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Hypergraphs/incidence structures and configurations

A hypergraph (incidence structure) (V ,E ) consists of a finite
set V of vertices (points) and a set E of edges (blocks), each of
which is a non-empty subset of V .

A configuration (vk , b`) is a hypergraph with v vertices, each of
which belongs to k blocks, and with b blocks, each of size `.

A configuration (vk , vk) is abbreviated as (vk). It is called self-dual
if it is isomorphic to its dual (exchange roles of points and blocks,
preserve the incidence relation).
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Point labellings

We’ll be labelling points of the hypergraph as follows. Fix a
positive integer n. Each point will be labelled by a matrix
A ∈ Cn×n such that:

A2 = I

A∗ = A (A is Hermitian)

AB = BA if A,B occur as labels in the same block

The product of labels in each block is either I or −I .

Let us say that a point labelling is admissible if it satisfies all these
conditions, for each point and each block.
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Contextual hypergraph

Definition

A hypergraph is called contextual if

1 Each point belongs to an even number of blocks.

2 There exists an admissible labelling of points such that the
number of blocks whose label product is −I is odd. (We’ll call
such point labelling contextual.)

The above definition is one special way of formalizing contextuality
mathematically. There exist many other formalizations of
contextuality.

Our goal is to use finite fields and other combinatorial ingredients
to construct contextual hypergraphs.
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Hidden variable theories

In 1935, Einstein, Podolsky and Rosen hinted at the possibility of
classical descriptions of quantum mechanics in which the
randomness of quantum measurement was modelled by a hidden
probabilistic parameter. These models have become known as
hidden variable theories; they postulate that measurement
outcomes are pre-existing and that they are merely revealed by
measurements.

Einstein: “God does not play dice with the universe.”
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Contextuality

On the other hand, contextuality is a property of quantum
mechanics which means that measurement outcomes depend on
the contexts in which the measurements are performed. These
contexts are the edges of our hypergraphs, and measurements are
described by the labels on these edges. Assuming our previous
definition, a contextual hypergraph is a demonstration (also called
“parity proof”) of contextuality.

Contextuality can be also noticed in psychology and in other areas.
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A quantum computation resource

M. Howard, J. Wallman, V. Veitch, J. Emerson, Contextuality
supplies the ‘magic’ for quantum computation. Nature 510
(2014), 351–355.

There exist models of quantum computation specifically utilizing
contextuality.
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Pauli operators

Let

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
,Y =

(
0 −i
i 0

)
be the well known Pauli matrices, where i2 = −1.

Proposition

We have

1. I ,X ,Y ,Z are Hermitian,

2. X ,Y ,Z pairwise anti-commute: XY = −YX, YZ = −ZY ,
XZ = −ZX,

3. X 2 = Y 2 = Z 2 = I ,

4. XYZ = iI .
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A contextual (92, 63) configuration (Mermin 1993)

XX Y Y ZZ

XI

IX

IZ

ZI

XZ

ZX

For Pi ∈ {I ,X ,Y ,Z } the notation P1P2 · · ·Pk is a shorthand for

P1 ⊗ P2 ⊗ · · · ⊗ Pk , an operator in C2k×2k .
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A contextual (102, 54) configuration (Mermin 1993)

IIX

XXZXZXZXXZZZ

ZII

IIZ

XII

IZIIXI
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2-regular contextual hypergraphs

Theorem (Arkhipov 2013)

Let H be a proper 2-regular hypergraph. Let G be the dual graph
of H. Then H is contextual if and only if G is non-planar.

Proof uses Kuratowski’s Theorem (graph is planar iff it does not
contain K5 or K3,3 as a minor). Note that the two configurations
on the previous two slides are the duals of K3,3 and K5,
respectively.
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Pauli operators as symplectic vectors

Via the correspondence I ↔ 00, X ↔ 10, Z ↔ 01, Y ↔ 11, a
k-fold tensor product P1P2 · · ·Pk = P1 ⊗ P2 ⊗ · · · ⊗ Pk can be
represented as a 2k-dimensional binary vector.

Vice versa, let P(v) denote the Pauli operator represented by
v ∈ F2k

2 . Let

x � y =

k∑
i=1

x2i−1y2i + y2i−1x2i

be a symplectic inner product on F2k
2 . We have for all x , y ∈ F2k

2

P(x)P(y) = (−1)x�yP(y)P(x).
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Families of contextual hypergraphs

Historically, contextual hypergraphs (or other contextual
structures) have been found mostly by computer search.

While we also use computational methods to some extent, we
ultimately aim at computer-free, systematical constructions.
Specifically we focus on three families of contextual hypergraphs:

1. Hypergraphs of Kochen-Specker type

2. Coxeter configurations

3. Configurations arising from group developments
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Construction 1: Using Kochen-Specker pairs

Kochen and Specker (1965) exhibited the first contextual
structure, consisting of 117 vectors in R3. Motivated by their
work, the following structures have been studied:

Definition

We say that (V,B) is a Kochen-Specker pair in Cn if it meets the
following conditions:

(1) V is a finite set of vectors in Cn.

(2) B = (B1, . . . ,Bk) where k is odd, and for all for i = 1, . . . , k
we have that Bi is an orthogonal basis of Cn and Bi ⊂ V.

(3) For each v ∈ V the number of i such that v ∈ Bi is even.
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Kochen-Specker pairs and contextual hypergraphs

Any KS pair as defined on the previous page produces a contextual
hypergraph, as follows:

For any vector v ∈ V let Rv be the operator that represents the
reflection of Cn about the hyperplane v⊥. Let V be the vertex set
of the hypergraph and let edges of the hypergraph be the bases Bi .
Let Rv be the label of v . We can easily check that this is an
admissible vertex labelling, and in particular

∏
v∈Bi

Rv = −I for
each i . Since the number of edges is odd, we have produced a
contextual hypergraph.
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Notation

We work with the usual inner product on Cn defined by
〈x , y〉 =

∑n
i=1 xiyi . We say that a complex number z is

unimodular if |z | = 1. We say that a vector x ∈ Cn is unimodular if
each coordinate of x is unimodular.

For x , y ∈ Cn we define

x ◦ y = (x1y1, . . . , xnyn).

Note that for x , y , z ∈ Cn such that z is unimodular we have

〈z ◦ x , z ◦ y〉 = 〈x ◦ z , y ◦ z〉 =
n∑

i=1

xiziyizi = 〈x , y〉.
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Generalized Hadamard matrices

Definition

Let G be a group of order g and let λ be a positive integer. A
generalized Hadamard matrix over G is a gλ× gλ matrix
M = (mi ,j) whose entries are elements of G and for each
1 ≤ k < ` ≤ gλ, each element of G occurs exactly λ times among
the differences mk,j −m`,j , 1 ≤ j ≤ gλ. Such matrix is denoted
GH(g , λ).

Many infinite families of GH(g , λ) are known (direct constructions
and recursive constructions). Several constructions of GH matrices
use finite fields.

Letting ζg = e2π
√
−1/g and H = (hi ,j) where hi ,j = ζ

mi,j
g we get a

complex Hadamard matrix H of order gλ.
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Infinite families of KS pairs

Theorem (L. 2017)

Assume that g > 2 and λ > 0 are such that GH(g , λ) over Zg

exists and n = gλ is even. Then there exists a Kochen-Specker
pair (V,B) in Cn with |V | ≤

(n+1
2

)
and |B| = n + 1.

Applying this theorem with g = 3 and λ = 2 (hence n = 6) we get
the “simplest” KS set. (L. 2013)
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Infinite families of KS pairs (cont’d)

Proof.
Let M be the GH(g , λ) over Zg whose existence is assumed, and
let H = (hi ,j) = ζ

mi,j
g be the corresponding complex Hadamard

matrix. Let hi denote the i-th row of H. W.l.o.g. we assume
h1 = (1, 1, . . . , 1), equivalently m1 = (0, 0, . . . , 0).

Let the elements of V be denoted v {r ,s} where 1 ≤ r , s ≤ n + 1,
r 6= s. Note v {r ,s} = v {s,r } for all r 6= s.

We construct the elements of V as follows:

For 1 < s ≤ n + 1 let v {1,s} = hs−1.

For 2 < s ≤ n + 1 let v {2,s} = hs−1 ◦ hs−1.

For 2 < r < s ≤ n + 1 let v {r ,s} = hr−1 ◦ hs−1.

Petr Lisonek Contextual hypergraphs



Infinite families of KS pairs (cont’d)

For 1 ≤ r ≤ n + 1 let

Br = {v {r ,i } : 1 ≤ i ≤ n + 1, i 6= r }

and let B = (B1, . . . ,Bn+1). We will now prove that each Br is an
orthogonal basis of Cn. There are several cases to distinguish.

For 2 < r , s, t ≤ n + 1 and r , s, t distinct we have

〈v {r ,s}, v {r ,t}〉 = 〈hr−1 ◦ hs−1, hr−1 ◦ ht−1〉 = 〈hs−1, ht−1〉 = 0.
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Infinite families of KS pairs (cont’d)

Let r = 1. For 1 < s < t ≤ n + 1 we have

〈v {1,s}, v {1,t}〉 = 〈hs−1, ht−1〉 = 0.

Let r = 2. Recall that g > 2. For distinct s, t > 2 we have

〈v {2,s}, v {2,t}〉 = 〈hs−1 ◦ hs−1, ht−1 ◦ ht−1〉

=

gλ∑
i=1

ζ
2(ms−1,i−mt−1,i )
g = λ

g−1∑
i=0

ζ2ig = λ
ζ
2g
g − 1

ζ2g − 1
= 0.

Also for t > 2 we have

〈v {2,t}, v {2,1}〉 = 〈ht−1 ◦ ht−1,1〉

=

gλ∑
i=1

ζ2mt−1,i
g = 0.
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Infinite families of KS pairs (cont’d)

Now let 2 < r ≤ n + 1. For t > 2, t 6= r we have

〈v {r ,1}, v {r ,t}〉 = 〈hr−1, hr−1 ◦ ht−1〉 = 〈hr−1 ◦ h1, hr−1 ◦ ht−1〉 =
= 〈h1, ht−1〉 = 0

as well as

〈v {r ,2}, v {r ,t}〉 = 〈hr−1 ◦ hr−1, hr−1 ◦ ht−1〉
= 〈hr−1, ht−1〉 = 0.

Finally we have

〈v {r ,1}, v {r ,2}〉 = 〈hr−1, hr−1 ◦ hr−1〉
= 〈h1 ◦ hr−1, hr−1 ◦ hr−1〉 = 〈h1, hr−1〉 = 0.
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Infinite families of KS pairs (cont’d)

We note that |B| = n+ 1 is odd since n is assumed to be even. We
will complete the proof by verifying that each element of V belongs
to an even number of bases Br . If the mapping {i , j} 7→ v {i ,j} is
injective, then each v {i ,j} belongs to exactly two entries of B,
namely Bi and Bj . If the list (v {i ,j})1≤i<j≤n+1 contains repeated
vectors, then let x be a vector that occurs exactly t times in this
list. Then by the previous argument x belongs to exactly 2t entries
of B, since j 6= k implies v {i ,j} 6= v {i ,k} as 〈v {i ,j}, v {i ,k}〉 = 0.
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Construction 2: Coxeter configurations

Let q be an odd prime power. Let C be a non-degenerate quadric
(conic) in PG(2, q), the classical projective plane over Fq.

If P is a point in this plane and P is not on C , then P is called an
external (internal) point with respect to C if P belongs to two (or
none) tangent lines of C .
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Coxeter configurations

Coxeter (Proc. London Math. Soc. 1983) considers the following
configuration: The points are the

(q
2

)
internal points of C , and the

blocks are the
(q
2

)
non-secants of C (lines disjoint from C ). This is

a self-dual configuration of type
((q

2

)
q+1
2

)
. Let C (q) denote this

configuration.

Could C (q) be contextual? For which q?

Let us restrict attention to labellings by Pauli operators, which
we’ll represent by symplectic vectors as introduced above. Recall
that Pauli operators P(x) and P(y) commute iff x � y = 0.
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Gram matrices in symplectic spaces

Theorem (Godsil & Royle)

Let M be a square matrix over F2 with zero diagonal, no zero row,
and no repeated rows. Then M is a Gram matrix of a set of
vectors in 2k-dimensional symplectic space over F2 if and only if
the rank of M is at most 2k.

It is simpler to work with the Gram matrix instead of trying to find
an explicit contextual labelling!
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Gram matrices for contextual hypergraphs

As is common, call points x , y collinear if they occur together in
some block. Let L(x) be the label of vertex x in some contextual
labelling L. We know that L(x)� L(y) = 0 if x , y are collinear.

However, if x , y are not collinear, both L(x)� L(y) = 0 and
L(x)� L(y) = 1 are possible. Which one should we choose?

Denote Mx the row of M corresponding to vertex x . W.l.o.g.
assume that the labelling is done in the smallest possible
dimension, then it is not difficult to see that

∑
x∈e Mx = 0 for

each hyperedge e. Altogether, the set of matrices that can occur
as Gram matrices for a given hypergraph is a vector space over F2.

Coming back to the configurations C (q), they are not contextual
for q < 7. For C (7) only one non-trivial Gram matrix is possible, in
which L(x)� L(y) = 1 for any pair of non-collinear points x , y ; the
rank of this matrix is 8.
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Gram matrices for contextual hypergraphs

Can we determine just from the Gram matrix whether the labelling
is contextual? The last remaining issue is to find whether the
number of blocks with label products −I is odd. Equivalently we
ask if P, the product of all block products, equals −I .
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Gram matrices for contextual hypergraphs

Proposition (L., Trandafir 2020)

Fix an arbitrary ordering of all hyperedges and list them in the
form (v1, . . . , vn) where each vi is a vertex; the ordering of vertices
inside each hyperedge is also arbitrary. Impose a total order ≺ on
the set of vertices. Then M is a Gram matrix of a contextual
labelling with Pauli operators if and only if∑

i<j , vi�vj

Mi ,j = 1.

Proof sketch: We have P = L(v1) · · · L(vn). By swapping pairs of
adjacent factors in this product and keeping track whether they
commuted or not, we bring P in the form where each factor is
L(x)2 = I for some vertex x , and the formula displayed above
determines the ± sign in front of this product.
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Contextual (214) configuration

This is C (7) in the previous notation. The contextuality can be
determined already by the previous proposition. The contextual
labelling was obtained using subgraph embedding function in Sage.
This configuration was likely studied before Coxeter’s paper (Felix
Klein and others). The product of labels is −I along each block.

Petr Lisonek Contextual hypergraphs



Contextual Coxeter configurations

Conjecture

If q ≡ 7, 11 (mod 16) then C (q) admits a contextual labelling
with Pauli operators.

We verified this computationally for q ≤ 59, using the Gram matrix
M that assigns Mx ,y = 1 to any non-collinear pair x , y .

This could be a nice problem in finite geometry.
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Construction 3: Configurations arising from group
developments

Let (G ,+) be an abelian group (this can be further relaxed). Let S
be a non-empty subset of G , and denote |G | = v , |S | = s. We can
construct a (vs) configuration as follows. The points are the
elements of G . The blocks are of the form S + g where g ∈ G .
This type of construction is well known in design theory. The set S
is sometimes called the “starter.”

G is a group of automorphisms of the constructed configuration; in
particular the configuration is vertex-transitive. This is recognized
as an added value in the quantum mechanics applications.
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Configurations arising from group developments

We are currently working to classify abelian groups G that lead to
contextual configurations. Some initial computations suggest that
the elementary abelian groups Zn

3 are promising in particular. So
far we have found contextual ((3n)k) configurations for
(n, k) = (3, 4), (4, 6), (5, 6), (6, 8), among others.
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Hypergraphs that are not contextual

For some hypergraphs it is possible to prove that they are not
contextual, as follows.

The conditions for an admissible vertex labelling can be all written
in the form of a finitely presented group, and the vertex labels are
elements of this group. Let the product of all products of labels
along an edge be denoted P. We know that the labelling proves
that the hypergraph is contextual iff P = −I .
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Hypergraphs that are not contextual

The Knuth-Bendix algorithm attempts to form a confluent
rewriting system that simplifies any element of the group to its
unique canonical form. (Two elements of the group are equal if
they reduce to the same canonical form.) Since the word problem
for finitely presented groups is in general undecidable, the
Knuth-Bendix algorithm can not always succeed. If it does succeed
for the group corresponding to the given hypergraph, and if
subsequently P reduces to the canonical form I , then we know that
the hypergraph is not contextual.

In this way we have proved:

Theorem (L. 2019)

For v ≤ 18 no configuration (v4) is contextual.
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Summary

While contextuality is an intrinsic and important property of
quantum mechanics, it is possible to formulate it purely
mathematically, at various levels and in various ways.

Construction of configurations that exhibit contextuality is of
interest, to enable lab experiments and possibly provide building
blocks for quantum computing.

Discrete mathematics and specifically finite fields play an
important role in these constructions.
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