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Abstract

In this thesis, we study several problems concerning semigroup algebras K[S] of a
semigroup S over a field K.

In Chapter 1 and Chapter 2 we give some background on semigroups and
semigroup rings. In Chapter 3, we discuss the global dimension of semigroup rings
R[S] where R is a ring and S is a monoid with a sequence of ideals S = L D6LD
-++ D Iy D L4 such that each [;/[;;, is a non-null Rees matrix semigroup.

In Chapter 4, we investigate when a semigroup algebra has right global dimen-
sion at most 1, that is, when is it right hereditary. As an application of the results
in Chapter 3, we describe when K[S!] is hereditary for a non-null Rees semigroup
S. For arbitrary semigroups that are nilpotent in the sense of Malcev, we describe
when its semigroup algebra is hereditary Noetherian prime. And for cancellative
semigroups we obtain a description of when its semigroup algebra is hereditary
Noetherian.

In Chapter 5, we generalize the concept of unique factorization monoid and
investigate Noetherian unique factorization semigroup algebras of submonoids of

torsion-free polycyclic-by-finite groups.

il
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In Chapter 6, we investigate when a semigroup algebra K[S] is a polynomial
identity domain which is also a unique factorization ring. In order to prove this

result we describe first the height one prime ideals of such algebras.
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Introduction

Maximal orders in simple Artinian rings of quotients have attracted considerable
interest. In particular, it has been shown that various algebraic ring constructions
yield examples of Noetherian maximal orders or of maximal orders satisfying a
polynomial identity. For a field K and a commutative monoid S Chouinard proved
that the monoid algebra A’[S] is a Krull domain if and only if S is a Krull order in
its group of quotients. Moreover, the class group of K [S] equals the class group of
S. This shows, in particular, that the height one primes of K'[S] determined by the
minimal primes of S are crucial. Brown described when a group algebra K[G] of a
polycyclic-by-finite group G is a prime Noetherian maximal order. It is always the
case if G is torsion-free. If G is a finitely generated torsion-free abelian-by-finite
group (equivalently, K[G] is a Noetherian PI domain) then all height one primes
are principally generated by a normal element. So, in the terminology of Chatters
and Jordan, K[G] is a unique factorization ring.

[t remains an unsolved problem to characterize when an arbitrary semigroup
algebra K[S] over a field K is a prime maximal order that is Noetherian or satisfies

a polynomial identity.



2 INTRODUCTION

Apart from the two cases mentioned above, an answer to the question has been
obtained only for some special classes of semigroups, such as Malcev nilpotent
semigroups, or for some special classes of maximal orders, such as principal ideal
rings.

In this thesis we continue these investigations. We investigate when a semigroup
algebra is hereditary Noetherian prime or a unique factorization ring in the sense
of Chatters and Jordan. The former part is basically a question of Okninski,
Problem 37 in [52]. For a ring to be (right) hereditary one needs the (right) global
dimension to be at most one. Hence, our first contribution to the the subject is to
control the global dimension of certain types of matrix semigroups.

We now briefly outline the content of each chapter. Chapters 1 and 2 cover
some notation and background on semigroups and semigroup rings.

In [45], Kuzmanovich and Teply determined a lower and upper bound for the
homological dimension of K[S] for the class of finite monoids S that have a sequence
ofideals S =1, D I, D --- D I, D I, such that all the Rees factors I/ ;4 are
non-null Rees matrix semigroups. In Chapter 3 we sharpen their upper bound. We
also include some examples of semigroups which have a null Rees factor. These
examples indicate that in this case the solution is yet rather unclear. Hence the
solution to arbitrary finite semigroups is still open.

As an application of the results in Chapter 3 we first determine in Chapter 4

when the (contracted) semigroup algebra Ky[S] of a finite non-null Rees matrix
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semigroup S is hereditary. Next we characterize when A,[S] is a hereditary Noe-
therian prime ring when S is an arbitrary nilpotent semigroup (in the sense of
Malcev). It turns out that such a ring is a prime principal ideal ring. In the last
part of this chapter we fully describe when a semigroup algebra of a cancellative
monoid is a Noetherian hereditary ring. Our results rely on the solution of the
problem for group algebras. These were obtained by Goursaud and Valette for
nilpotent groups and Dicks for arbitrary groups.

In Chapter 5 we investigate when a monoid algebra K[S] of a cancellative
monoid is a Noetherian unique factorization ring. Such monoids S have a group
of fractions, say G. Because of Quinn’s result on graded rings, K[S] is (right)
Noetherian if and only if S satisfies the ascending chain condition on right ideals.
Since K[G] also is a Noetherian unique factorization ring and because these have
only been described for groups G that are polycyclic-by-finite, we restrict to this
situation. In case G is also torsion-free, we show that the problem is closely
related to group algebras K[G] and the monoid S, and actually the monoid N (S )
consisting of the normalizing elements of S. Hence in the first part of the chapter
we investigate unique factorization monoids, and more generally Krull monoids.
As in the ring case it turns out that S is a unique factorization monoid if and only
if S is a Krull order with trivial normalizing class group.

In the final Chapter, we investigate when a monoid algebra K[S ] of a cancella-
tive monoid S is a domain satisfying a polynomial identity and which is a unique

factorization ring (the Noetherian condition is not assumed). In this case S has
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a group of fractions that is torsion-free abelian-by-finite group G and the group
algebra K[G] is a unique factorization ring. First we show that for such a monoid
S, if P is a prime ideal of K[S] with PN S # @ then K[S N P] is also a prime
ideal. It follows that, if K[S] is a Krull order, then the height one prime ideals
intersecting S are precisely the ideals of the form K[Q] with Q a minimal prime
ideal of S. The proof of this result relies on the structure theory of skew linear
semigroups, as developed by Oknirski. This result on prime ideals is the crucial

step for us to investigate when K'[S] is a unique factorization ring.



CHAPTER 1

Semigroups

In this chapter, we give some definitions and structural descriptions of certain
important classes of semigroups. For more information, the reader is referred to

[13], [28] and [52].

1.1. Some basic Definitions

A semigroup S is a multiplicatively closed set such that the operation is as-
sociative. A subsemigroup T of S is a non-empty subset which is closed under

multiplication. A subgroup G of S is a subsemigroup which is a group.

1.1.1. An element e of S is called a left identity of S if ea = a for all @ € S.
Similarly one defines right identity and an identity of S if it is an element that is
both a left and a right identity. A semigroup S may have multiple right or left
identities, but if it has a right identity and a left identity, they must necessarily
coincide and in this case S has a unique identity.

A semigroup S is called a monoid if S contains an identity element 1. Then u
is a right unit of S if there is a v € S such that uv = 1. Similarly, one defines left
unit and u is a unit if it is both a left and right unit. We write U(S) for the set of

units of 5.
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1.1.2. An element z of S is called left zero if za = z for every a € S. Similarly
one defines right zero and z is called a zero element if it is both a left and right
zero element. As for identity elements, a semigroup S may have multiple right or
left zeros, but if has a right zero and a left zero, they must necessarily coincide and
in this case S has a unique zero. If S has a zero element, it will usually be denoted
. A semigroup S with zero element § will be called a zero or null semigroup if

ab=40foralla,be S.

1.1.3. Let S be any semigroup, and let 1 be a symbol not representing any
element of S. Extend the given binary operation in S to one in SU {1} by defining

11 =1 and la = al = a for every a € S. Obviously SU {1} is a monoid. Let

gt S if S has an identity element,
SU {1} otherwise;

Similarly one can adjoin a zero element 8 to S, denoted by S° = S U {6}.

1.1.4. An element e € S which satisfies e = €* is called an idempotent. We
write E(S) for the set of idempotent elements of a semigroup S. The set E(S)
can be partially ordered by e < f if and only if ef = fe = e. If S contains a zero
element 8, then § < e for every idempotent e € E. A band is a semigroup S every

element of which is idempotent.

1.1.5. A homomorphism of a semigroup S into a semigroup T is a mapping

¢ : S — T which preserves products:
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L.1. SOME BASIC DEFINITIONS

é(zy) = #(z)o(y) forall z,y € S.

If¢:S = Tandv: T — U are homomorphisms, then so is the composite mapping

Yo¢:S5 — U. An isomorphism of semigroups is a bijective homomorphism.

1.1.6. By a left ideal of a semigroup we mean a non-empty subset [ of S
such that S'I C I. Similarly one defines a right ideal and [ is a two-sided ideal,
or simply tdeal, if [ is both a left and right ideal of S. If § has a zero element g,
then {6} is always an ideal of S.

If {Io | @ € A} is a family of ideals of a semigroup S then U/, and NI, are
also ideals of S, the latter provided that it is non-empty. The same is true for the
family of left or right ideals.

If a € S then the right ideal generated by a is denoted by aS!; clearly aS! =
aS U {a}. Similarly, the left ideal generated by a is denoted by S'a. The ideal

generated by a is 5'aS' = SaSU SaUaS U {a}.

1.1.7.  Anequivalence relation p is called a right congruence on a semigroup S
if apb implies that acpbe for every a,b,c € S. A left congruence is defined similarly.
A congruence is an equivalence relation p on S which is both a left and a right
congruence.

Let [ be an ideal of a semigroup S and a,b € S. Define apb if either a = b
or else both a and b belong to I. We call p the Rees congruence modulo I. The

equivalence classes of S mod p are I itself and every one element set {a} with
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a € S\ I. We shall write S/I instead of S/p, and we call S/I the Rees factor

semigroup of S modulo I.

1.1.8. For the Rees factors of semigroups, we have analogues of two of the

isomorphism theorems for groups.

THEOREM 1.1. (Theorem 2.36 in [13]) Let J be an ideal and T a subsemigroup
of a semigroup S and JNT # Q. Then JOT is an ideal of T, JUT is a subsemigroup

of S, and

(JUT)/J=T/(JNT).

THEOREM 1.2. (Theorem 2.37 in [13]) Let J be an ideal of a semigroup S,
and let 6 be the natural homomorphism of S upon the Rees factor S/J. Then ¢
induces a one-to-one, inclusion-preserving mapping A — §(A) = A/J of the set of

all ideals A of S containing J upon the set of all ideals of S/J, and

(5/9)/(A/J) = S/A.

1.2. Green relations

1.2.1. The Green relations on a semigroup S are the equivalence relations,

which are denoted respectively by £,R,#, and J. These were introduced by
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Green in 1951 and defined as follows, for a,b € S,

aCb ifand only if Sla = S,

aRb ifand only if aS' = bS',

aHb if and only if aS'=0b6S" and Sla = S'b,
aJb if and only if S'aS!' = S'bSt.

Clearly £ is an equivalence relation such that a£b implies that acLbc for all ¢ € S,
that is, £ is a right congruence. If aLb, we say that a and b are L-equivalent. By
L, we mean the set of all elements of S which are L-equivalent to a, that is, the
equivalence class of S mod L; we call L, the £-class containing a.

Similarly R,, H,, and J, denote respectively the R, #, and J-class containing

LEMMA 1.3 (Theorem 2.16 in [13]). For any H-class H of a semigroup S the

following are equivalent:

1. abe€ H for some a,b € H;
2. H contains an idempotent;
3. H 1is a subsemigroup of S;

4. H is a subgroup of S.

COROLLARY 1.4. The mazimal subgroups of a semigroup S coincide with the
H-classes of S which contain idempotents. They are pairwise disjoint. Each sub-

group of S is contained in ezactly one mazimal subgroup of S.
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1.3. Regular semigroups and Inverse semigroups

1.3.1. An inverse of an element a in a semigroup S is an element b of S such

that
aba = a and bab = b;

the elements a and b are also called mutually inverse. As shown in the next

example, an element can have many inverses.

EXAMPLE 1.5. Let X and Y be two sets, and define a binary operation on

S =X xY as follows:
(xlayl)(z:?’y?) = ($1, y2)7 ZT1,Z2 € Xay17y2 ey

This semigroup is called the rectangular band on X x Y. In such a rectangular

band S, every two elements are mutually inverse.

1.3.2. An element a of a semigroup S is called regular if ¢ & aSa, that is,
if aza = a for some z € S. In this case, az is an idempotent. Note we have the

following equivalent conditions.

LEMMA 1.6 (Lemma I1.2.2 in [28]). For an element a of a semigroup S the
following are equivalent:

1. a s regular;

2. a has an inverse;

3. R, contains an idempotent;
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4. L, contains an idempotent.

In other words, a is regular if and only if aS' = eS! ( S'a = S'e ) for some
idempotent element e, i.e. the principal right (left) ideal of S generated by a has

an idempotent generator e.

A semigroup is called regular if all its elements are regular. From the equivalent
definitions of regular elements, we know that S is a regular semigroup if and only if
every R-class of S contains an idempotent, if and only if every £-class of S contains
an idempotent, if and only if every principal right (left) ideal of S is generated by

an idempotent.

1.3.3. An inverse semigroup is a semigroup such that every element has a

unique inverse.

THEOREM 1.7 (Proposition [1.2.6 in [28]). The following conditions on a semi-

group S are equivalent:

1. S is an inverse semigroup;
2. every R-class of S contains ezactly one idempotent and every L-class of §
contains exactly one idempotent.

3. S is regular and the idempotents of S commute with each other.
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1.4. 0-Minimal Ideals and 0-Simple Semigroups.

1.4.1. A semigroup S is left simple if it does not properly contain any left
ideal. Similarly we can define a right simple semigroup and a simple semigroup S
if it does not properly contain a two-sided ideal.

A two-sided (left, right) ideal M of a semigroup S is called minimal if it does
not properly contain any two-sided (left, right) ideal of S. If A is any other ideal of
S of the same type as M, either M C Aor M N A = . In particular, two distinct
minimal ideals of the same type are disjoint.

Since two two-sided ideals A and B of a semigroup S always contain the set
product AB, it follows that there can be at most one minimal two-sided ideal of S.
If § has a minimal two-sided ideal K, then K is called the kernel of S. Since K is
contained in any two-sided ideal of S, it may be characterized as the intersection
of all the two-sided ideals of S. If the intersection is empty, then S does not have a

kernel. It has been proved by Suschkewsch that any finite semigroup has a kernel.

1.4.2.  According with the theory of minimal ideals in rings, we introduce the
notion of 0-minimality. A two-sided (left, right) ideal M of S with zero 8 is called
0-minimal if M # 0 and 6 is the only two-sided (left, right) ideal of S properly
contained in M.

If M is a O-minimal two-sided ideal (left, right) ideal of a semigroup S with
zero 6, then M? is an ideal of the same type as M contained in M, so we must

have either M? = {0} or M? = M.
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1.4.3. A semigroup S is 0-simple if S* # {6} and {8} is the only proper
two-sided ideal of S. Let S be a semigroup with zero § such that {6} is the only
proper two-sided ideal of S. Then either S is 0-simple or S is the null semigroup
of order 2. Furthermore, S is 0-simple if and only if SaS = S for every element
a#0ofS.

Moreover, Clifford proved the following.

THEOREM 1.8 (Theorem 2.29 in [13]). Let M be a O-minimal ideal of a semi-
group S with zero . Then either M? = 8 or M is a O-simple subsemigroup of

S.

Furthermore, by using Theorem 1.2 and Theorem 1.8, we have the following

Corollary.

COROLLARY 1.9. 1. An ideal J of a semigroup is mazimal (proper) ideal
of S if and only if S/J has no proper non-zero ideal, hence if and only if
S/J is either 0-simple or the null semigroup of order two.

2. If J and J' are tdeals of S with J C J', then J is mazimal in J' if and only
if J'/J is a 0-minimal ideal of S/J. If this is the case, then J'[/J is either

a 0-simple semigroup or a null semigroup.

1.4.4. Let S be a semigroup without zero, and let S° = S U {f}. Then
A — AU {0} is a one-to-one mapping of the set of all two-sided (left, right)

ideals A of S upon the set of all non-zero two-sided (left, right) ideals of S9.
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This mapping preserves inclusion, and, in particular, A is minimal if and only
if AU {0} is 0-minimal. Consequently, any theorem concerning 0-minimal ideals
implies an evident corollary concerning minimal ideals in a semigroup without
zero. Similarly, any theorem concerning 0-simple semigroups implies an evident

corollary concerning simple semigroups. For example, Theorem 1.8 implies that

COROLLARY 1.10. If a semigroup S contains a kernel K, then K is a stmple

subsemigroup of S.

1.4.5. Let s € S. The principal ideal S'sS* of S generated by s is denoted
by Js, while the subset of J, consisting of non-generators of J; (as an ideal of S )
is denoted by I;. Thus I; = 0 if and only if J, is a minimal ideal of S, and if it
is not the case, then I is an ideal of S. Each Rees factor semigroup J,/I;, with
s € S, is called a principal factor of S. Obviously I, is maximal in Js, then we

have

COROLLARY 1.11. Each principal factor of any semigroup S is 0-simple, sim-
ple, or null of order two. Only if S has a kernel is there a simple principal factor,

and in this case the kernel is the only simple principal factor.

1.4.6. A semigroup S is semisimple if every principal factor of the semigroup
is O-simple or simple. This amounts to excluding null factors. Note any regular
semigroup is semisimple since S'azaS' = S'aS! for some z € S implies that

(S'aS')? contains the element aza which is still a generator of S'aS!.
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1.4.7. A principal series of a semigroup S is a chain
S=S]_D~923"‘35m35m+1

of ideals S;( 7 = 1,---,m) of S, beginning with S and ending with S,,,,, which
is the empty set if S does not contain a zero, otherwise, Spmi; = {6}, and there
is no ideal of S strictly between S; and S;y1(¢ = 1,--- ,m). By the factors of the
principal series we mean the Rees factor semigroups S;/S:t1(i = 1,--- ,m). By

Theorem 1.8, S;/S;4, is either O-simple, simple, or null.

THEOREM 1.12 (Proposition I1.4.9 in [28]). Let S be a semigroup admitting a

principal series,
S§5=8285D2-28.D Sny1-

Then the factors of this series are isomorphic in some order to the principal factors

of S. In particular, any two principal series of S have isomorphic factors.

1.5. Completely 0-Simple Semigroups

1.5.1. Let E be the set of idempotents of a semigroup S. Recall that e < f if
and only if e = ef = fe for ¢, f idempotents. An idempotent f is called primitive
if f# 6 and if e < f implies that e = or e = f.

By a completely 0-simple semigroup we mean a O-simple semigroup that has a

primitive idempotent.
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For example, any finite 0-simple semigroup is completely O-simple. It is been
shown by E. H. Moore that some power of every element of a finite semigroup
1s idempotent, hence any finite O-simple semigroup must contain an idempotent,
that is, £ # 0. Furthermore, £ # {8}, since £ = {6} implies that every element
of 5, and hence § itself, is nilpotent, contradicting $? = S. It is then clear that
the finite partially ordered set E \ {#} must contain a minimal element, that is, a

primitive idempotent.

1.5.2. We have the following descriptions of completely 0-simple semigroup

which is due to Clifford.

THEOREM 1.13 (Theorem 2.48 in [13]). Let S be a 0-simple semigroup. Then
S is completely 0-simple if and only if it contains at least one O-minimal left ideal
and at least one 0-minimal right ideal of S. In fact, a completely 0-simple semi-

group is the union of its O-minimal left ( right ) ideals.

1.6. Rees Theorem

The Rees Theorem gives a complete construction of all completely O-simple
semigroups using groups and sets. To show this result we recall the definition of a

Rees matrix semigroup over a group G.

1.6.1. Let G° be a group with zero adjoined, and let /, A be two sets. By a
Rees I x A matriz over G° we mean a [ x A matrix over G® with at most one

nonzero entry. If g € G,2 € I, and A € A, then (g); denotes the Rees matrix over
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G° having g in the ith row and Ath column, its remaining entries being 0. For

any : € [ and A € A, the expression (0);y will mean the [ x A zero matrix, which
simply will be denoted by 4.

Further, let P = (pj;)aea.ier be a generalized A x [ matrix over G°, that is,
every py; lies in G°. We use P to define a binary operation on the set of Rees [ x A
matrices over G° as follows:

AB=AoPoB,
where o means the usual matrix multiplication. If A and B are Rees / x A matrices

over G°, then so is AB. In fact, if A = (a);y and B = (b)j. then we easily find that
(@)ir(8)in = (apa;0)iu (a,6 € Gi4,5 € LA, € A).

The set of all Rees / x A matrices over G° is a semigroup with respect to the above
defined operation. We call it the Rees [ x A matriz semigroup over the group with
zero G° with sandwich matriz P, and denote it by M°(G; I, A; P). The group G is
called the structure group of M°(G; I, A; P) and P is called the sandwich matriz.
In fact, G is a maximal subgroup.

Actually, any nonzero element of M%(G; I, A; P) is uniquely determined by its
nonzero entry, and so it may be denoted by (g,%,m), where ge G, € l,meA.
Therefore, M°(G; I, A; P) may be treated as the set of all triples (g,z,m), g €
G° i€ I,m € A, with the multiplication given by

(g,%,m)(h,7,n) = (9Pmjh,i,n) for g,h € G%,i,5 € [,m,n € A.

All triples (0g,7,m) are identified with the zero element 8 of MO(G; I, A; P).
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1.6.2. The sandwich matrix P is said to be regular in case for each i € [
there exist A € A such that py; # 6, and for each A € A there exists i € [ such
that py; # 6. The importance of Rees matrix semigroups comes from the following

fundamental result which is known as the Rees Theorem.

THEOREM 1.14 (Lemma 3.1 in [13]). Let S be a semigroup. Then S is com-
pletely 0-simple if and only if S is isomorphic to MO(G;1,A; P), a Rees matriz
semigroup for some group G, nonempty sets [ and A, and regular sandwich matriz

P.

1.6.3. For a completely 0-simple semigroup S, Theorem 1.7 tells us that to
be an inverse semigroup, each row and column of the regular sandwich matrix P
does not contain more than one non-zero element. This remark will be used in
Chapter 6. Moreover, we have a nice representation for this type of semigroups.

A Brandt semigroup is a Rees matrix semigroup B(G;I) = M°(G; [,A; P) in
which G is a group, A = [ # 0 and P is the identity matrix (Ppi=1€G,p;=0

if i # §).

COROLLARY 1.15 (Theorem 3.9 in [13]). A completely 0-simple semigroup ts

an inverse semigroup if and only if it is isomorphic to a Brandt semigroup.

1.7. Cancellative semigroups

An element a of a semigroup S is said to be left (right) cancellable if, for any

T,y € S,az =ay ( za =ya ) implies z = y. We say that S is cancellative if every



1.8. NILPOTENT SEMIGROUPS 19

element of S is left and right cancellable. A cancellative semigroup S has a group
G of right fractions if and only if S satisfies the right Ore condition, that is, for

every s,t € S,
sSNtS #0.

Then G is unique, up to isomorphism, and may be identified with SS—L. If S also
satisfies the left Ore condition ( defined symmetrically ) then G = SS-! = S-1§
is called the group of fractions of S. We give two natural classes for which a

semigroup has a group of right fractions.

THEOREM 1.16 (Lemma 7.1, Proposition 7.12 in [52]). Let S be a cancella-

tive semigroup such that either of the following conditions hold:

1. § has no non-commutative free subsemigroups.

2. S has the ascending chain condition on right ideals.

Then S has a group of right fractions.

1.8. Nilpotent semigroups

Let z,y be elements of a semigroup S and let wy,w,, -- be elements of the

monoid S!'. Consider the sequence of elements defined inductively as follows:
To=Z, Yo=Y,
and

Tntl = ZaWni1Yn, Yntl = YnWn41Zn, for n > 0.
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We say that the identity X, = Y, is satisfied in S if T, =y, forall z,y € S,
wy, Wy, --- € S'. A semigroup S is called (generalized) nilpotent of class n if S
satisfies the identity X, = Y, and n is the least positive integer with this property.

Obviously every power nilpotent semigroup, that is, a semigroup S with zero
such that §™ = 6§ for some integer m > 1, satisfies the identity X,, = Y,,, and so

it is nilpotent.

1.8.1. Actually for a group G, this definition coincides with the classical

notion of nilpotency.

THEOREM 1.17 (Theorem 7.2 in [52]). Let n > 1. Then the following condi-

tions are equivalent for a group G.

1. G is a nilpotent group of class n in the classical sense.
2. n is the least positive integer for which the identity X, = Y, is satisfied in
G.

Note that a subsemigroup of a nilpotent group is a nilpotent semigroup.

1.8.2. Note that the condition X, = Y, is a bit stronger than the one required
by Malcev, who required elements w; in S only (see [52]). However the definitions
agree on the class of cancellative semigroups. Indeed, to prove the next result one

only needs to use w; € S.
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THEOREM 1.18 (Theorem 7.3 in [52]). Let S be a cancellative Malcev nilpo-
tent semigroup of class n. Then S has a group of fractions that is nilpotent of

class n.

1.8.3. An inverse semigroup S = MO(G; M, M; I) (with [ an M x M identity
matrix) of matrix type over a nilpotent group G, i.e. an inverse completely 0-simple
semigroup, satisfies the identity X,;» = Y;,2, where n is the nilpotency class of

G. Moreover,

PROPOSITION 1.19 (Lemma 2.1 in [31]). Let S be a completely 0-simple semi-
group over a mazimal group G. Then S is nilpotent if and only if G is nilpotent

and S is an inverse semigroup.
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CHAPTER 2
Semigroup Rings

In this chapter, we give some background on semigroup rings.

2.1. Basic definitions

Semigroup rings have been extensively studied. See, for example, Gilmer’s
book [23] for commutative semigroup rings, and Okniriski’s book [52] for the non-

commutative case.

2.1.1. Let R be a ring and S a semigroup. The semigroup ring R[S] is the

ring whose elements are all formal sums

E TsS

SES
with each coefficient r; € R and all but finitely many of the coefficients equal to

zero. Addition is defined component-wise so that
Esesrss + zsesq.ss = EseS(rs + QS)S-
Multiplication is given by the rule

(rss)(Qtt) = (rs(Zt)(St)
23
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which is extended distributively so that

(ESESTSS) (ZSGSQSS) = Z:sES(Zuuzsru(h)3~

This is the natural generalization of group ring. For a = %r,s € R[S], the set
{s € § | r; # 0} is called the support of a and is denoted by supp(a). R =K is

a field, then K[S] is called a semigroup algebra.

2.1.2. Let T be another semigroup and ¢ : S — T is a semigroup homomor-
phism. By ¢ we mean the extension of ¢ to the ring homomorphism of R[S] into
R[T] given by the formula ¢(Za,s) = Sa,d(s).

If S has a zero element 6, we write Ro[S] for the quotient R[S]/RO; Ro[S] is
called a contracted semigroup ring. Thus Ro[S] may be identified with the set of
finite sums Er,s with r, € R, s € S\ {6}, subject to the component-wise addition

and multiplication given by the rule

st ifst#6
st

I

0 ifst=4

defined on the basis S\ {6}. If S has no zero element, then by definition Ro[S] =
R[S]. For any a = Zr,s € R[S], by suppo(a) we mean the set {s € S\{6} | rs #0}.
Thus, suppo(a) = supp(a) \ {#}. The following lemma shows that in the study of

semigroup rings one needs to consider contracted semigroup rings.
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[®)
w

LEMMA 2.1 (Lemma 4.7, Corollary 4.9 in [52]). Let I be an ideal of a semi-
group S. Then Ro[S/I] = R[S|/R[I]. In particular, if S has a zero element g,
then R[S]= R® Ry[S].

2.1.3. Let K be a field and S be a semigroup. This section explores the nice
relationship between the the set of right congruences on S and the set of right
ideals of K[S].

Let p be a right congruence on S, that is, p is an equivalence relation such that,
for any s,¢,z € S, we have (sz,tz) € p whenever (s,t) € p. If @, : S — S/pis the
natural mapping onto the set S/p of p-classes in S, then we denote by I(p) the
right ideal of K'[S] generated by the set {s — ¢t | s,t € S, (s, t) € p}. Since p is a
right congruence on S, then [(p) coincides with the right & -subspace generated by
the set {s —¢|s,t € 5,(s,t) € p}. Moreover, the K-vector space K[S/p] is a right
K[S]-module under the natural action defined by ®o(s) 0ot = ¢,(st) for s5,t € S.

With this notation, we have the following result.

LEMMA 2.2 (Lemma 4.1, [52]). For any right congruence p on S, b, : K[S] —»
K[S/p] is a homomorphism of right K[S]-modules such that
Ker(¢,) = I(p) = Seesws(p)
where ws(p) = {EZ,cu5; € K[S] | m > 1,57 a; = 0,(s,s;) € p foralli =
1,2,---,m}, and K[S/p] = K[S]|/I(p) as right K[S]-modules. Moreover, the cor-
respondence p — I(p) establishes a one-to-one order preserving mapping of the set

of right congruences on S into the set of right ideals of K[S].
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Combining Lemma 2.2 with its left-right symmetric analog, we derive the fol-

lowing consequence.

COROLLARY 2.3. For any congruence p on S, é, - K[S] — K[S/p] is a ho-
momorphism of algebras such that ker(d,) = [(p) and K[S/p] = K[S]/I(p) as
K-algebras. Consequently, p — I(p) is an order-preserving mapping of the set of

congruences of S into the set of two-sided ideals of K[S].

It is clear that the trivial congruence of S determines the zero ideal of K [S].
The universal congruence S x S leads to the ideal / = {s—t]|steSIK =
{Za,s € K[S] | Za, = 0}. This ideal is usually denoted by w(K[S]) and is
called the augmentation ideal of K[S], where the corresponding homomorphism
K[S] — K is called the augmentation map.

From Lemma 2.2 we know that the right ideal / (p) determines a right con-
gruence p = {(s,t) € S xS | s—t € I(p)}. More general, any right ideal of
K[S] determines a right congruence on S. Let J be a right ideal of KS], define a

relation py on S by py = {(s,t) € Sx S |s—t e J}.

LEMMA 2.4 (Lemma 4.5, [52]). Let J be a right ideal of K[S]. Then,

1. ps is a right congruence on S such that I{ps) C J.
2. There exzist natural right K[S]-module homomorphisms, K[S] = K[S/pj] =

K[S]/J.
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3. If J is a two-sided ideal of K[S], then p; is a congruence on S, the mappings
in (2) are homomorphisms of K-algebras, and the semigroup S/py embeds

into the multiplicative semigroup of the algebra K[S]/J.

2.2. Munn algebras

In this section, we describe an important class of semigroup algebras arising

from completely 0-simple semigroups.

2.2.1. Let K be a field and let R be any algebra over K. Let [ and A be
indexing sets, and P be a A x [ matrix with entries in R. By R = M(R; [,A\; P)
one defines the following associative K-algebra. The elements of R are all [ x A
matrices over R with finitely many non-zero entries. Addition is the usual addition
of matrices, and the scalar multiplication by elements of K is component-wise.
Matrices multiply by insertion of the sandwich matrix P, that is, if A and B are

two elements of R, then the product Ao B in R is defined by
Ao B = APB.

The K-algebra R = M(R; I, A; P) is called the Munn I x A matriz algebra over
R with sandwich matriz P. If | I |= m and | A |= n, then denote this algebra by
R= M(R;m,n; P). The crucial example and motivation comes from the following

observation.
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LEMMA 2.5 (Lemma 5.17, [13]). The contracted algebra Ky[S] of Rees matriz
semigroup S = M®(G; I, A; P) over a field K is isomorphic with the Munn algebra

M(K[G]; I, A; P).

2.2.2. Tt is well known when Munn algebras are semisimple, see for example,

Theorem 5.19 in [13].

THEOREM 2.6. Let K be a field. A Munn algebra R = M(R;m,n; P) over a
finite dimensional K-algebra R is semisimple if and only if

1. R is semisimple,

2. m = n and P is non-singular (that is, P is invertible in the matriz ring
M,.(R)).

If this is the case, then R = M,(R).

Recall that a semisimple algebra contains an identity. The following property
states that condition two in the theorem is equivalent with R having an identity

element.

THEOREM 2.7 (Lemma 5.18 [13]). Let K be a field. The Munn algebra R =
M(R;m,n; P) over a finite dimensional K-algebra R contains an identity if and
only if

1. R contains an identity,

2. the sandwich matriz P is non-singular (in particular m =n).
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If this is the case, then the mapping A — AP is an isomorphism of R onto the full

matriz algebra M,(R).

Maschke’s Theorem describes when the group algebra A [G] of a finite group G
is semisimple Artinian: K[G] is semisimple if and only if the characteristic of X
does not divide the order of G. For the contracted semigroup algebras Ky[S] of a
finite completely 0-simple semigroup S = MO(G;m,n; P), we have the following

corollary.

COROLLARY 2.8. Let S = M°(G;m,n; P) be a finite completely 0-simple semi-
group and K a field, Then K[S] is semisimple if and only if (i) the characteristic
of K does not divide the order of G. (ii) P is non-singular (in particular m=n)

regarded as a matriz over K[G].

Zelmanov showed that K[S] is right Artinian implies that S is a finite semi-
group and the converse holds if S is a monoid (see also Theorem 14.23 in [52]).
More generally, Munn and Poinzovskii obtained independently the following gen-

eralization of Maschke’s Theorem.

THEOREM 2.9 (Theorem 14. 24, [52]). Let S be a semigroup and K a field.
The semigroup algebra K[S] is semisimple Artinian if and only if S has a chain of
tdeals S=S5,285,_;, D --- D8, such that every S;/S;_, and S| is a completely 0-

sitmple semigroup with a Rees representation of the type M°(G;m,m; P) for some
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m 2 1, and an invertible matriz P in Mn(K[G]), where G is a finite group of

order not divisible by the characteristic of K.

2.3. Semigroup Algebras and Group Algebras

In this section, S will be a cancellative semigroup and K a field. If S has a
group of (right) fractions G = SS~! then the group algebra K [G] is a localization
of the semigroup algebra K[S]. Since group algebras have been well studied, this
fact can be exploited in the study of semigroup algebras. Therefore we recall some

properties of localization and group algebras.

2.3.1. We start with the following basic result (see [54], Lemma 10.2.13 or

Lemma 7.13 in [52]).

LEMMA 2.10. Let T be a right Ore subset of a ring R. Then,

1. for every ay,--- ,a, € RT™!, there exists t € T such that a;t € R, for all
1=1,---,n.
2. for every right ideal I of RT™", we have (I N R)RT! = I.
Moreover, if Z is a right Ore subset of cancellative semigroup S, then Z is a right

Ore subset of K[S] and K[S|Z~' = K[SZ™1].

Hence one has the following observation on the behavior of primeness and

semiprimeness under localizations.
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LEMMA 2.11. Let B be a ring that is the localization of its subring A with
respect to a right Ore subset Z. Then,

1. B is prime (semiprime) whenever A is prime (semiprime, respectively).

2. If Z is contained in the centre Z(B) of B or B is right Noetherian, then the

converse holds.

2.3.2. We now state a result that will be crucial for studying the relationship

between the properties of K[S] and K[SS~!] (see [52] Lemma 7.15).

LEMMA 2.12. Let G be a group of right fractions of its subsemigroup S. Then,

1. For any right ideals Ry C R, of K[G], we have R; N K[S] C R, N K|[S].

2. If P is a prime ideal of K[G] and K[G]/P is a Goldie ring (or K[G] is a
right Noetherian ring), then P N K[S] is a prime ideal of K[S].

Let 5 be a semigroup with a group G of right fraction. We now solve when K[S]
is prime or semiprime. That these conditions are equivalent with K[G] being prime
or semiprime was shown by Okniniski (Theorem 7.19 in [52]). The equivalence of

the other conditions is well known (see for example [54], Section II.2).

THEOREM 2.13. Assume S has a group G of right fractions. Then the follow-
ing conditions are equivalent.
1. K[S] is prime (semiprime).

2. K[G] is prime ( semiprime).
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3. G has no non-trivial finite normal subgroups (ch(K) =0, orch(K)=p >0
and G has no finite normal subgroups of order divisible by p)-

4. The FC-center A(G) (defined in Chapter 5) is torsion-free abelian (ch(K) =
0, or ch(K) = p > 0 and A(G) has no p-torsion).

5. Z(K[G]) is prime (semiprime).



CHAPTER 3

Global Dimensions of Semigroup Rings

In [50] and [51], Nico discussed the upper bound for homological dimensions of
semigroup rings R[S] of a finite regular semigroup S over a commutative ring
R. Recently, in [45], Kuzmanovich and Teply discovered bounds for homological
dimensions of semigroup rings R[S] of semigroups S which are monoids with a
chain of ideals such that each factor semigroup is a finite non-null Rees matrix
semigroup: the bounds are in terms of the dimension of the coefficient ring K and
the structure of the semigroup S. In this Chapter we continue these investigations.
Amongst other results we show that the upper bound obtained by Kuzmanovich
and Teply can be sharpened. The results proved in this chapter will appear in
[37].

We now outline the contents of this chapter. We will discuss the global dimen-
sion of semigroup rings R[S] where R is a ring and S is a monoid with a sequence
ofideals S=1,D>0LD>---DI[, D [y such that [;/I;, is a non-null Rees matrix
semigroup M°(G;;m;,ni; P:) (forall 1 <4 < n) and Iny = {6} or 0.

In Section 3.1 we recall the definition of global dimension of a ring. In Section
3.2 we recall some results on the global dimension of group algebras. In Section 3.3,

we show that the global dimension of R[S] is bounded by the global dimension of

33
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R[G;] and a parameter ;(.S) which somehow depends on the sandwich matrices P;
of the Munn algebras M(R[G;];m;,n;; P;). In Section 3.4, we apply these results
to finite semigroups. We obtain the exact global dimension of K [S] where K is a
field and S is a monoid extension of a finite non-null Rees matrix semigroup (the
latter is not necessary a completely O-simple semigroup). Specific examples are
given in Section 3.5.

The above mentioned results are a step toward handling the global dimension
of a semigroup algebra K[S]| of an arbitrary finite semigroup S. The remaining
step is to deal with semigroups which have a principal factor that is a null semi-
group. The examples given in Section 3.6 indicate that the solution here is rather
unclear. Indeed we give two examples (with a null factor), but one has finite global

dimension and the other does not.

3.1. Global Dimensions

3.1.1.  Projective dimension of a right module Mg, written pd Mg, is the

shortest length n of a projective resolution
0—2FP—--->FP—->M=0
or oo if no finite length projective resolution exists.
In fact, the following numbers are all equal:
1. sup{pd M | M any right R-module};

2. sup{pd M | M any cyclic right R-module};

The common number is called the right global dimension of R, written rgld R.
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3.1.2. rgld R = 0 means precisely that R is a semisimple Artinian ring.
rgld R <1 means that R is a right hereditary ring. Note a right hereditary ring
means every right ideal is projective or equivalently every submodule of projective
module Rg is projective. (For a right hereditary ring, every submodule of a free

module is isomorphic to a direct sum of right ideals).

3.1.3. Similarly one can define left global dimension [gld R. In general
lgld R # rgld R. However, if R is left and right Noetherian, then lgld R=rgld R

(see [48] 7.1.11).

3.1.4. We list several properties on the global dimension. For more details,

we refer the reader to [48] and [54].
1. Consider a short exact sequence of right R-modules
0=-A—-B->C—0

If two of the modules A, B, C have finite projective dimension then so does
the third. Moreover, we have the following three possibilities:
(a) if pd B < pd A, then pd C = pd A + 1.
(b) if pd B = pd A, then pd C < pd B + 1.
(c) if pd B > pd A, then pd C = pd B.
2. rgld R = sup{pd [ | I 9, R} + 1 unless R is semisimple.
3. If ¢ is a right denominator set in a ring R then rgld R¢~! < rgld R where
R¢™! is a localization ring of R.

4. If o is an automorphism of R, then rgld R[z,o] = rgld R + 1.
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3.2. Global dimensions of group rings
Most of the following results come from [48] and [54].

3.2.1. In this subsection, we consider the global dimension of a group ring

R[G].

LEMMA 3.1 (Theorem 7.5.6 in [48]). Let R be a ring, G be finite group with

| G | a unit in R, and then rgld R[G] = rgld R.

We say that G is a polycyclic-by-finite group if G has a finite subnormal series
(1) =Go<G1<---<1Gr =G

with each quotient Gi;,/G; infinite cyclic or finite. Particularly, if each quotient is
infinite cyclic, then we call G a poly-infinite cyclic group. The Hirsch number of a
polycyclic-by-finite group G, written A(G), is defined to be the number of infinite
cyclic quotients which occur in the above series. It is well known that R[G] is right
Noetherian if R is right Noetherian and G is a polycyclic-by-finite group. But the

converse is still an open question.

LeMMA 3.2 (Corollary 7.5.6, [48]). Let R be a ring and G be a group. Then
1. rgld R < rgld R[G);

2. If G is poly-infinite cyclic with Hirsch number h then rgld R[G] < rgld R+h;
3. If R is a Q-algebra and G is polycyclic-by-finite with Hirsch number h then

rgld R[G] < rgld R+ h.
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3.2.2. Itis well known when a group algebra K[G] has zero global dimension,

that is, when it is semisimple Artinian. This is known by Maschke’s Theorem.

THEOREM 3.3. Let G be a finite group. Then K|[G] is semisimple if and only

if charK =0 or charK = p and G is a p'-group.

In the next chapter we will investigate the description of when rgld K [G] =1.

But now we list some properties on when the global dimension is finite (see Chapter

10 in [54]).

THEOREM 3.4. Let K[G] be a group algebra. The following properties hold.

1. IfV is the principal right K[G] module, then rgld K[G] = pd V.

2. If H s a subgroup of G, then rgld K[H| < rgld K[G].

3. Let H be a normal subgroup of G. If K[H| and K[G/H] have finite global
dimensions, then so does K[G], and we have rgld K[G] < rgld K[H] +
rgld K[G/H].

4. Ifrgld K[G] < co and if charK = p, then G is a p'-group. In particular, if
G is finite group, rgld K[G] < oo implies that K[G] is semisimple.

5. If G = (z; | i € I) is a nontrivial free group, then the augmentation ideal
w(K[G]) is a free right K[G]|-module with free generators {z; — 1 |7 € I}.
Furthermore, rgld K[G] = 1.

6. Let H be a subgroup of G of finite indez. If rqld K[H] < 0o and if G has

no element of order p in case charK = p, then rgld K|[G] < oo.



38 3. GLOBAL DIMENSIONS OF SEMIGROUP RINGS

7. Let G be a polycyclic-by-finite group. Then rgld K[G] < oo if and only if
G has no elements of order p in case K has characteristic p. Furthermore,

rgld K[G]| = h(G), the Hirsch number of G.

3.3. Monoid extensions of Rees matrix semigroups

In this section, we will investigate the global dimension of semigroup rings
R[S], where R is a ring with an identity and S is a monoid with a chain of ideals
S =828, D---2> 8 such that each factor semigroup S;/S;iy; is a non-null
Rees matrix semigroup M°(Gi;m;,n;; P;). In particular, any finite semisimple
semigroup S satisfies the above assumption. In [45], Kuzmanovich and Teply

showed

THEOREM 3.5 (Theorem 3.7 in [45]). Let R be a ring with identity and S be a
monoid with a chain of ideals S=85,>5,>---28, > S.+1 such that each factor
semigroup S;/S:+1 is a finite, non-null Rees matriz semigroup MO°(Gi;m;, n;; P)
and 5.4y = 0 or {0}. Then the global dimension of R[S] is finite if and only if
each R[G;] has finite global dimension. In this case, rgldR[G;] = rgldR and then

rgldR < rgldR[S]) < rgldR + 2. — 2.

3.3.1. We will sharpen the above upper bound. First we note that for a
Rees matrix semigroup M%(G;m,n; P) with non-null multiplication, there is no
loss of generality in assuming that P;; = 1 (Remark 3.5 in [45]). To see this,

suppose that P;; = g for an element ¢ € G. Let Q be the m x m permutation
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matrix corresponding to the transposition (1,7). Let Q; be the n x n permutation
matrix corresponding to the transposition (1, ). By definition, Q 0 Q = I,, and
@10 Q1 = I,. Define ¢ : M°(G;m,n; P) - M°(G;m,n;Q,0Po Q@) by ¢(A) =
@ o Ao Q;. Note that ¢(A)d(B) = (Qo Ao Q;) o (Q, oPoQ)o(QoBo@,) =
QoAoPoBoQ; = ¢(AB). It follows that ¢ is an isomorphism. Clearly the (1,1)-
entry of the sandwich matrix @, 0 P o Q is g. Hence we may assume that P;; = g-
Now let W be the n x n diagonal matrix given by W = diag(g~t,1,---,1), and
define ¢ : M°(G;m,n; P) - M°(G;m,n; W o P) by ¥(A) = Ao W-L. It follows
that ¢ is an isomorphism and the sandwich matrix Wo P has 1 on its (1,1)-entry.

So indeed we may assume that P;; = 1.

THEOREM 3.6 (Lemma 3.6 in [45]). Let S be a monoid with an ideal U which
is isomorphic to a non-zero Rees matriz semigroup M%(G;m, n; P). Then the ideal

I = Ro[U] of A = Ry[S] satisfies the following properties:

1. There exist subsets A,B of U and an idempotent e € U such that [ =
Docaal = By Ib. Moreover, I = [el = AeA, eA = el and Ae = Ie.

2. For anya € A and b € B, ae = a, eb = b and thus ba = ebae € G U{6},
where § denotes the zero element.

3. As a right A-module, [ = @, al is projective. Similarly, [ = Drep [b is
a left projective A-module.

4. Ie is a left projective A-module. Considered as a right R[G]-module, [e =

Daca aR[G] is free.
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5. Any nonzero element of I can be ezpressed as a sum of ach where a € A,b e

B, and o € R[G].

Proof. Without loss of generality, we can assume P,; = 1. Abusing notation, we

identify G'(J{6} with {(g,1,1) | g € GJ{6}}.

1. Let e = (1,1,1), that is, e has a 1 in (1,1) entry and zero elsewhere. Then
e’ =eoPoe=eis an idempotent and thus eA = e and Ae = Je (again
o means the ordinary product of matrices). Clearly, Iel C I. Now we need
to show that I C [el. It is sufficient to show that, for an arbitrary element
a € R[G], Iel contains a matrix that has a as its (7,7) entry and zero in
its other entries. Indeed, let A; be the matrix with 1 in the (i,1) entry and
all other entries 0, and let C; be the matrix with @ in the (1, ) entry and
all other entries 0. Then A;eC; has a as its (4, 7) entry and zero for all its
other entries. Hence lel = I. Let A = {(1,4,1)|1 < i < n}. Choose A;
as before, clearly A;l is the i-th row of I, so [ = @A;GA A;l. Similarly,
I =@pg cpB; where B = {(1,1,5)|1 < j < m} and B, is the matrix with
L in (1,7) entry and all other entries 0.

2. This follows from the proof of 1. For example, A;e = A;0 Poe = A;.

3. Since A;e = A;, a direct computation shows that left multiplication by A;
yields a (right) A-isomorphism from el to A;/. So [ = Ca.ealil = By.enel

is projective as a right A-module.
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4. As [e = Ae, it is clear that Ie is a left projective A-module. Hence, from

the above,

le =@, .c44ile
= @A;EA A{G[&
= Daiea ARG

Since A;R[G] = R[G] as R[G] modules, we obtain that e is a free right
R[G]-module.
5. Similar as in the proof of the first part (replace e by ea € R[G] and C; by

BJ’). a

3.3.2. With notations as in 3.3.1, for any left A-module M, we define two

modules M~ and M~ via the natural exact sequences as in [50]:

0 — AeM — M — M~ — 0,

0 — M™ — Ae®pg) eM >+ AeM — 0.
Here [eM = AeM is a submodule of M, eM is also a left R[G]-module; the map

¢ in the second sequence is given by 8 ® m — Bm.

Then we have the following lemma generalizing that in the completely-0-simple

case discussed by Nico in [50].
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LEMMA 3.7. W