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The Discrete Logarithm Problem

I Let G be a group. Given g ∈ G and t ∈< g >, find an
integer e such that g e = t

I In cryptography, we use multiplicative groups of finite fields,
or additive groups of elliptic curves, whose discrete logarithms
are believed to be hard.

I The hardness of discrete logarithms underpins the security of
the widely adopted Diffie-Hellman key exchange protocol,
ElGamal’s cryptosystem and the Digital Signature Algorithm
(DSA signature).
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Discrete Logarithms over Finite Fields

Z/11Z: mod 11

x 1 2 3 4 5 6 7 8 9 10

2x (mod 11) 2 4 8 5 10 9 7 3 6 1

Table: Modular exponentiation

y 1 2 3 4 5 6 7 8 9 10

log2(y) (mod 11) 10 1 8 2 4 9 7 3 6 5

Table: Discrete logarithms
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One way function

I Exponentiation in Z is not interesting in crypto.

12378 = 1029434436870410865567127125612972564

6443910870799561599816131120055100063

7347694926511144654271190781700616533

7510027914949394674987333074511507739

0219524996040169

I 17301937073894724927847375917359365913591765489?

I 17301937073894724927847375917359365913591765489

(mod 902375908173587347) = 806074196719282603

I 17301937073894724927847x

(mod 902375908173587347) = 29571975618561?
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The generic algorithm

I (Trivial) Exhaustively search for e such that g e = t.

I Time comlexity O(N). Here N = | < g > |.
I (The Birthday Attack) Search for i1, j1 and i2, j2 such that

g i1t j1 = g i2t j2 .

I Time complexity O(
√

N).
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Smoothness

I An integer is B-smooth if all of its prime factors are at most
B.

I 16005182773359622211943 = 3 ∗ 73 ∗ 172 ∗ 101 ∗ 1277

I A polynomial is b-smooth if all of its irreducible factors have
degrees at most b.

I x7 + 5 ∗ x6 + 11 ∗ x5 + 5 ∗ x4 + 11 ∗ x2 + 6 ∗ x + 14 =
(x + 1) ∗ (x + 2)3 ∗ (x + 5)3 over GF (17).
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Index Calculus

I Search for many (i , j) such that (the lift of ) g i t j is smooth.

I Example:
GF (210) = GF (2)[x ]/(x10 + x6 + x5 + x3 + x2 + x + 1)

(x9 + x8 + 1)977 (= x8793 + .........)

≡ x9 + x7 + x3 + x

(mod x10 + x6 + x5 + x3 + x2 + x + 1)

= x(x + 1)4(x2 + x + 1)2

I 977 = log x + 4 log(x + 1) + 2 log(x2 + x + 1)
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Relation

I One pair gives us one relation:

g i t j =
∏

s irreducible,deg(s)≤b

ses

I i + j logg t =
∑

es logg s

I Finding logg t is reduced to solving a linear system. We also
find the logarithm of all the small prime or low degree
irreducible polynomials, which form the factor base.
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Index Calculus

I Many relations:

g i =
∏

s irreducible,deg(s)≤b

ses

I Solve the linear system

i =
∑

es logg s

to find the discrete logarithms in factor base logg s.

I One more relation to find logg t:

g i t =
∏

s irreducible,deg(s)≤b

ses

I The first two steps do not involve t.
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Logjam Attack– Even you use prime order fields ( Adrian
et al.)

I Precomputing downgrades the Diffie-Hellman protocol.

I One relation is easier to find than collecting many relations
and solving linear equations.

Relations in factor base

=⇒linear algebra

=⇒relation for t and factor base



Time Complexity

I The probability that a random polynomial of degree k (≥ b )
over a finite field Fq is b−smooth is about (k/b)−k/b.

I There are about qb/b many irreducible polynomials of degree
b.

I In F2k , take b ≈
√

k.

I Time complexity exp(Õ(
√

log N)). (compare to the generic
algorithm exp(O(log N)).)

I Number field sieve or function field sieve exp(Õ( 3
√

log N)).



Recent Works

I DL in F21971 = F13421772873 (GGMZ, Feb, 2013). Note that
73|134217727.

I exp(Õ( 4
√

log N)) for small characteristic fields (Joux, Feb,
2013).

I DL in F24080 = F2562∗255 (Joux, March, 2013).

I DL in F26120 = F16777216255 (GGMZ, April, 2013). Note that
255|16777215.

I DL in F26168 = F2563∗257 (Joux, May, 2013).



I Finding primitive elements (Huang-Narayanan, May 2013).

I The Barbulescu-Gaudry-Joux-Thome algorithm (June, 2013).

I DL in F36×509 is weak (AMOH, July, 2013).

I Traps in BGJT (C.-Wan-Zhuang, Oct, 2013).

I BGJT Version 2, AMOH Version 2 (Nov, 2013).

I DL in F36×1429 and F24×3041 are weak (AMOH, Nov, Dec,
2013).

I Discrete logarithm record in characteristic 3, GF (35×479) (a
3796-bit field) (Joux and Pierrot Sept 2014)

I Discrete Logarithms in GF (21279) (Thorsten Kleinjung Oct
2014). Note that 1279 is a prime.

I Discrete logarithms in the finite field F230750 . Robert Granger,
Thorsten Kleinjung Arjen Lenstra, Benjamin Wesolowski, Jens
Zumbragel. July 2019.



Large characteristic

I Fp where p ≈ 10180. (Cyril Bouvier, Pierrick Gaudry, Laurent
Imbert, Hamza Jeljeli and Emmanuel Thome. June 11, 2014)

I Fp2 where p2 ≈ 10160. (Razvan Barbulescu, Pierrick Gaudry,
Aurore Guillevic, Francois Morain, June 24, 2014.)

I Discrete Logarithms in GF (p) where p ≈ 2768 ≈ 10231

(Thorsten Kleinjung, Claus Diem, Arjen K. Lenstra, Christine
Priplata, Colin Stahlke, June 2016)

I Discrete logarithm computation in GF (p5) for a 20-decimal
digit prime. Laurent Gremy, Aurore Guillevic, Francois
Morain, August 2017.

I Fp6 where p6 ≈ 10423. Gary McGuire, Oisin Robinson, Jan
2020.

I Discrete Logarithms in GF (p) where p ≈ 2795 ≈ 10240. F.
Boudot and P. Gaudry and A. Guillevic and N. Heninger and
E. Thome and P. Zimmermann, June 2020.



Quasi-Polynomial Time Algorithm

I A breakthrough result by Barbulescu, Gaudry, Joux and
Thomé.

I For a finite field Fq2k with k < q, their algorithm runs in

heuristic time qO(log k). (compare with qÕ(
√
k) or qÕ( 3√k)).

I This result essentially removes the discrete logarithm over
small characteristic fields from the set of hard problems in
cryptography.



Quasi-Polynomial Time Algorithm

I A breakthrough result by Barbulescu, Gaudry, Joux and
Thomé.
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Set up

I Suppose that the discrete logarithm is sought over the field
Fq2k with k < q.

I For other small characteristic fields such as Fpk ( p < k ), one
first embeds it into a slightly larger field:

Fpk ↪→ Fqk , Fqk ↪→ Fq2k

where q = pdlogp ke. For example,

F21021 ↪→ F210×1021 , F210×1021 ↪→ F22×10×1021

I A quasi-polynomial time algorithm for Fq2k implies a
quasi-polynomial time algorithm for Fpk .



A nice model of the finite field Fq2k

I We assume that
Fq2k = Fq2 [X ]

where X q = h0(X )
h1(X ) . Here h0 and h1 are polynomials over Fq2

of degrees at most 2.

I To find such a nice ring generator X , one searches over all the
polynomials h0(x) and h1(x) of degree ≤ 2 in Fq2 [x ], until
h1(x)xq − h0(x) has an irreducible factor f (x) of degree k.
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Discrete logarithms of elements in the factor base

In the new approach, the factor base consists of the linear
polynomials X + α for all α ∈ Fq2 , and an algorithm is designed to
compute the discrete logarithms of all the elements in the factor
base.



Pinpointing

One starts the algorithm with the identity in Fq2 [x ]:∏
α∈Fq

(x − α) = xq − x .

A potential relation:∏
α∈Fq

(x − α) =
h0(x)

h1(x)
− x (mod xqh1(x)− h0(x))
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Pinpointing – More relations

Apply the Mobius transformation

x 7→ ax + b

cx + d

where the matrix m =

(
a b
c d

)
∈ F2×2

q2
is nonsingular.

We have

∏
α∈Fq

(
ax + b

cx + d
− α) = (

ax + b

cx + d
)q − ax + b

cx + d
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An equation in Fq2[x ]

Clearing the denominator:

(cx + d)
∏
α∈Fq

((ax + b)− α(cx + d))

= (ax + b)q(cx + d)− (ax + b)(cx + d)q

= (aqxq + bq)(cx + d)− (ax + b)(cqxq + dq).
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Moving to the residue class ring Fq2[x ]/(xqh1(x)− h0(x))

Multiplying both sides by h1(x) and replacing xqh1(x) by h0(x),
we obtain

h1(x)(cx + d)
∏
α∈Fq

((ax + b)− α(cx + d))

= (aqh0(x) + bqh1(x))(cx + d)− (ax + b)(cqh0(x) + dqh1(x))

(mod xqh1(x)− h0(x)).

I Matrics in each coset in PGL(2, q2)/PGL(2, q) gives the
equation.

I The right hand side has degree at most 3. If it can be
factored completely, then we have a relation!
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I One hopes to collect enough relations such that the linear
system formed by those relations is non-singular over
Z/(q2k − 1)Z. It allows us to solve log(X + αi ) for all the
α ∈ Fq2 in the factor base.



Descending

W (x) degree = w

W1,1(x) W1,2(x) W1,3(x) degree ≈ w/2

W2,1(x) W2,2(x) W2,3(x) W2,4(x) W2,5(x) degree ≈ w/4

x + α1 x + α2 x + α3 x + α4 x + α5
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Toward Provable Deterministic complexity

I For any (n, q) (n < q) of cryptographic interests, the small
degree polynomials h0(x) and h1(x) can be found easily so
that xqh1(x)− h0(x) has an irreducible factor of degree n.
However proving that they exist in general is a very hard
mathematical problem.

I One can compare it with the much weaker Hansen-Mullen
Conjecture concerning the distribution of irreducible
polynomials with some prefixed coefficients, and subsequent
work.



The Kummer extension Fq2(q−1)

I It can be modeled by Fq2 [x ]/(xq−1 − A), where A ∈ Fq2 and
xq−1 − A is irreducible over Fq2 .

I In this case, h1(x) = 1, h0(x) = Ax .

I Let < g >= Fq2



Relations without smoothness assumption

(cx + d)
∏
α∈Fq

((ax + b)− α(cx + d))

= (aqAx + bq)(cx + d)− (ax + b)(cqAx + dq)

= A(aqc − acq)x2 + ((bqc − adq)− A(bcq − aqd))x + (bqd − bdq) (mod xq − Ax). (mod xq − Ax).

What if aqc − acq = 0?



The Borel subgroup

Note that {(
a b
0 1

)
| a ∈ F∗q2 , b ∈ Fq2

}
is the Borel subgroup of PGL2(Fq2). We should only consider
PGL2(Fq)−coset representatives, which can be partitioned into
two subsets{(

a g
0 1

)
| a ∈ F∗q2

}
∪
{(

a 0
0 1

)
| a ∈ F∗q2/F

∗
q

}
.



The linear system Borel1

We obtain a linear system

∀a ∈ F∗q2 ,
∑
α∈Fq

log(X +
g − α

a
) = log(X +

gq − g

aqA− a
) (1)

of q2 − 1 equations in q2 − 1 variables, which represent log(x + h)
( h ∈ F∗q2). Here log is for the group F∗

q2(q−1)/F
∗
q2 .



The linear system Borel2

The second subset gives us a system of q + 1 equations:

∀a ∈ F∗q2/F
∗
q,
∑
α∈F∗

q

log(X +
−α
a

) = 0. (2)



Borel1 is not good enough

Theorem
The system (1) has a kernel over Q of dimension much bigger than
1. (Xiao-Zhuang-C.)



Borel1+Borel2 is not good enough

Can we avoid the problem by adding the linear equations (2)? In
the same paper we found that when q = 31, the discrete logarithm
over the subgroup of size l = 2521 can not be uniquely determined
by the linear system (1) plus (2). Furthermore, even in the case
that (1) plus (2) is sufficient, it is not efficient, since we need to
solve a linear system with O(q2) many variables, namely
log(x + α), α ∈ Fq2 .



Frobenius comes to rescue

Note that over F∗
q2(q−1)/F

∗
q2 , (X + a)q

2
= X + a

Aq+1 , thus we get

∀a ∈ F∗q2 , q2 log(X + a) = log
(

X +
a

Aq+1

)
. (3)

If we add (3), numerical data confirm that discrete logarithm can
always be found.



Define four linear transformations C , G , T and F over the C-linear
space C[x ]/(xq2−1 − 1) as:

C (xk) =
∑
α∈Fq

x
logg

(
−α·Ag

kq−gk

gq−g

)

G (xk) = xk
∑
α∈Fq

x logg (g+α)

T (xk) = xkx logg
Agk(q−1)−1

gq−g

F (xk) = q2xk−logg (Aq+1)



The Conjecture

Let l be a prime factor of q2(q−1) − 1 which is greater than q2 − 1.
Then over Fl , the vector of the discrete logarithms of the linear
polynomials is in the kernel space of C , and it is in the fixed space
of GT and F .

Conjecture

The subspace fixed by GT and F is one-dimensional.

It implies that we can find a generator of subgroup of cardinality
N, and determine the factor base discrete logarithm with respect
to that element in the subgroup. We have verified the conjecture
for all the prime power q less than 307.



Theorem
Assume that the conjecture is true. We can find a generator of the
subgroup of cardinality N of F∗

q2(q−1) , and compute the discrete
logarithms of linear factors with respect to the generator in bit
complexity O(q1+ω). Here ω ≤ 2.38 is the exponent parameter of
fast matrix multiplication over rings.



Eigenvalues of M over C

Theorem
The kernel of C is a invariant subspace of M. On that subspace,
all of the eigenvalues of M have complex norm

√
q.



Lemma
Acting on any subspace C[x ]/(xq+1 − ζ iq−1)(1 ≤ i ≤ q − 2), all of
the eigenvalues of Gi have complex norm

√
q.

Lemma
Let µ be a multiplicative character for Fq2 that is not trivial over
F∗q, we have |

∑
α∈Fq

µ(g + α)| =
√

q.



The Artin-Schreier extension

Consider K = Fp2 [x ]/(xp − x − 1), where p is an odd prime. Let
g ∈ Fp2 − Fp such that g2 ∈ Fp.

I Mobius Transformation

AX 2 + BX + C

≡ (cX + d)
∏
α∈Fp

[(a + αc)X + (b + αd)], (4)

where A = apc − acp, B = apc − acp + bpc −bcp + apd − adp

and C = apd − bcp + bpd − bdp.

I Borel relations



Frobenius relations

(X + µ1g + µ2)p
i

=

{
X + µ1g + µ2 + i , if 2 | i
X − µ1g + µ2 + i , if 2 - i

(5)



Borel+Frobenius are not enough

Theorem
(Xiao-C.)Given K = Fp2 [x ]/(xp − x − 1), the linear system
generated by the degenerated relations of Equation (4) where
aqc − acq = 0 and the Frobenius relation (5) holds a kernel of
dimension ≥ p−3

4 . That is, these relations generated by
transformations in the Borel subgroup and the Frobenius
endomorphism are not sufficient to recover the discrete logarithms
of linear factor in subgroup K ∗/F∗p2 .



Pinpointing for Artin-Schreier

For every µ ∈ Fp,

log(X + µg) + log(X − µg + 3)

=
∑

kp+1=−8µ2g2+2

log(X + 3µg + 1 + k). (6)



Conjecturally there exists an algorithm with bit complexity
Õ(p1+ω) that computes the discrete logarithms of linear factors
modulo N, and a primitive element of K ∗/F∗p2 .



Future works

I Remove the heuristics.

I Adopt the new ideas for large characteristic fields.

I And for the integer factorization problem

I Or they are not possible because problems about number fields
are inherently harder than problems about function fields?
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Future works

I Remove the heuristics.

I Adopt the new ideas for large characteristic fields.

I And for the integer factorization problem

I Or they are not possible because problems about number fields
are inherently harder than problems about function fields?



The end

Thank you! and questions?
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