respectively.
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Example: r =4

deg,‘:24mJrS

/ e(w==+a)=2 e(w=0)=2 e(w=00)=4
K(t) o e(t=-1)=2

e Fis of type (2,2,2,4).

o g(F) =2"" +1 and |G| = |Gal(F/K (w))| = 2+3 i.e
G)| =8(g(F) —1).
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(1) p=>5and F = K(z,y) of genus 2 defined by y° —y = 22. Let
G = (0), where o(z) = —z and o(y) = y + 1. Then |G| = 10 and
F% = K(t) with t = 22. (t = 0) and (¢ = o0) are the only ramified
places with ramification indices 2, 10 respectively. Therefore, F' is
of type (2,10) with |G| = 10(g(F) — 1).
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(1) p=>5and F = K(z,y) of genus 2 defined by y° —y = 22. Let
G = (0), where o(z) = —z and o(y) = y + 1. Then |G| = 10 and
F% = K(t) with t = 22. (t = 0) and (¢ = o0) are the only ramified
places with ramification indices 2, 10 respectively. Therefore, F' is
of type (2,10) with |G| = 10(g(F) — 1).

(11) p=2and F = K(x,y) of genus 2 defined by y? —y = x°. Let
G = (o), where o(z) = (x and o(y) = y + 1, where ( is a primitive
5-th root of unity. Then |G| = 10 and F = K (t) with t = 2°.
Similarly, (t = 0) and (¢t = oo) are the only ramified places with
ramification indices 5, 10, respectively. Therefore, F' is of type
(5,10) with |G| = 10(g(F) — 1).



Example: r = 1, Stichtenoth (1973)
Let F = K(z,y) defined by 3? +y = 2" ! where p = Char(K) and
n > 1. Then g(F) = w.

Let G be the automorphism group fixing the unique pole P of x and y.
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Example: r = 1, Stichtenoth (1973)
Let F = K(z,y) defined by 3? +y = 2" ! where p = Char(K) and
n > 1. Then g(F) = w.

Let G be the automorphism group fixing the unique pole P of x and y.
G consists of automorphisms

' { T x+d,

lyry+Qa),
where d € K, deg Q(x) < p"~! such that
Q(z)? + Q(x) = (z + d)P" 1 — gP"+1,

— 1G] = !

— (6] = (22 g(F)2

OPEN PROBLEM: If g —1 is an integer of power 2, then is there
F/K of genus g with automorphism group of order 16(g — 1)?



We wish you healthy days!
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