Existence theorems for r-primitive elements in finite fields

Stephen D. Cohen
(joint work with Giorgos Kapetanakis)

Carleton \mathbb{F}_{q} eSeminar
7 October 2020

Outline

(1) Introduction
(2) The trace and line properties
(3) Old results, mainly on primitive elements
(4) New theorem - trace property
(5) New theorems - line property

Table of Contents

(1) Introduction

(2) The trace and line properties
(3) Old results, mainly on primitive elements

4 New theorem - trace property
(5) New theorems - line property

Primitive and r-primitive elements in \mathbb{F}_{q}

The multiplicative group of \mathbb{F}_{q} is cyclic of order $q-1$.
A primitive element of \mathbb{F}_{q} is a generator.
\mathbb{F}_{q} contains $\phi(q-1)$ primitive elements.
Suppose $r \mid q-1$.
An r-primitive element in \mathbb{F}_{q} is an element of order $(q-1) / r$.

- primitive $=1$-primitive.
- An r-primitive element of $\mathbb{F}_{q^{n}}$ is the r th power of a primitive element.
- An additive analogue of an r-primitive element is a k-normal element $(k \geq 0)$.
- The existence theorems being presented involve r-primitive elements in $\mathbb{F}_{q^{n}}, n \geq 2$, regarded as an extension of \mathbb{F}_{q}.

e-free elements of \mathbb{F}_{q}^{*}

Suppose e|q-1.
$\alpha \in \mathbb{F}_{q}$ is e-free if $\alpha \neq \beta^{d}, \beta \in \mathbb{F}_{q}, d \mid e, d>1$.
Thus a $(q-1)$-free element is the same as a primitive element.

- There are $\theta(e)(q-1)$ e-free elements in \mathbb{F}_{q}, where $\theta(e)=\phi(e) / e$.
- Replace q by q^{n} in the above for primitive and e-free elements in $\mathbb{F}_{q^{n}}$.

Another characterisation of r-free elements.
Suppose $r \mid q-1$ and let $C_{(q-1) / r}$ denote the cyclic subgroup of \mathbb{F}_{q}^{*} of order $(q-1) / r$ comprising all r th powers in \mathbb{F}_{q}^{*}.
Then $\alpha \in \mathbb{F}_{q}^{*}$ is r-primitive if
(1) $\alpha \in C_{(q-1) / r}$,
(2) α is $\frac{q-1}{r}$-free in $C_{(q-1) / r}$.

Characteristic function for e-free elements

Let $\alpha \in \mathbb{F}_{q}^{*}$. Then

$$
\lambda_{e}(\alpha):=\theta(e) \sum_{d \mid e} \frac{\mu(d)}{\phi(d)} \sum_{\left(\eta_{d}\right)} \eta_{d}(\alpha)= \begin{cases}1 & \text { if } \alpha \text { is e-free } \\ 0 & \text { otherwise }\end{cases}
$$

where $\sum_{\left(\eta_{d}\right)}$ denotes a sum over all $\phi(d)$ multiplicative characters η_{d} of \mathbb{F}_{q}^{*} of order d.

Hint. Both sides are multiplicative functions of e.

Table of Contents

(1) Introduction
(2) The trace and line properties
(3) Old results, mainly on primitive elements

4 New theorem - trace property
(5) New theorems - line property

The trace property for r-primitive elements in $\mathbb{F}_{q^{n}}$

From now on, assume $n \geq 2$.
For $\alpha \in \mathbb{F}_{q^{n}}, \operatorname{Tr}(\alpha)=\alpha+\alpha^{q}+\alpha^{q^{2}}+\cdots+\alpha^{q^{n-1}} \in \mathbb{F}_{q}$. In particular, if α is the root of an irreducible polynomial of degree n its trace is the negative of the coefficient of x^{n-1}.

- When $n=2$ there is no primitive element with trace 0 .
$\mathbb{F}_{q^{n}}$ has the trace property for r-primitive elements if for all $a \in \mathbb{F}_{q}$ (with $a \neq 0$ if $n=2$), there exists an r-primitive $\alpha \in \mathbb{F}_{q^{n}}$ with trace a.
- For fixed q and r, the trace property gets easier (less demanding) as n increases. So hardest case is $n=2$.

The line property in $\mathbb{F}_{q^{n}}, n \geq 2$

Let $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(\gamma)$ and $\beta \in \mathbb{F}_{q^{n}}^{*}$. Call a set of the form

$$
L_{\beta, \gamma}=\left\{\beta(\gamma+b): b \in \mathbb{F}_{q}\right\}
$$

the line of β and γ in $\mathbb{F}_{q^{n}}$.
$\mathbb{F}_{q^{n}}$ has the line property for r-primitive elements if every line in $\mathbb{F}_{q^{n}} / \mathbb{F}_{q}$ contains an r-primitive element.

- For a fixed prime power q and r, the line property gets harder as n increases. So easiest case is $n=2$.

The line property implies the non-zero trace property

Lemma 1

Suppose $\mathbb{F}_{q^{n}}$ has the line property for r-primitive elements. Then it has the non-zero trace property.

Easily, there exist linearly independent members $\{\alpha, \beta\}$ of $\mathbb{F}_{q^{n}}$ with $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(\alpha), \operatorname{Tr}(\alpha)=1, \operatorname{Tr}(\beta)=0$.
Given $a \in \mathbb{F}_{q}^{*}$, then on the line

$$
\left\{a \alpha+b \beta: b \in \mathbb{F}_{q}\right\}=\left\{\beta(a \alpha / \beta+b): b \in \mathbb{F}_{q}\right\}
$$

there is an r-primitive element with trace a.

Table of Contents

(1) Introduction
(2) The trace and line properties
(3) Old results, mainly on primitive elements

4 New theorem - trace property
(5) New theorems - line property

The trace property for primitive elements in $\mathbb{F}_{q^{n}}$

Theorem 1 (SDC 1990 [1], with M Pres̆ern 2005 [2])

For any $n \geq 2, \mathbb{F}_{q^{n}}$ has the trace property, except for $\mathbb{F}_{4^{3}}$.

- Theorem 1 is a complete existence theorem.
- The revised proof establishes the result theoretically, i.e., no direct verification by computation in any case is required.

The line property for primitive elements in $\mathbb{F}_{q^{2}}, \mathbb{F}_{q^{3}}$

Theorem 2 (SDC 1983 [3], 2010 [4])

Every line in $\mathbb{F}_{q^{2}}$ contains a primitive element.

- Theorem 2 is a complete existence theorem.
- The revised proof establishes the result theoretically, i.e., no direct verification by computation in any case is required.

Theorem 3 (SDC, G Bailey,N Sutherland,T Trudgian 2019 [5])

Every line in $\mathbb{F}_{q^{3}}$ contains a primitive element, except when $q=3,4,5,7,9,11,13,31,37$.

- Theorem 3 is a complete existence theorem.
- The proof involves a theoretical refinement of an incomplete one of SDC [4]; nevertheless 82 values of q between 103 and 4951 had to be verified by (extensive!) computation.

The trace property for r-primitive elements: an old result For fixed q, n both the trace and line properties get harder as r increases (because the number of r-primitive elements decreases). In particular, r cannot be too close to q^{n}.

The following is from an alternative proof of a theorem of Ozbudak [6].
Theorem 4 (SDC 2005 [7])
Suppose $r \mid q^{n}-1$ and

$$
r<\frac{q^{\frac{n-4}{3}}}{21}
$$

Then $\mathbb{F}_{q^{n}}$ has the trace property for r-primitive elements.

- The bound could easily be improved!
- Theorem 4 is vacuous unless $n \geq 5$.
- It implies $\mathbb{F}_{q^{5}}$ has the trace property for 2-primitive elements provided $q>74088$.

Table of Contents

(1) Introduction

(2) The trace and line properties
(3) Old results, mainly on primitive elements

4 New theorem - trace property
(5) New theorems - line property

Existence theorem for 2-primitive elements in $\mathbb{F}_{q^{n}}$

Necessarily, let q be odd.
Theorem 5 (SDC, GK 2020 [8])
Suppose $n \geq 2$ and q is an odd prime power. Then $\mathbb{F}_{q^{n}}$ has the trace property, except when $n=2$ and $q=3,5,7,9,11,13,31$.

Special case. $\frac{q^{n}-1}{2}$ is odd, i.e., n is odd and $q \equiv 3 \bmod 4$. Here $\alpha \in \mathbb{F}_{q^{2}}$ is 2-primitive if and only if $-\alpha$ is primitive and result follows from Theorem 1.

If $\frac{q^{n}-1}{2}$ is even then
(1) $\alpha \in \mathbb{F}_{q^{2}}$ is 2-primitive if and only if $-\alpha$ is 2-primitive,
(2) the number of 2-primitive elements in $\mathbb{F}_{q^{2}}$ is half the number of primitive elements.

Idea of proof of Theorem 5

Assume $\left(q^{n}-1\right)$ even. Given $a \in \mathbb{F}_{q}$ we want to count the number of primitive $\alpha \in \mathbb{F}_{q}$ whose square has trace a.
Define $N_{a}(e)$ to be twice the number of e-free $\alpha \in \mathbb{F}_{q^{n}}$ for which α^{2} has trace a.
We want to show $N_{a}:=N_{a}\left(q^{n}-1\right)$ is positive. simplified expressions

$$
N_{a}(e)=\frac{\theta(e)}{q} \sum_{d \mid e} \frac{\mu(d)}{\phi(d)} \sum_{\left(\eta_{d}\right)} \sum_{u \in \mathbb{F}_{q}} \psi(u a) S_{u}\left(\eta_{d}\right)
$$

where

$$
S_{u}\left(\eta_{d}\right)=\sum_{\alpha \in \mathbb{F}_{q^{n}}} \eta_{d}(\alpha) \psi\left(u \alpha^{2}\right)
$$

and ψ is the canonical additive character in $\mathbb{F}_{q^{n}}$.

Bounds for $S_{u}\left(\eta_{d}\right)$

$$
N_{a}(e)=\frac{\theta(e)}{q} \sum_{d \mid e} \frac{\mu(d)}{\phi(d)} \sum_{\left(\eta_{d}\right)} \sum_{u \in \mathbb{F}_{q}} \psi(u a) S_{u}\left(\eta_{d}\right), \quad e \mid q^{n}-1,
$$

where $S_{u}\left(\eta_{d}\right)=\sum_{\alpha \in \mathbb{F}_{q^{n}}} \eta_{d}(\alpha) \psi\left(u \alpha^{2}\right)$.
$S_{0}\left(\eta_{1}\right)=q^{n}-1 ;$
$S_{u}\left(\eta_{1}\right)=\varepsilon q^{n / 2}-1, u \neq 0, n$ even, $\varepsilon= \pm 1$;
quadratic Gauss sum
$S_{u}\left(\eta_{1}\right)$ terms cancel out, $u \neq 0, n$ odd;
$\left|S_{u}\left(\eta_{d}\right)\right| \leq 2 q^{n / 2}, d>1, u \neq 0$.

The case $a \neq 0$

$$
N_{a}(e)=\frac{\theta(e)}{q} \sum_{d \mid e} \frac{\mu(d)}{\phi(d)} \sum_{\left(\eta_{d}\right)} \sum_{u \in \mathbb{F}_{q}} \psi(u a) S_{u}\left(\eta_{d}\right)
$$

$$
\left.\frac{N_{a}(e)}{\theta(e)}-q^{n / 2-1}\left(q^{n / 2}+\varepsilon q\right)\right)=\frac{1}{2 q} \sum_{\substack{d \mid e \\ d>1}} \frac{\mu(d)}{\phi(d)} \sum_{\left(\eta_{d}\right)} s_{1}\left(\hat{\eta}_{d}\right)\left(S_{1}\left(\eta_{d}\right)+S_{c}\left(\eta_{d}\right)\right)
$$

where c is a fixed non-square in \mathbb{F}_{q} and $s_{1}\left(\hat{\eta}_{d}\right)=\sum_{u \in \mathbb{F}_{q}} \hat{\eta}_{d}(u) \psi\left(u^{2} a\right)$.
This leads to:

$$
N_{a}(e) \geq \theta(e) q^{(n-1) / 2}\left\{q^{(n-1) / 2}+\varepsilon q^{1 / 2}-4 W(e)\right\}
$$

where $\varepsilon=0, n$ odd, $W(m)=2^{\omega(m)}=$ number of squarefree divisors of m. So, for example, $N_{a}>0$ whenever $q^{(n-1) / 2}>-\varepsilon q^{1 / 2}+4 W\left(q^{n}-1\right)$.

- Method fails when $n=2$ and $\varepsilon=-1$, i.e., if $q \equiv 1 \bmod 4$.

The case $n>4, a \neq 0$

Simplifying: $N_{a}>0$ if

$$
\begin{equation*}
q^{(n-1) / 2}>4 W\left(q^{n}-1\right) \tag{1}
\end{equation*}
$$

- Using the elementary estimate $W(m)<4515 m^{1 / 8},(1)$ is satisfied if $q^{3 n / 8}>18060$.
- This fails to establish the trace property for 4222 values of q^{n}.
- With a more careful bound for $W\left(q^{n}-1\right)$, (1) holds for all but 12 values of q^{n}, including $37^{5}, 13^{6}, 3^{8}$.
- For these $12 q^{n}$, use the exact value of $W\left(q^{n}-1\right)$ to show that (1) is satisfied in every case.

The prime sieve

Let the product of the distinct primes in $q^{n}-1$ be $k p_{1} \ldots p_{s}$, where p_{1}, \ldots, p_{s} are distinct primes not dividing k (sieving primes) while k involves small primes.

The prime sieve

$$
N_{a} \geq \sum_{i=1}^{s} N_{a}\left(k p_{i}\right)-(s-1) N_{a}(k)
$$

Thus, to ensure N_{a} positive, instead of the sufficient condition $q^{(n-1) / 2}>4 W\left(q^{n}-1\right)$
we have the the condition $q^{(n-1) / 2}>4 W(k)\left(\frac{s-1}{\delta}+2\right)$
where
$\delta=1-\sum_{i=1}^{s} \frac{1}{p_{i}}$
and the sieving primes are chosen so that δ is positive.

The cases $n=4,3, a \neq 0$
$\boldsymbol{n}=4$
Use (1) to resolve the situation when $\omega\left(q^{4}-1\right) \geq 24$.
Then use the prime sieve:

- generally (without knowing the factorisation of $q^{4}-1$) - leaves 114 cases $3 \leq q \leq 4217$ undecided.
- specifically (using the factorisation) - leaves $q=3,5,7,11,13$.
$\boldsymbol{n}=\mathbf{3}$ (necessarily with $q \equiv 1 \bmod 4)$
The character sum $\left|S_{u}\left(\eta_{d}\right)\right| \leq \sqrt{2} q^{n / 2}$, on average; thus (1) is improved to

$$
q^{(n-1) / 2}>2 \sqrt{2} W\left(q^{n}-1\right)
$$

Use the prime sieve

- generally - leaves 4459 cases, $3 \leq q \leq 511033$.
- specifically - leaves $q=5,9,13,25$.

Note. For the case $a=0$ apply a modified treatment.

The case $n=2$ and completion

As noted in Lemma 1, the line property implies the non-zero trace property. So, using such theoretical means, when $n=2$, the trace property holds except possibly for 101 values of $q, 3 \leq q \leq 3541$.

More generally, after applying all theoretical means, all that are left are 118 possible exceptions with $2 \leq n \leq 6$.

By calculation (5 minutes computer time), the only q^{n} that do not have the trace property have $q=n=2$ and $q=2,3,5,7,11,13,31$ and in these cases the values of the missing trace values are exhibited.
For example, if $q=31$, there are no 2 -primitive elements with traces 0,11 , 20.

Table of Contents

(1) Introduction

(2) The trace and line properties
(3) Old results, mainly on primitive elements

4 New theorem - trace property
(5) New theorems - line property

Asymptotic existence theorem

Reminder.

Let $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(\gamma)$ and $\beta \in \mathbb{F}_{q^{n}}^{*}$.
A line is a set of the form $L_{\beta, \gamma}=\left\{\beta(\gamma+b): b \in \mathbb{F}_{q}\right\}$.
$\mathbb{F}_{q^{n}}$ has the line property if every line contains an r-primitive element.

Theorem 6 (SDC, GK 2020 [9])

Fix integers n, r. There exists $L_{r}(n)$ such that, whenever $q>L_{r}(n)$ for any prime power q (with $r \mid q^{n}-1$), then $\mathbb{F}_{q^{n}}$ has the line property for r-primitive elements.

- Proof depends on the factorisation of $q^{n}-1$ and r. Thus if $p^{a_{p}} \mid\left(q^{n}-1\right)$ and $p^{b_{p}} \mid r$ (exactly), does
(1) $a_{p}=b_{p}>0$,
(2) $a_{p}>b_{p}>0$,
(3) $a_{p}>b_{p}=0$?
- Primes of type (2) are the most awkward!
- Uses Katz' theorem [10]: $\left|\sum_{x \in \mathbb{F}_{q}} \eta(\gamma+x)\right| \leq(n-1) \sqrt{q}$.

Existence theorem for 2-primitive elements in $\mathbb{F}_{q^{2}}$

Theorem 7 (SDC, GK 2020 [11])

Suppose q is an odd prime power. Then $\mathbb{F}_{q^{2}}$ has the line property for 2-primitive elements, except when $q=3,5,7,9,11,13,31,41$.

Idea of proof

Let Q be the odd part of $q^{2}-1$.
$\alpha \in \mathbb{F}_{q^{2}}$ is 2-primitive if it is Q-free and a square but not a 4 th power.
Given a line $\left\{\beta(\gamma+b): b \in \mathbb{F}_{q}\right\} \in \mathbb{F}_{\boldsymbol{q}^{2}}$, let N be the number of 2-primitive α on the line. Then

$$
N=\frac{\theta(Q)}{4} \sum_{d \mid Q} \frac{\mu(d)}{\phi(d)} \sum_{\left(\eta_{d}\right)}\left\{T\left(\eta_{d} \eta_{1}\right)+T\left(\eta_{d} \eta_{2}\right)-T\left(\eta_{d} \eta_{4}\right)-T\left(\eta_{d} \eta_{4}^{\prime}\right)\right\}
$$

Here η_{1} is the principal character, η_{2} is the quadratic character, $\eta_{4}, \eta_{4}^{\prime}$ are the two characters of order 4 and

$$
T(\eta)=\sum_{x \in \mathbb{F}_{q}} \eta(\beta(\gamma+x))
$$

If $d>1,\left|T\left(\eta_{d} \eta_{i}\right)\right| \leq \sqrt{q}$.
elementary!
Hence N is positive if

$$
\sqrt{q}>4 W(Q)=2 W\left(q^{2}-1\right) \quad \text { (actual condition is stronger) }
$$

Numerical aspects

N is positive if

$$
\begin{equation*}
\sqrt{q}>2 W\left(q^{2}-1\right) \tag{2}
\end{equation*}
$$

- using (2) directly: succesful for $q>10^{6}$ (approx); fails for 2425 smaller prime powers q.
- using sieving version of (2) and algorithm: fails for 101 prime powers, largest being 3541.
(the same set as for Theorem 5)
- direct computer verification by computer for these 101 prime powers.
- Key feature. No need to check all lines $L_{\beta, \gamma}, \beta \neq 0 \in \mathbb{F}_{q^{2}}$: suffices to take $\beta=\alpha$ or $\zeta \alpha$, where $\alpha^{q+1}=1$ and ζ is a primitive f th root of unity, where f is the power of 2 in $q^{2}-1(q+1$ values of β in all).
- 3541 alone took 45 days of computer time.

Open questions

(1) Which cubic extensions $\mathbb{F}_{q^{3}}$ have the line property for 2-primitive elements?
(2) What extensions $\mathbb{F}_{q^{n}}$ have the trace property for 3-primitive elements?

- In particular, which quadratic extensions $\mathbb{F}_{q^{2}}$?
- Which cubic extensions $\mathbb{F}_{q^{3}}$?
(3) Which quadratic extensions have the line property for 3-primitive elements?
(9) If $q>L_{r}(n)$ then $\mathbb{F}_{q^{n}}$ has the line property for r-primitive elements. We have

$$
L_{1}(2)=1 ; \quad L_{1}(3)=37 ; \quad L_{1}(4) \leq 102829[5] ; \quad L_{2}(2)=41 .
$$

Can we add any exact values or bounds to this list?

References

[1] S. D. Cohen, Primitive elements and polynomials with arbitrary trace, Discrete Math., 83 (1990), 1-7.
[2] S. D. Cohen and M. Prešern, Primitive finite field elements with prescribed trace, Southeast Asian Bull. Math., 27 (2005), 283-300.
[3] S. D. Cohen, Primitive roots in the quadratic extension of a finite field, J. London Math. Soc. (2), 27 (1983), $221-228$.
[4] S. D. Cohen, Primitive elements on lines in extensions of finite field, Finite fields: theory and applications, Contemp. Math. 518, (2010), 113-127.
[5] G. Bailey, S. D. Cohen, N. Sutherland, T. Trudgian, Existence results for primitive elements in cubic and quartic extensions of a finite field, Math. Comp. 88, (2019), 931-947.
[6] F. Ozbudak, Elements of prescribed order, prescribed traces and systems of rational functions over finite fields, em Des. Codes Cryptogr., 34, (2005)), 331-340.
[7] S. D. Cohen, Finite field elements with specified order and traces, Des. Codes Cryptogr., 36, (2005)), 35-54.
[8] S. D. Cohen, G. Kapetanakis, The trace of 2-primitive elements of finite fields, Acata Arith., 192, (2020) $397-419$.
[9] S. D. Cohen, G. Kapetanakis, Finite field extensions with the line or translate property for r-primitive elements, J. Aust. Math. Soc., published online 2020, 7 pages.
[10] N. M. Katz An estimate for character sums, J. Amer. Math. Soc., 2, (1989), 197-200.
[11] S. D. Cohen, G. Kapetanakis, The translate and line properties for 2-primitive elements in quadratic extensions, Intern. J. Number Th., 16 (2020), 2027-2040.

