Intersection Distribution and Its Application

Shuxing Li

Simon Fraser University

Joint work with Gohar Kyureghyan and Alexander Pott

Supported by PIMS Postdoctoral Fellowship

Carleton Finite Fields eSeminar August 26 2020

-∢ ∃ ▶

- ∢ ∃ ▶

э

Outline

- Point sets in projective planes and polynomials over finite fields
- Oval polynomials and intersection distributions
- Intersection distribution of degree three polynomials
- Monomials with the same intersection distribution as x^3
- Application to Steiner triple systems

Fano plane: $7 = 2^2 + 2 + 1$ points and $7 = 2^2 + 2 + 1$ lines.

- (1) Every line has 3 = 2 + 1 points.
- (2) Every two points are on one unique line.
- (3) Every two lines intersect in exactly one point.

Projective plane of order 2: PP(2).

 $2 \rightarrow \text{prime power } q$: projective plane of order q, PP(q).

Image: Image:

When q is a prime power, PP(q) can be derived from finite field \mathbb{F}_q .

affine part: (*, *, 1). Exactly \mathbb{F}_2^2 in the above. line at the infinity: (*, *, 0).

< A

- E > - E >

(q + 1)-set in PP(q) which has nice combinatorial characterization.

Characterization of an oval: a (q + 1)-set meeting all lines of PP(q) in either 0 or 1 or 2 points.

$$S_f = \underbrace{\{\langle (x, f(x), 1) \rangle \mid x \in \mathbb{F}_2\}}_{\text{affine part}} \cup \underbrace{\{\langle (0, 1, 0) \rangle\}}_{\text{on infinite line}}, \text{ where } f(x) = x^2.$$

Remark

Under a mild assumption, every (q + 1)-set in PP(q) can be described as S_f for some polynomial f.

Outline

- Point sets in projective planes and polynomials over finite fields
- Oval polynomials and intersection distributions
- Intersection distribution of degree three polynomials
- Monomials with the same intersection distribution as x^3
- Application to Steiner triple systems

An oval is a (q + 1)-set meeting all lines of PP(q) in either 0 or 1 or 2 points.

Question

For which polynomial $f \in \mathbb{F}_q[x]$, the set

$$S_f = \{\langle (x, f(x), 1) \rangle \mid x \in \mathbb{F}_q \} \cup \{\langle (0, 1, 0) \rangle \}$$

is an oval?

3

ヨト イヨト

An oval is a (q + 1)-set meeting all lines of PP(q) in either 0 or 1 or 2 points.

Recall that S_f is an oval in PP(2) with $f(x) = x^2$. Note that $x^2 - bx - c = 0$ has at most two \mathbb{F}_2 -solutions for each $(b, c) \in \mathbb{F}_2^2$.

Observation

 $f \in \mathbb{F}_q[x]$ generates an oval S_f in PP(q) if and only if for each $b \in \mathbb{F}_q$, the polynomial f(x) - bx induces a mapping from \mathbb{F}_q to \mathbb{F}_q , so that every image has at most two preimages.

Hence, $f(x) = x^2$ is a canonical example.

- < A > < B > < B >

Theorem (Segre (1955))

When q is odd, up to equivalence, S_f is an oval in PP(q) if and only if $f(x) = x^2$.

q even: the situation is much more subtle since x^2 is \mathbb{F}_2 -linear over \mathbb{F}_q .

Definition (o-polynomial)

Let q be an even prime power. A polynomial f is called an oval polynomial (o-polynomial) if S_f is an oval in PP(q).

Known o-monomials on \mathbb{F}_{2^m}

•
$$x^{2'}$$
, $gcd(i, m) = 1$
• x^{6} , m odd
• $x^{2^{2k}+2^{k}}$, $m = 4k - 1$
• $x^{2^{3k+1}+2^{2k+1}}$, $m = 4k + 1$
• $x^{3 \cdot 2^{k}+4}$, $m = 2k - 1$ (for each $(b, c) \in \mathbb{F}_{2^{m}}^{2}$, $x^{3 \cdot 2^{k}+4} - bx - c = 0$ has at most two $\mathbb{F}_{2^{m}}$ -solutions)

Remark

An o-polynomial behaves like x^2 over \mathbb{F}_{2^m} (x^2 -like polynomial).

Not just ovals, o-polynomials can be used to construct cyclic difference sets, bent functions, linear codes, etc.

Observation

- f is an o-polynomial if and only if
 - f is a permutation polynomial,
 - f(x) bx is 2-to-1 for each $b \in \mathbb{F}_{2^m}^*$.

.∋...>

f is an o-polynomial if and only if *f* is a permutation polynomial and f(x) - bx is 2-to-1 for each $b \in \mathbb{F}_{2^m}^*$.

Example (Intersection distribution)

f o-polynomial over $\mathbb{F}_q = \mathbb{F}_{2^m}$. Count multiplicities in the following q multisets: {{ $f(x) \mid x \in \mathbb{F}_q$ }} \rightarrow {{1 (q times)}} (permutation) for each $b \in \mathbb{F}_q^*$, {{ $f(x) - bx \mid x \in \mathbb{F}_q$ }} \rightarrow {{ $0 (\frac{q}{2} \text{ times}), 2 (\frac{q}{2} \text{ times})$ }} (2-to-1) the intersection distribution of f: $v_0(f) = \frac{q(q-1)}{2}$, $v_1(f) = q$, $v_2(f) = \frac{q(q-1)}{2}$.

イロト イポト イヨト イヨト

Definition (Intersection distribution)

For $0 \le i \le q$, define

 $v_i(f) = |\{(b,c) \in \mathbb{F}_q^2 \mid f(x) - bx - c = 0 \text{ has exactly } i \text{ solutions in } \mathbb{F}_q\}|.$

The sequence $(v_i(f))_{i=0}^q$ is the intersection distribution of f.

Geometric interpretation

The graph of f: $\{(x, f(x)) \mid x \in \mathbb{F}_q\}$.

 $v_i(f)$: number of non-vertical lines intersect the graph of f in exactly ipoints.

イロト イ理ト イヨト イヨト

Proposition (Li and Pott (2020))

 $\{v_i(f) \mid 0 \leq i \leq q\} \leftrightarrow \{u_i(S_f) \mid 0 \leq i \leq q+1\}.$

$$f \text{ polynomial over } \mathbb{F}_q \text{ with } v_0(f) = \frac{q(q-1)}{2}, v_1(f) = q, v_2(f) = \frac{q(q-1)}{2}, \\ v_i(f) = 0 \text{ for } 3 \le i \le q. \\ \downarrow \\ \{u_i(S_f) \mid 0 \le i \le q+1\} \text{ known and } S_f \text{ is an oval} \\ \downarrow \\ f \text{ is an o-polynomial} \end{cases}$$

3

イロト イポト イヨト イヨト

$$S_{f} \lim_{x \to ax + b} S_{f} \text{ oval}$$

$$f(x) = ax + b ? f(x) = x^{2} (q \text{ odd})$$

$$f \text{ o-polynomial } (q \text{ even})$$

$$v_{0}(f) = q - 1$$

$$v_{0}(f) = \frac{q(q-1)}{2}$$

$$maximum v_{0}(f)$$

$$classification of o-monomials$$

To our best knowledge, very little is known about the collective behaviour of $\{x^d + cx \mid c \in \mathbb{F}_q\}$.

3

- ∢ ∃ →

Outline

- Point sets in projective planes and polynomials over finite fields
- Oval polynomials and intersection distributions
- Intersection distribution of degree three polynomials
- Monomials with the same intersection distribution as x^3
- Application to Steiner triple systems

Theorem (Kyureghyan, Li, and Pott (2020+))

q a power of prime p. Let $f(x) = x^3 - ax^2$ be a polynomial over \mathbb{F}_q .

<i>p</i> ≠ 3	$v_0(f) = rac{q^2-1}{3}, \ v_1(f) = rac{q^2-q+2}{2}, \ v_2(f) = q-1, \ v_3(f) = rac{q^2-3q+2}{6}$
p = 3	$v_0(f) = \frac{q(q-1)}{3}, v_1(f) = \frac{q(q+1)}{2}, v_2(f) = 0, v_3(f) = \frac{q(q-1)}{6}$
p = 3	$(c) = a^2 + (c) = a(a-1) + (c) + (c) = a(a-3)$
$a \neq 0$	$v_0(t) = \frac{q}{3}, v_1(t) = \frac{q(q-2)}{2}, v_2(t) = q, v_3(t) = \frac{q(q-2)}{6}$

Corollary

Let q be a power of prime $p \neq 3$ and f arbitrary degree three polynomial over \mathbb{F}_q . We know the number of lines in PP(q) intersecting S_f in 0, 1, 2 and 3 points.

One ingredient in the proof

Criterion determining the number of \mathbb{F}_{3^m} -solutions of $x^3 - x^2 - c = 0$, $c \in \mathbb{F}_{3^m}$.

Result

For $c \in \mathbb{F}_{3^m}$, suppose x_0 is a solution of $x^3 - x^2 - c = 0$.

$$|\{x \in \mathbb{F}_{3^m} \mid x^3 - x^2 - c = 0\}| = \begin{cases} 1 & 2x_0 + 1 \text{ is nonsquare,} \\ 2 & x_0 \in \{0, 1\}, \text{ or equivalently, } c = 0, \\ 3 & 2x_0 + 1 \text{ is nonzero square and } x_0 \neq 0. \end{cases}$$

3

- ∢ ∃ →

Theorem (Kyureghyan, Li, and Pott (2020+))

q a power of prime p. Let $f(x) = x^3$ be a polynomial over \mathbb{F}_q .

$$\begin{array}{|c|c|c|c|c|c|c|c|} p \neq 3 & v_0(f) = \frac{q^2 - 1}{3}, v_1(f) = \frac{q^2 - q + 2}{2}, v_2(f) = q - 1, v_3(f) = \frac{q^2 - 3q + 2}{6} \\ \hline p = 3 & v_0(f) = \frac{q(q-1)}{3}, v_1(f) = \frac{q(q+1)}{2}, v_2(f) = 0, v_3(f) = \frac{q(q-1)}{6} \end{array}$$

Characterize monomials with the same intersection distribution with x^3 (x^3 -like monomials).

Recall that a x^2 -like polynomial is just x^2 (q odd) or an o-polynomial (q even).

Outline

- Point sets in projective planes and polynomials over finite fields
- Oval polynomials and intersection distributions
- Intersection distribution of degree three polynomials
- Monomials with the same intersection distribution as x^3
- Application to Steiner triple systems

We derived a series of strong restrictions on x^3 -like monomials (monomials with the same intersection distribution as x^3).

Theorem (Kyureghyan, Li, and Pott (2020+))

 x^d over \mathbb{F}_{3^m} is x^3 -like if and only if the following holds:

(1)
$$\gcd(d-1, 3^m-1) = 2,$$

(2) $\frac{(x+1)^d-1}{x}\Big|_{\mathbb{F}^*_{3^m}}$ is 2-to-1.

$$\frac{(x+1)^d - 1}{x} = \frac{(x+1)^d - 1^d}{x+1-1}$$

Conjecture (Kyureghyan, Li, and Pott (2020+))

The following is a complete list of x^3 -like monomials x^d over \mathbb{F}_q (plus the inverse if exists).

For x^2 -like polynomials: p = 2, o-polynomials, p > 2, x^2 .

Two classes of conjectured x^3 -like monomials x^d over \mathbb{F}_{3^m} : $\diamond \ d = 3^{(m+1)/2} + 2, \ m \text{ odd},$ $\diamond \ d = 2 \cdot 3^{m-1} + 1, \ m \text{ odd}.$

These exponents *d* also give *m*-sequences with 3-valued cross-correlation distribution. Cross-correlation distribution concerns the count of multiplicities in the multiset:

$$\{\{\mathsf{Tr}_{3^m/3}(x^d-bx)\mid x\in\mathbb{F}_{3^m}\}\},\quad\text{for each }b\in\mathbb{F}_{3^m}.$$

In contrast, intersection distribution concerns the count of multiplicities in the multiset:

$$\{\{x^d - bx \mid x \in \mathbb{F}_{3^m}\}\}, \text{ for each } b \in \mathbb{F}_{3^m}.$$

$$\begin{array}{cccc} S_f & \mbox{ine} & & S_f & \mbox{oval} \\ f(x) = ax + b & f(x) = x^3 & f(x) = x^2 & (q & \mbox{odd}) \\ v_0(f) = q - 1 & v_0(f) = \frac{q^2 - 1}{3}, & (3, q) = 1 & f & \mbox{o-polynomial} & (q & \mbox{even}) \\ v_0(f) = \frac{q(q-1)}{3}, & (3, q) = 3 & v_0(f) = \frac{q(q-1)}{2} \\ & & \mbox{maximum} & v_0(f) \\ & & \mbox{classification of} \\ x^3 \mbox{-like monomials} & \mbox{classification of o-monomials} \end{array}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

The intersection distribution of monomials x^d over \mathbb{F}_q with $q = p^s$, where $d \in \{p^i, p^i + 1, \frac{q+1}{3}, \frac{q-1}{2}, \frac{q+1}{2}, \frac{2q}{3}, q-3, q-2, q-1\}$, $0 \le i \le s-1$, are determined.

An application: constructions of Kakeya sets in affine planes with prescribed sizes follow from the intersection distribution.

イロト イ理ト イヨト イヨト

Two classes of conjectured x³-like monomials x^d over 𝔽₃^m: d = 3^{(m+1)/2} + 2, m odd, d = 2 ⋅ 3^{m-1} + 1, m odd.

3

Outline

- Point sets in projective planes and polynomials over finite fields
- Oval polynomials and intersection distributions
- Intersection distribution of degree three polynomials
- Monomials with the same intersection distribution as x^3
- Application to Steiner triple systems

Steiner triple systems are one of the most well studied combinatorial configurations.

There are not many direct constructions of Steiner triples systems.

æ

通 ト イヨ ト イヨト

Example (Steiner triple system)

point set: 7 points in PP(2)block set: 7 lines in PP(2)relation: 1. every block contains 3 points2. every two distinct points uniquely determines a block

Example (affine triple system)

Let $\mathcal{V}=\mathbb{F}_{3^m}$ and

 $\mathcal{B} = \{ \{x_1, x_2, x_3\} \mid x_1, x_2, x_3 \in \mathbb{F}_{3^m} \text{ distinct, } x_1 + x_2 + x_3 = 0 \}.$

Then $(\mathcal{V}, \mathcal{B})$ forms an Steiner triple system, named *affine triple system*.

イロト イポト イヨト イヨト

For x^3 over $\mathbb{F}_q = \mathbb{F}_{3^m}$, we have

$$v_0(x^3) = \frac{q(q-1)}{3}, v_1(x^3) = \frac{q(q+1)}{2}, v_2(x^3) = 0, v_3(x^3) = \frac{q(q-1)}{6}.$$

Theorem (Kyureghyan, Li, and Pott (2020+))

Let f be a x^3 -like polynomial over $\mathbb{F}_{3^m}.$ Let $\mathcal{V}=\mathbb{F}_{3^m}$ and

$$\mathcal{B}_{f} = \{\{x_{1}, x_{2}, x_{3}\} \mid x_{1}, x_{2}, x_{3} \in \mathbb{F}_{3^{m}} \text{ distinct, } \frac{f(x_{3}) - f(x_{1})}{x_{3} - x_{1}} = \frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}}\}.$$

Then $(\mathcal{V}, \mathcal{B}_f)$ is a Steiner triple system. Moreover, $(\mathcal{V}, \mathcal{B}_f)$ is an affine triple system if $f(x) = x^3$ (or more generally, if and only if f is \mathbb{F}_3 -linear).

・何ト ・ヨト ・ヨト

 x^3 over \mathbb{F}_{3^m} , *m* odd affine triple systems only known direct construction on 3^m point for many many years

 $x^{3^{(m+1)/2}+2} \text{ over } \mathbb{F}_{3^m}, m \text{ odd}$ $x^{2\cdot 3^{m-1}+1} \text{ over } \mathbb{F}_{3^m}, m \text{ odd}$ unew Steiner
triple systems
when $m \in \{3, 5\}$

"golden" monomials gives new examples!

Concluding remarks

Research problem

(1) Compute the intersection distribution for more monomials, especially those with few nonzero entries.

(2) Prove that $x^{3^{(m+1)/2}+2}$ and $x^{2\cdot 3^{m-1}+1}$ are x^3 -like over \mathbb{F}_{3^m} , m odd.

(3) Prove that the conjectured list of x^3 -like polynomials is complete.

(4) Apply the "golden monomials" to coding theory, design theory, etc.

Main References

- G. Kyureghyan, S. Li, A. Pott. On the intersection distribution of degree three polynomials and related topics, *arXiv:2003.10040*, Submitted.
- (2) S. Li, A. Pott, Intersection distribution, non-hitting index and Kakeya sets in affine planes, *Finite Fields Appl.*, 2020.