Existence theorems for *r*-primitive elements in finite fields

Stephen D. Cohen (joint work with Giorgos Kapetanakis)

Carleton \mathbb{F}_q eSeminar 7 October 2020

Carleton \mathbb{F}_q eSeminar 7 October 2020

Outline

1 Introduction

- 2 The trace and line properties
- 3 Old results, mainly on primitive elements
- 4 New theorem trace property
- 5 New theorems line property

Table of Contents

Introduction

- 2 The trace and line properties
- Old results, mainly on primitive elements
- 4 New theorem trace property
- 5 New theorems line property

→ < ∃ →</p>

Primitive and *r*-primitive elements in \mathbb{F}_q

The multiplicative group of \mathbb{F}_q is cyclic of order q-1. A *primitive element* of \mathbb{F}_q is a generator.

 \mathbb{F}_q contains $\phi(q-1)$ primitive elements.

Suppose r|q-1.

An *r*-primitive element in \mathbb{F}_q is an element of order (q-1)/r.

- primitive = 1-primitive.
- An *r*-primitive element of \mathbb{F}_{q^n} is the *r*th power of a primitive element.
- An additive analogue of an *r*-primitive element is a *k*-normal element (*k* ≥ 0).
- The existence theorems being presented involve *r*-primitive elements in 𝔽_{qⁿ}, n ≥ 2, regarded as an extension of 𝔽_q.

e-free elements of \mathbb{F}_q^*

 $\begin{array}{l} \text{Suppose } e|q-1.\\ \alpha \in \mathbb{F}_q \text{ is } e\text{-free if } \alpha \neq \beta^d, \beta \in \mathbb{F}_q, d|e,d>1. \end{array}$

Thus a (q-1)-free element is the same as a primitive element.

- There are $\theta(e)(q-1)$ *e*-free elements in \mathbb{F}_q , where $\theta(e) = \phi(e)/e$.
- Replace q by q^n in the above for primitive and e-free elements in \mathbb{F}_{q^n} .

Another characterisation of *r*-free elements.

Suppose r|q-1 and let $C_{(q-1)/r}$ denote the cyclic subgroup of \mathbb{F}_q^* of order (q-1)/r comprising all *r*th powers in \mathbb{F}_q^* . Then $\alpha \in \mathbb{F}_q^*$ is *r*-primitive if

1
$$\alpha \in C_{(q-1)/r}$$
,
2 α is $\frac{q-1}{r}$ -free in $C_{(q-1)/r}$.

Characteristic function for e-free elements

Let $\alpha \in \mathbb{F}_q^*$. Then

$$\lambda_{e}(\alpha) := \theta(e) \sum_{d|e} \frac{\mu(d)}{\phi(d)} \sum_{(\eta_{d})} \eta_{d}(\alpha) = \begin{cases} 1 & \text{if } \alpha \text{ is } e\text{-free}, \\ 0 & \text{otherwise}, \end{cases}$$

where $\sum_{(\eta_d)}$ denotes a sum over all $\phi(d)$ multiplicative characters η_d of \mathbb{F}_q^* of order d.

Hint. Both sides are multiplicative functions of *e*.

Table of Contents

Introduction

- 2 The trace and line properties
- Old results, mainly on primitive elements
- 4 New theorem trace property
- 5 New theorems line property

→ < ∃ →</p>

The trace property for *r*-primitive elements in \mathbb{F}_{q^n}

From now on, assume $n \ge 2$.

For $\alpha \in \mathbb{F}_{q^n}$, $\operatorname{Tr}(\alpha) = \alpha + \alpha^q + \alpha^{q^2} + \cdots + \alpha^{q^{n-1}} \in \mathbb{F}_q$. In particular, if α is the root of an irreducible polynomial of degree *n* its trace is the negative of the coefficient of x^{n-1} .

• When n = 2 there is no primitive element with trace 0.

 \mathbb{F}_{q^n} has the trace property for *r*-primitive elements if for all $a \in \mathbb{F}_q$ (with $a \neq 0$ if n = 2), there exists an *r*-primitive $\alpha \in \mathbb{F}_{q^n}$ with trace *a*.

• For fixed q and r, the trace property gets easier (less demanding) as n increases. So **hardest** case is n = 2.

イロト 不得 トイヨト イヨト 二日

The line property in \mathbb{F}_{q^n} , $n \geq 2$

Let $\mathbb{F}_{q^n} = \mathbb{F}_q(\gamma)$ and $\beta \in \mathbb{F}_{q^n}^*$. Call a set of the form

$$L_{\beta,\gamma} = \{\beta(\gamma + b) : b \in \mathbb{F}_q\}$$

the *line* of β and γ in \mathbb{F}_{q^n} .

 \mathbb{F}_{q^n} has the *line property for r-primitive elements* if every line in $\mathbb{F}_{q^n}/\mathbb{F}_q$ contains an *r*-primitive element.

• For a fixed prime power q and r, the line property gets harder as n increases. So **easiest** case is n = 2.

The line property implies the non-zero trace property

Lemma 1

Suppose \mathbb{F}_{q^n} has the line property for r-primitive elements. Then it has the non-zero trace property.

Easily, there exist linearly independent members $\{\alpha, \beta\}$ of \mathbb{F}_{q^n} with $\mathbb{F}_{q^n} = \mathbb{F}_q(\alpha), \operatorname{Tr}(\alpha) = 1, \operatorname{Tr}(\beta) = 0.$ Given $a \in \mathbb{F}_q^*$, then on the line

$$\{a\alpha + b\beta : b \in \mathbb{F}_q\} = \{\beta(a\alpha/\beta + b) : b \in \mathbb{F}_q\}$$

there is an *r*-primitive element with trace *a*.

Table of Contents

- 3 Old results, mainly on primitive elements

→ < ∃ →</p>

The trace property for **primitive** elements in \mathbb{F}_{q^n}

Theorem 1 (SDC 1990 [1], with M Prešern 2005 [2])

For any $n \geq 2$, \mathbb{F}_{q^n} has the trace property, except for \mathbb{F}_{4^3} .

- Theorem 1 is a **complete** existence theorem.
- The revised proof establishes the result theoretically,
 - i.e., no direct verification by computation in any case is required.

The line property for **primitive** elements in \mathbb{F}_{q^2} , \mathbb{F}_{q^3} Theorem 2 (SDC 1983 [3], 2010 [4])

Every line in \mathbb{F}_{q^2} contains a primitive element.

- Theorem 2 is a **complete** existence theorem.
- The revised proof establishes the result theoretically, i.e., no direct verification by computation in any case is required.

Theorem 3 (SDC,G Bailey,N Sutherland,T Trudgian 2019 [5])

Every line in \mathbb{F}_{q^3} contains a primitive element, except when q = 3, 4, 5, 7, 9, 11, 13, 31, 37.

- Theorem 3 is a **complete** existence theorem.
- The proof involves a theoretical refinement of an incomplete one of SDC [4]; nevertheless 82 values of q between 103 and 4951 had to be verified by (extensive!) computation.

The trace property for *r*-primitive elements: an old result

For fixed q, n both the trace and line properties get harder as r increases (because the number of r-primitive elements decreases). In particular, r cannot be too close to q^n .

The following is from an alternative proof of a theorem of Ozbudak [6].

Theorem 4 (SDC 2005 [7]) Suppose $r|q^n - 1$ and $r < \frac{q^{\frac{n-4}{3}}}{21}$.

Then \mathbb{F}_{q^n} has the trace property for r-primitive elements.

- The bound could easily be improved!
- Theorem 4 is vacuous unless $n \ge 5$.

• It implies \mathbb{F}_{q^5} has the trace property for 2-primitive elements provided q > 74088.

Table of Contents

Introduction

- 2 The trace and line properties
- 3 Old results, mainly on primitive elements
- A New theorem trace property
- 5 New theorems line property

• • = • • = •

Existence theorem for **2-primitive** elements in \mathbb{F}_{q^n}

Necessarily, let q be odd.

Theorem 5 (SDC, GK 2020 [8])

Suppose $n \ge 2$ and q is an odd prime power. Then \mathbb{F}_{q^n} has the trace property, except when n = 2 and q = 3, 5, 7, 9, 11, 13, 31.

Special case. $\frac{q^n-1}{2}$ is odd, i.e., *n* is odd and $q \equiv 3 \mod 4$. Here $\alpha \in \mathbb{F}_{q^2}$ is 2-primitive if and only if $-\alpha$ is primitive and result follows from Theorem 1.

If $\frac{q^n-1}{2}$ is even then

- $\label{eq:alpha} \mathbf{0} \ \ \alpha \in \mathbb{F}_{q^2} \ \text{is 2-primitive if and only if } -\alpha \ \text{is 2-primitive,}$
- 2 the number of 2-primitive elements in \mathbb{F}_{q^2} is half the number of primitive elements.

Idea of proof of Theorem 5

Assume $(q^n - 1)$ even. Given $a \in \mathbb{F}_q$ we want to count the number of primitive $\alpha \in \mathbb{F}_q$ whose **square** has trace *a*. Define $N_a(e)$ to be twice the number of *e*-free $\alpha \in \mathbb{F}_{q^n}$ for which α^2 has trace *a*.

We want to show $N_a := N_a(q^n - 1)$ is positive. simplified expressions

$$N_{a}(e) = rac{ heta(e)}{q} \sum_{d|e} rac{\mu(d)}{\phi(d)} \sum_{(\eta_{d})} \sum_{u \in \mathbb{F}_{q}} \psi(ua) S_{u}(\eta_{d}),$$

where

$$S_u(\eta_d) = \sum_{\alpha \in \mathbb{F}_{q^n}} \eta_d(\alpha) \psi(u\alpha^2)$$

and ψ is the canonical additive character in \mathbb{F}_{q^n} .

Bounds for $S_u(\eta_d)$

$$N_{a}(e) = rac{ heta(e)}{q} \sum_{d|e} rac{\mu(d)}{\phi(d)} \sum_{(\eta_{d})} \sum_{u \in \mathbb{F}_{q}} \psi(ua) S_{u}(\eta_{d}), \quad e|q^{n}-1,$$

where $S_u(\eta_d) = \sum_{\alpha \in \mathbb{F}_{q^n}} \eta_d(\alpha) \psi(u\alpha^2)$.

$$\begin{array}{l} S_0(\eta_1) = q^n - 1; \\ S_u(\eta_1) = \varepsilon q^{n/2} - 1, \ u \neq 0, \ n \ \text{even}, \ \varepsilon = \pm 1; \\ S_u(\eta_1) \ \text{terms cancel out}, \ u \neq 0, \ n \ \text{odd}; \\ |S_u(\eta_d)| \leq 2q^{n/2}, \ d > 1, u \neq 0. \end{array}$$

The case $a \neq 0$ $N_a(e) = \frac{\theta(e)}{q} \sum_{d|e} \frac{\mu(d)}{\phi(d)} \sum_{(\eta_d)} \sum_{u \in \mathbb{F}_q} \psi(ua) S_u(\eta_d)$

$$\frac{N_a(e)}{\theta(e)} - q^{n/2-1}(q^{n/2} + \varepsilon q)) = \frac{1}{2q} \sum_{\substack{d|e\\d>1}} \frac{\mu(d)}{\phi(d)} \sum_{(\eta_d)} s_1(\hat{\eta}_d)(S_1(\eta_d) + S_c(\eta_d)),$$

where c is a fixed non-square in \mathbb{F}_q and $s_1(\hat{\eta}_d) = \sum_{u \in \mathbb{F}_q} \hat{\eta}_d(u) \psi(u^2 a)$.

This leads to:

$$N_{a}(e) \geq \theta(e)q^{(n-1)/2} \{q^{(n-1)/2} + \varepsilon q^{1/2} - 4W(e)\},\$$

where $\varepsilon = 0$, *n* odd, $W(m) = 2^{\omega(m)} =$ number of squarefree divisors of *m*. So, for example, $N_a > 0$ whenever $q^{(n-1)/2} > -\varepsilon q^{1/2} + 4W(q^n - 1)$.

• Method fails when n = 2 and $\varepsilon = -1$, i.e., if $q \equiv 1 \mod 4$.

The case $n > 4, a \neq 0$

Simplifying: $N_a > 0$ if

$$q^{(n-1)/2} > 4W(q^n - 1).$$
 (1)

- Using the elementary estimate $W(m) < 4515m^{1/8}$, (1) is satisfied if $q^{3n/8} > 18060$.
- This fails to establish the trace property for 4222 values of q^n .
- With a more careful bound for $W(q^n 1)$, (1) holds for all but 12 values of q^n , including $37^5, 13^6, 3^8$.
- For these 12 qⁿ, use the exact value of W(qⁿ − 1) to show that (1) is satisfied in every case.

The prime sieve

Let the product of the distinct primes in $q^n - 1$ be $kp_1 \dots p_s$, where p_1, \dots, p_s are distinct primes not dividing k (sieving primes) while k involves small primes.

The prime sieve

$$N_a \geq \sum_{i=1}^s N_a(kp_i) - (s-1)N_a(k).$$

Thus, to ensure N_a positive, instead of the sufficient condition $q^{(n-1)/2} > 4W(q^n - 1)$ we have the the condition $q^{(n-1)/2} > 4W(k) \left(\frac{s-1}{\delta} + 2\right)$ where $\delta = 1 - \sum_{i=1}^{s} \frac{1}{p_i}$

and the sieving primes are chosen so that δ is positive.

The cases $n = 4, 3, a \neq 0$

n = 4

Use (1) to resolve the situation when $\omega(q^4-1)\geq 24$.

Then use the prime sieve:

- generally (without knowing the factorisation of q⁴ − 1) − leaves 114 cases 3 ≤ q ≤ 4217 undecided.
- specifically (using the factorisation) leaves q = 3, 5, 7, 11, 13.

n = 3 (necessarily with $q \equiv 1 \mod 4$) The character sum $|S_u(\eta_d)| \le \sqrt{2}q^{n/2}$, on average; thus (1) is improved to

$$q^{(n-1)/2} > 2\sqrt{2}W(q^n-1).$$

Use the prime sieve

- generally leaves 4459 cases, $3 \le q \le 511033$.
- specifically leaves q = 5, 9, 13, 25.

Note. For the case a = 0 apply a modified treatment.

The case n = 2 and completion

As noted in Lemma 1, the line property implies the non-zero trace property. So, using such theoretical means, when n = 2, the trace property holds except possibly for 101 values of q, $3 \le q \le 3541$. see later

More generally, after applying all theoretical means, all that are left are 118 possible exceptions with $2 \le n \le 6$.

By calculation (5 minutes computer time), the only q^n that do not have the trace property have q = n = 2 and q = 2, 3, 5, 7, 11, 13, 31 and in these cases the values of the missing trace values are exhibited.

For example, if q = 31, there are no 2-primitive elements with traces 0, 11, 20.

Table of Contents

- 2 The trace and line properties
- 3 Old results, mainly on primitive elements
- 5 New theorems line property

→ < ∃ →</p>

Asymptotic existence theorem

Reminder.

Let $\mathbb{F}_{q^n} = \mathbb{F}_q(\gamma)$ and $\beta \in \mathbb{F}_{q^n}^*$. A line is a set of the form $L_{\beta,\gamma} = \{\beta(\gamma + b) : b \in \mathbb{F}_q\}$.

 \mathbb{F}_{q^n} has the line property if every line contains an *r*-primitive element.

Theorem 6 (SDC, GK 2020 [9])

Fix integers n, r. There exists $L_r(n)$ such that, whenever $q > L_r(n)$ for any prime power q (with $r|q^n - 1$), then \mathbb{F}_{q^n} has the line property for r-primitive elements.

Proof depends on the factorisation of qⁿ - 1 and r. Thus if p^{a_p} | (qⁿ - 1) and p^{b_p} | r (exactly), does
a_p = b_p > 0,
a_p > b_p > 0,
a_p > b_p > 0,
a_p > b_p = 0?

• Primes of type (2) are the most awkward!

• Uses Katz' theorem [10]: $|\sum_{x \in \mathbb{F}_q} \eta(\gamma + x)| \leq (n-1)\sqrt{q}$.

Existence theorem for **2-primitive** elements in \mathbb{F}_{q^2}

Theorem 7 (SDC, GK 2020 [11])

Suppose q is an odd prime power. Then \mathbb{F}_{q^2} has the line property for 2-primitive elements, except when q = 3, 5, 7, 9, 11, 13, 31, 41.

Idea of proof

Let Q be the odd part of $q^2 - 1$.

 $\alpha \in \mathbb{F}_{q^2}$ is 2-primitive if it is *Q*-free and a square but not a 4th power.

Given a line $\{\beta(\gamma + b) : b \in \mathbb{F}_q\} \in \mathbb{F}_{q^2}$, let N be the number of 2-primitive α on the line. Then

$$N = \frac{\theta(Q)}{4} \sum_{d|Q} \frac{\mu(d)}{\phi(d)} \sum_{(\eta_d)} \{ T(\eta_d \eta_1) + T(\eta_d \eta_2) - T(\eta_d \eta_4) - T(\eta_d \eta_4') \}.$$

Here η_1 is the principal character, η_2 is the quadratic character, η_4, η_4' are the two characters of order 4 and

$$T(\eta) = \sum_{x \in \mathbb{F}_q} \eta(\beta(\gamma + x))$$

If d > 1, $|T(\eta_d \eta_i)| \le \sqrt{q}$. elementary!

Hence N is positive if

$$\sqrt{q} > 4W(Q) = 2W(q^2 - 1)$$

(actual condition is stronger)

Numerical aspects

N is positive if
$$\sqrt{q} > 2W(q^2 - 1)$$
 (2)

- using (2) directly: succesful for q > 10⁶ (approx); fails for 2425 smaller prime powers q.
- using sieving version of (2) and algorithm: fails for 101 prime powers, largest being 3541. (the same set as for Theorem 5)

• direct computer verification by computer for these 101 prime powers.

- Key feature. No need to check all lines $L_{\beta,\gamma}, \beta \neq 0 \in \mathbb{F}_{q^2}$: suffices to take $\beta = \alpha$ or $\zeta \alpha$, where $\alpha^{q+1} = 1$ and ζ is a primitive *f*th root of unity, where *f* is the power of 2 in $q^2 - 1$ (q + 1 values of β in all).
- 3541 alone took 45 days of computer time.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Open questions

- Which cubic extensions \mathbb{F}_{q^3} have the line property for 2-primitive elements?
- 2 What extensions \mathbb{F}_{q^n} have the trace property for 3-primitive elements?
 - In particular, which quadratic extensions \mathbb{F}_{q^2} ?
 - Which cubic extensions \mathbb{F}_{q^3} ?
- Which quadratic extensions have the line property for 3-primitive elements?
- If q > L_r(n) then 𝔽_{qⁿ} has the line property for r-primitive elements.
 We have

$$L_1(2) = 1;$$
 $L_1(3) = 37;$ $L_1(4) \le 102829[5];$ $L_2(2) = 41.$

Can we add any exact values or bounds to this list?

イロト 不得 トイヨト イヨト 二日

References

- [1] S. D. Cohen, Primitive elements and polynomials with arbitrary trace, Discrete Math., 83 (1990), 1-7.
- S. D. Cohen and M. Prešern, Primitive finite field elements with prescribed trace, Southeast Asian Bull. Math., 27 (2005), 283–300.
- [3] S. D. Cohen, Primitive roots in the quadratic extension of a finite field, J. London Math. Soc. (2), 27 (1983), 221–228.
- S. D. Cohen, Primitive elements on lines in extensions of finite field, Finite fields: theory and applications, Contemp. Math. 518, (2010), 113–127.
- [5] G. Bailey, S. D. Cohen, N. Sutherland, T. Trudgian, Existence results for primitive elements in cubic and quartic extensions of a finite field, *Math. Comp.* 88, (2019), 931–947.
- [6] F. Ozbudak, Elements of prescribed order, prescribed traces and systems of rational functions over finite fields, em Des. Codes Cryptogr., 34, (2005)), 331–340.
- [7] S. D. Cohen, Finite field elements with specified order and traces, Des. Codes Cryptogr., 36, (2005)), 35-54.
- [8] S. D. Cohen, G. Kapetanakis, The trace of 2-primitive elements of finite fields, Acata Arith., 192, (2020) 397-419.
- S. D. Cohen, G. Kapetanakis, Finite field extensions with the line or translate property for r-primitive elements, J. Aust. Math. Soc., published online 2020, 7 pages.
- [10] N. M. Katz An estimate for character sums, J. Amer. Math. Soc., 2, (1989), 197–200.
- [11] S. D. Cohen, G. Kapetanakis, The translate and line properties for 2-primitive elements in quadratic extensions, Intern. J. Number Th., 16 (2020), 2027–2040.

(日)