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Abstract

In this paper we study the relation between coefficients of a polynomial over finite field Fq and the moved
elements by the mapping that induces the polynomial. The relation is established by a special system
of linear equations. Using this relation we give the lower bound on the number of nonzero coefficients
of polynomial that depends on the number m of moved elements. Moreover we show that there exist
permutation polynomials of special form that achieve this bound when m | q − 1. In the other direction,
we show that if the number of moved elements is small then there is an recurrence relation among these
coefficients. Using these recurrence relations, we improve the lower bound of nonzero coefficients when
m - q−1 and m ≤ q−1

2 . As a byproduct, we show that the moved elements must satisfy certain polynomial
equations if the mapping induces a polynomial such that there are only two nonzero coefficients out of 2m
consecutive coefficients. Finally we provide an algorithm to compute the coefficients of the polynomial
induced by a given mapping with O(q3/2) operations.
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1. Introduction

Let p be a prime, n be a positive integer, and q = pn. Let Fq denotes a finite field of order q. Computing
coefficients of a polynomial over finite field Fq efficiently is an important question in practice. It is for
the purpose of computational efficiency that one would prefer polynomials with small number of nonzero
coefficients in applications in cryptography or coding theory. In [15], G. L. Mullen posed the problem
of computing the coefficients of the inverse polynomial of a permutation polynomial efficiently (Problem
10). This motivated Muratović-Ribić [17] to characterize all the coefficients of the inverse polynomial
of a permutation polynomial of the form xrf(xs)(q−1)/s. Later on, the result was extended to arbitrary
permutation polynomial by Wang [21]. Both results give formulas of coefficients of the inverse polynomials
in terms of the images of the original permutation polynomials. On the other hand, for a permutation
polynomial f(x) itself, Mullen and Vioreanu [16] gave a formula to compute coefficients of f(x) in terms
of elements s of finite fields which are moved by the permutation polynomial f(x) as a bijective mapping
(i.e., f(s) 6= s), see also in [23], where the application of this formula in exploring the connection between
the cycle structure of a permutation of Fq and the degree of the polynomial representing it is established.

IResearch of Qiang Wang was partially supported by NSERC of Canada
∗Corresponding author
Email addresses: amela@pmf.unsa.ba (Amela Muratović-Ribić), wang@math.carleton.ca (Qiang Wang)
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Some recent work in this direction can be found in [10] where an asymptotic formula is given for the
number of permutations for which the associated permutation polynomial has d coefficients in specified
fixed positions equal to 0. Other than permutation polynomials, coefficients of other special types of
polynomials (e.g., irreducible polynomials, primitive polynomials, primitive normal polynomials) are also
studied extensively recently. In this area, the goal is to study the distribution of these polynomials with
prescribed coefficients (including the existence results and enumeration results on these polynomials).
There are numerous papers on these topics, hence we can not include all the relevant references. Instead,
we refer the readers to a small list to start, for example, [3], [4], [5], [6], [7], [13], [14], [18], [20], [24], [25].
In this paper we take a different direction. We study coefficients of arbitrary polynomials and characterize
those polynomials with small number of nonzero coefficients over Fq. We also provide an algorithm for
calculating the coefficients of any polynomial with complexity O(q3/2) as a consequence of our results.
We compare our algorithm with several other interpolation algorithms and it seems that our algorithm
is simple and quite useful for small q’s.

Let us consider any polynomial of degree at most q − 1, not necessarily a permutation polynomial.
Further in this paper we will assume that θ : Fq → Fq is any given mapping (not necessarily bijective)
such that T = {s | s ∈ Fq, θ(s) 6= s} = {s1, s2, . . . sm} ⊆ Fq. We will say that element s ∈ Fq is moved
by θ if θ(s) 6= s and s is fixed otherwise. Because any mapping from Fq to Fq can be interpolated by a
polynomial of degree at most q − 1, we let f(x) be the polynomial in Fq[x] of degree ≤ q − 1 induced by
θ. In Section 2 we will give a formula for the coefficients ak of xk in f(x) by using only the elements in
the set T , namely, 

ak =
∑
s∈T

sq−1−k(s− θ(s)) + δk1 , k = 1, . . . , q − 2,

a0 + aq−1 =
∑
s∈T

sq−1(s− θ(s)),
(1)

where δji is the Kronecker delta such that δji equals 1 if i = j and 0 otherwise. This generalizes the
result of Mullen and Vioreanu [16] who considered the case of permutation polynomials. Indeed, if

f(x) is a permutation polynomial of Fq, then aq−1 = 0 and thus ak =
∑
s∈T

sq−1−k(s− θ(s)) + δk1 for

k = 0, 1, . . . q − 2.
Throughout the paper, we denote

a′k = ak, 2 ≤ k ≤ q − 2, a′1 = a1 − 1, a′q−1 = a0 + aq−1.

Then a′k’s are coefficients of f∗(x) = f(x)−x when 1 ≤ k ≤ q− 2. In particular, if f(0) = 0 (i.e., 0 6∈ T ),
then a0 = 0 and a′q−1 = aq−1. Therefore we have the following system of linear equations (s − θ(s) as
variables): ∑

s∈T
sq−1−k(s− θ(s)) = a′k, k = q − 1, q − 2, . . . , 1. (2)

If m ≤ q − 1, we let q − 1 = mv + r, where 0 ≤ r < m. We partition the coefficients a′k into v + 1
blocks as follows:

a′q−1, a
′
q−2, . . . , a

′
q−m;

a′q−m−1, a
′
q−m−2, . . . , a

′
q−2m;

...
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a′q−(v−1)m−1, a
′
q−(v−1)m−2, . . . , a

′
q−vm;

a′q−vm−1, . . . , a
′
1;

In each block of the first v blocks, there are m successive coefficients whose subscripts are in descending
order. Further in the paper we will call these blocks m-blocks. The first m-block refers to the first row
above and second m-block refers to the second row above, etc.

If m < q − 1, then we can obtain a recurrence relation on these coefficient a′k’s by studying the
consistent system. That is,

a′q−1−m−t = r
(t)
m−1a

′
q−m + . . .+ r

(t)
1 a′q−2 + r

(t)
0 a′q−1

for t = 0, 1, . . . , q−1−m, where r
(t)
j are coefficients of xj in the expansion of the polynomial r(t)(x) = xm+t

(mod P (x)) and P (x) =
∏m
z=1(x − sz). We also show that these r

(t)
j for different t’s can be obtained

recursively from r
(0)
j , . . . , r

(0)
j−t (note that r

(0)
j−t = 0 if j < t). These preliminary results and notations are

given in Section 2.
On the other hand, without assumption of f(0) = 0 or m ≤ q − 1, by studying the general relation

(1) we prove Theorem 1 in Section 3, which gives lower bounds of nonzero coefficients of a polynomial
over Fq.

Theorem 1. Let f(x) be the polynomial over Fq of degree ≤ q− 1 representing the mapping θ : Fq → Fq
which moves m > 1 elements of Fq, i.e., | T |= m.

(a) If 0 is a fixed point of θ, then there is no k, 1 ≤ k ≤ q − 1 − m such that the successive m
coefficients ak+1, ak+2, . . . , ak+m of the induced polynomial f(x) are all equal to the zero. Moreover, there
are at least q−1

m − 1 nonzero coefficients in f(x) if m | q− 1 and at least q−1
m nonzero coefficients in f(x)

if m - q − 1.
(b) If 0 is not a fixed point of θ, then there is no k, 1 ≤ k ≤ q− 1−m such that the successive m− 1

coefficients ak+1, ak+2, . . . , ak+m−1 of the induced polynomial f(x) are all equal to the zero. Moreover,
there are least q−1

m−1 − 1 nonzero coefficients ak of f(x) if (m − 1) | (q − 1) and are least q−1
m−1 nonzero

coefficients ak of f(x) if m− 1 - q − 1.

In fact, the lower bound in Theorem 1 (a) can be achieved when m | q − 1.

Theorem 2. Let m | q − 1 and let ψ be a primitive root of xm − 1 = 0.
(a) The polynomial f(x) which moves m elements has q−1

m − 1 nonzero coefficients if and only if f(x) is
induced by a mapping θ which moves an m-subset T = {s, sψ, sψ2, . . . , sψm−1} (s 6= 0) of Fq and defined
by

θ(sψj) = (1 +m−1)sψj , j = 0, 1, . . . ,m− 1.

(b) The polynomial f(x) induced by mapping θ defined by θ(sψj) = sψj+i for some i on the set T =
{s, sψ, sψ2, . . . , sψm−1} is a permutation polynomial with q−1

m nonzero coefficients if 1 + m−1 6= ψi and

with q−1
m − 1 nonzero coefficients for 1 +m−1 = ψi.

The proof of Theorem 2 and some lower bounds for the number of the special permutation polynomials
of the degree q − m where m | q − 1 are given in Section 4. In Section 5 we provide an algorithm to
compute the coefficients of the polynomial induced by a given mapping with O(q3/2) operations.

In the case m - q − 1 the lower bound for the number of coefficients in the Theorem 1 (a) can be
improved :
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Theorem 3. Assume that 0 is fixed point of θ and m - q− 1. If there exist positive integers d and k such

that m = kd, (k+1)d | q−1, and the moved elements by θ are solutions of the equation x(k+1)d−(−b)k+1

xd+b
= 0

for some b ∈ F∗q , then the number of the nonzero coefficients of f(x) is at least

2
q − 1

(k + 1)d
− 1.

Otherwise, the number of the nonzero coefficients in f(x) is at least b 32b
q−1
m cc.

Note that in some cases 2 q−1
(k+1)d − 1 < b 32b

q−1
kd cc, for example for k = 2.

It requires that we study polynomials which has only two nonzero coefficients in consecutive two
m-blocks (Lemmas 7, 8). These two lemmas and Theorem 3 are proved in Section 6. We remark that
Lemma 4 (for m | q − 1) and Lemmas 7, 8 (for m - q − 1) together give the results on coefficients of
polynomials which has only two nonzero coefficients in consecutive two m-blocks. Namely, if the set of
moved elements by the polynomial f(x) =

∑q−1
k=0 akx

k with f(0) = 0 has size m and the coefficients

a′k of the polynomial f(x) − x =
∑q−1
k=1 a

′
kx

k satisfy that there is only one nonzero coefficient among
the m coefficients a′q−um−1, . . . , a

′
q−(u+1)m and one nonzero coefficient among the second m coefficients

a′q−(u+1)m−1, . . . , a
′
q−(u+2)m, then these moved elements satisfy certain polynomial equations in Lemma 4

or Lemma 7 and therefore lower bounds of the number of coefficients a′k can be obtained. These results
are interesting by themselves and may have other potential applications.

2. Preliminary results

A polynomial f(x) induced by θ is given by

f(x) = x−

(∑
s∈T

(s− θ(s))x
q − x
x− s

)
. (3)

Indeed, if x 6∈ T = {s | s ∈ Fq, θ(s) 6= s}, then θ(x) = x and f(x) = x0 −
(∑

s∈T (s− θ(s))x
q−x
x−s

)
=

x = θ(x). Otherwise, x = s0 for some s0 ∈ T . Then f(s0) = s0 −
(∑

s∈T (s− θ(s)) s
q
0−s0
s0−s

)
= s0 −(∑

s∈T,s 6=s0(s− θ(s)) s
q
0−s0
s0−s

)
− (s0 − θ(s0)) = θ(s0). However, we can obtain a formula to compute

coefficients ak of f(x) in terms of moved elements by θ only.

Lemma 1. Let f(x) be the polynomial over Fq of degree ≤ q − 1 representing the mapping θ : Fq → Fq
which moves m ≥ 1 elements of Fq, i.e., | T |= m, where T = {s | s ∈ Fq, θ(s) 6= s}. Then coefficients of
the polynomial f(x) are given by

ak =
∑
s∈T

sq−1−k(s− θ(s)) + δk1 , k = 1, . . . , q − 2,

a0 + aq−1 =
∑
s∈T

sq−1(s− θ(s)),

where δji is the Kronecker delta satisfying that δji = 1 if i = j and 0 otherwise. Trivially, if T = ∅ then
f(x) = x.
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Proof. Let f(x) =
∑q−1
k=0 akx

k. Then it is well known that aj = −
∑
s∈Fq s

q−1−jθ(s) for 1 ≤ j ≤ q − 2

and a0 + aq−1 = −
∑
s∈Fq s

q−1θ(s) (e.g., [16]). By [11, Lemma 7.3], we have δq−1t +
∑
s∈Fq s

t = 0. Hence

the coefficients of f(x) are given by

ak = −
∑
s∈Fq

sq−1−kθ(s) = δq−1q−k +
∑
s∈Fq

sq−k −
∑
s∈Fq

sq−1−kθ(s)

= δk1 +
∑
s∈T

sq−1−k(s− θ(s)) k = 1, 2, . . . , q − 2.

Similarly, a0 + aq−1 =
∑
s∈T

sq−1(s− θ(s)).

We remark that if f(x) is a permutation polynomial, then aq−1 = 0 and thus ak =
∑
s∈T

sq−1−k(s −

θ(s)) + δk1 for k = 0, 1, . . . q − 2. As an immediate consequence of Lemma 1 we have

Corollary 1. Let f(x) and g(x) be polynomials in Fq[x] induced by permutations α and β, respectively,
which move disjoint sets of elements. Then the composition αβ = βα induce the polynomial f(x)+g(x)−x.

Corollary 2. If a mapping θ moves only elements of the subfield K of F to itself, i.e., T ⊆ K and
θ(T ) ⊆ K, then f(x) ∈ K[x].

In the following sections, we study these coefficients ak’s of f(x) =
∑q−1
k=0 akx

k. If we let

a′k = ak, 2 ≤ k ≤ q − 2,

a′1 = a1 − 1, a′q−1 = a0 + aq−1.

then it is enough to study a′k’s which are coefficients of f∗(x) = f(x)−x for 1 ≤ k ≤ q− 2. In particular,
if f(0) = 0 (i.e., 0 6∈ T ), then a0 = 0 and a′q−1 = aq−1. Hence Equation (1) can be rewritten as∑

s∈T
sq−1−k(s− θ(s)) = a′k, k = q − 1, q − 2, . . . , 1. (4)

We note that Equation (4) gives a system of q − 1 linear equations of m variables {s − θ(s), s ∈ T}.
Because f(x) is induced by a given mapping θ, the system is consistent. Then we can obtain a recurrence
relation on these coefficient a′k’s when m < q − 1 using the following result on the system of linear
equations such that the coefficients matrix is of Vandermonde type.

Lemma 2. Let s1, s2, . . . , sm be distinct elements of finite field Fq, P (x) =
∏m
z=1(x − sz), and r

(t)
j be

the coefficient of xj in the expansion of the polynomial r(t)(x) = xm+t (mod P (x)). Let m < w and the
system of linear equations V x = c be

1 1 . . . 1
s1 s2 . . . sm
s21 s22 . . . s2m
...

...
...

...
sw−11 sw−12 . . . sw−1m



x1
x2
...
xm

 =


c0
c1
...

cw−1

 .
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If the system V x = c has a solution then

(a) cm+t = r
(t)
m−1cm−1 + . . .+ r

(t)
1 c1 + r

(t)
0 c0 for t = 0, 1, . . . , w −m;

(b) cv+m+t = r
(t)
m−1cv+m−1 + . . .+ r

(t)
0 cv for all non-negative 0 ≤ t ≤ m− 1 and 0 ≤ v ≤ w −m− t.

Proof. (a) Because the coefficient matrix of the first m equations is a Vandermonde matrix and s1, . . . , sm
are distinct, the first m equations together produce a unique solution. To analyze the whole system we
need to find linear relation between first m rows of V and other rows of V because there are more
equations than the number of variables.

Let P (x) =
∏m
z=1(x− sz). The Euclidean algorithm implies that there are unique polynomials q(t)(x)

and r(t)(x) for (t ≥ 0) such that xm+t = q(t)(x)P (x) + r(t)(x) where deg(r(t)(x)) < m.

As sm+t
i = q(t)(si)P (si)+r

(t)(si) = r(t)(si) = r
(t)
m−1s

m−1
i +. . .+r

(t)
1 si+r

(t)
0 , for i = 1, 2, . . . ,m, it follows

that (m+ t)-th row of V is a linear combination of first m rows with coefficients r
(t)
j , j = 0, 1, . . . ,m− 1.

Because the system V x = c is consistent, the constant terms must satisfy cm+t = r
(t)
m−1cm−1 + . . . +

r
(t)
1 c1 + r

(t)
0 c0 for t = 0, 1, . . . w −m and thus (a) is proved.

(b) If w ≥ 2m, then the linear dependence of the first 2m rows of the matrix V is given by


r
(0)
0 · · · r

(0)
m−1

...
. . .

...

r
(m−1)
0 · · · r

(m−1)
m−1




1 1 . . . 1
s1 s2 . . . sm
s21 s22 . . . s2m
...

...
...

...
sm−11 sm−12 . . . sm−1m

 =


sm1 · · · smm
sm+1
1 · · · sm+1

m
...

...
...

s2m−11 · · · s2m−1m

 .
Multiplying the above matrix equation from the righthand side by

sv1 0 0 · · · 0
0 sv2 0 · · · 0
...

...
...

...
...

0 0 0 · · · svm

 ,
where 0 ≤ v ≤ w −m, the linear dependence of the successive rows remains the same, i.e.,

r
(0)
0 · · · r

(0)
m−1

...
. . .

...

r
(m−1)
0 · · · r

(m−1)
m−1




sv1 sv2 . . . svm
sv+1
1 sv+1

2 . . . sv+1
m

...
...

...
...

sm+v−1
1 sm+v−1

2 . . . sm+v−1
m

 =


sm+v
1 · · · sm+v

m

sm+v+1
1 · · · sm+v+1

m
...

...
...

s2m+v−1
1 · · · s2m+v−1

m

 .
Because the system is consistent, the constant terms cj must satisfy cv+m+t = r

(t)
m−1cv+m−1+· · ·+r(t)0 cv

for 0 ≤ t ≤ m− 1. If w < 2m, then the proof can be done similarly.

So, if we let w = q−1 and c0 = a′q−1, c1 = a′q−2, . . . , cq−2 = a′1, where a′k’s are defined in the paragraph
above Equation (2), then by Lemma 2 we have

a′q−1−m−t = r
(t)
m−1a

′
q−m + . . .+ r

(t)
1 a′q−2 + r

(t)
0 a′q−1 (5)

for t = 0, 1, . . . q − 1−m, where r
(t)
j are coefficients of the polynomial r(t)(x) = xm+t (mod P (x)). Next

we show that r
(t)
j for different t’s can be obtained recursively from r

(0)
j , . . . , r

(0)
j−t where r

(0)
j−t = 0 if j < t.
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Lemma 3. Let s1, s2, . . . , sm be distinct elements of finite field Fq, P (x) =
∏m
z=1(x− sz), and r

(t)
j be the

coefficient of xj in the expansion of the polynomial r(t)(x) = xm+t (mod P (x)) for t ≥ 0. Then

(a) The coefficient r
(t)
j satisfies the following recurrence relation

r
(t+1)
j = r

(0)
j r

(t)
m−1 + r

(t)
j−1, j = 0, 1, . . . ,m− 1, (6)

where r
(t)
j = 0 for j < 0.

(b) The coefficient r
(t)
j also satisfies the following recurrence relation

r
(t)
j = r

(0)
j At + r

(0)
j−1At−1 + . . .+ r

(0)
j−tA0, j = 0, 1, . . . , k − 1, (7)

where the coefficients At, . . . , A0 are given by

A0 = 1, A1 = r
(0)
m−1, At = At−1r

(0)
m−1 +At−2r

(0)
m−2 + . . .+At−ir

(0)
m−i + . . .+A0r

(0)
m−t. (8)

Proof. (a) Let P (x) =
∏m
z=1(x−sz). The Euclidean algorithm implies that there are unique polynomials

q(t)(x) and r(t)(x) for (t ≥ 0) such that xm+t = q(t)(x)P (x) + r(t)(x) where deg(r(t)(x)) < m. As
P (x) = xm + bm−1x

m−1 + . . . + b1x + b0 where bj = (−1)m−jσm−j and σj ’s are elementary symmetric
polynomials in s1, s2, . . . , sm, the coefficients of polynomial r(0)(x) = xm − q(0)(x)P (x) = xm − P (x) are
known. Let

r(t)(x) = r
(t)
m−1x

m−1 + r
(t)
m−2x

m−2 + . . .+ r
(t)
1 x+ r

(t)
0 .

Because
xm+t+1 = xxm+t = x

(
q(t)(x)P (x) + r(t)(x)

)
= xq(t)(x)P (x) + (r

(t)
m−1x

m + r
(t)
m−2x

m−1 + . . .+ r
(t)
0 x)

= xq(t)(x)P (x) + r
(t)
m−1

(
q(0)(x)P (x) + r(0)(x)

)
+ r

(t)
m−2x

m−1 + . . .+ r
(t)
0 x =(

xq(t)(x) + r
(t)
m−1q

(0)(x)
)
P (x) + r

(t)
m−1(r

(0)
m−1x

m−1 + . . .+ r
(0)
0 ) + (r

(t)
m−2x

m−1 + . . .+ r
(t)
0 x),

the recurrence relation (6) is proved by comparing the remainders of xm+t+1 = q(t+1)(x)P (x)+r(t+1)(x).

(b) We prove it inductively on t. For t = 1, we obtain r
(1)
j = r

(0)
j r

(0)
m−1 + r

(0)
j−1 from (a). Hence the

result is true for t = 1 as A0 = 1 and A1 = r
(0)
m−1. Assume that Equation (7) holds for t. Then using

Equations (6) and (8) we have

r
(t+1)
j = r

(0)
j r

(t)
m−1 + r

(t)
j−1 =

r
(0)
j

(
r
(0)
m−1At + r

(0)
m−2At−1 + . . .+ r

(0)
m−t−1A0

)
+ r

(0)
j−1At + r

(0)
j−2At−1 + . . .+ r

(0)
j−t−1A0.

Because At is given by Equation (8), we obtain

At+1 = r
(0)
m−1At + r

(0)
m−2At−1 + . . .+ r

(0)
m−t−1A0.

Therefore,

r
(t+1)
j = r

(0)
j At+1 + r

(0)
j−1At + r

(0)
j−2At−1 + . . .+ r

(0)
j−t−1A0.

Hence the result holds for all t ≥ 0.
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3. Proof of Theorem 1

In this section, we study the minimum number of nonzero coefficients of f(x) which is induced by a
given mapping θ that moves m > 1 elements.

Proof of Theorem 1. (a) If 0 is a fixed point of θ, then a0 = 0 and thus a′q−1 = aq−1. In this case,
a′q−1 is also the coefficient of xq−1 in f∗(x). Assume that there is a k such that 0 ≤ k ≤ q − 1−m and

a′k+i = 0

for i = m,m− 1,m− 2, . . . , 1. By Lemma 1, this can be written as∑
s∈T

sm−i(sq−1−k−m
(
s− θ(s))

)
= 0, i = m,m− 1, . . . , 1.

If we consider elements sq−1−k−m(s − θ(s)) as unknown variables and sm−i as coefficients, the only
solution of this system is zero as the coefficient matrix is a regular Vandermonde matrix. This gives a
contradiction as θ(s) 6= s for each s ∈ T . Hence such k does not exist. This implies that there are no
m successive a′k all equal to the zero. Because 0 6∈ T , we have m ≤ q − 1. Let q − 1 = mv + r, where
0 ≤ r < m. In each block of m successive coefficients among

a′q−1, a
′
q−2, . . . a

′
q−m;

a′q−m−1, a
′
q−m−2, . . . a

′
q−2m;

...

a′q−(v−1)m−1, a
′
q−(v−1)m−2, . . . , a

′
q−vm;

there is at least one non-zero coefficient. Hence there are at least v nonzero a′k’s. If r = 0, then a′1 could
be −1 and thus a1 = 0. Hence there are at least v−1 nonzero coefficients ak of f(x). If r > 0, then there
are least v nonzero coefficients ak of f(x).
(b) If 0 is not a fixed point of θ, then 0 ∈ T and a0 6= 0. Assume that there is a k such that 0 ≤ k ≤ q−1−m
and

a′k+i = 0

for i = m− 1,m− 2, . . . , 1 (m− 1 successive a′k’s are zeroes). Again, since 0 ∈ T , by Lemma 1, this can
be written as ∑

s∈S\{0}

sm−i(sq−1−k−m
(
s− θ(s))

)
= 0, i = m− 1, . . . , 1.

For the similar reason as above, the only solution of this system is zero, which is a contradiction.
Hence such k does not exist. This implies that there is no m− 1 successive a′k all equal to zero.

Although a′q−1 6= 0 does not always imply aq−1 = 0, we note that if a′q−1 = a0 + aq−1 = a0 then

aq−1 = 0. Hence there are at least q−1
m−1 − 1 nonzero coefficients ak of f(x) if m− 1 | q − 1 and there are

least q−1
m−1 nonzero coefficients ak of f(x) if m− 1 - q − 1.
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4. Polynomials achieving the lower bound with m | q − 1

In this section we describe polynomials that have the minimum number of nonzero coefficients when
m | q − 1. They turn out to be a special type of permutation polynomials. First of all, we prove the
following lemma which deals with the case when all the moved elements satisfying the equation xm = z
for some z ∈ F∗q = Fq \ {0}.

Lemma 4. Let f(0) = 0 and T = {s | s ∈ Fq, f(s) 6= s} = {s1, . . . , sm}. If two successive m-blocks
have all coefficients equal to the 0 except one nonzero coefficient in the same position in each block, then
elements of T are solutions of the equation xm = z for some z ∈ F∗q and thus m | q − 1. Conversely,
if all the elements of T are solutions of the equation xm = z for some z ∈ F∗q where m | q − 1, then
a′q−1−j = a′q−1−j−mz for every j such that m ≤ j ≤ q − 2.

Proof. Let q − 1 = mv + r where 0 ≤ r < m. Let 0 ≤ i < v − 1 (v is number of m-blocks). Assume that
(i+ 1)-th and (i+ 2)-th m-blocks both contain all zeros except at j-th position, i.e.,


1 1 . . . 1
s1 s2 . . . sm
...

...
. . .

...
sm−11 sm−12 . . . sm−1m



sim1 (s1 − θ(s1))
sim2 (s2 − θ(s2))

...
simm (sm − θ(sm))

 =



0
...
0

a′q−1−im−j
0
...
0


,


1 1 . . . 1
s1 s2 . . . sm
...

...
. . .

...
sm−11 sm−12 . . . sm−1m



s
(i+1)m
1

(
s1 − θ(s1))

s
(i+1)m
2

(
s2 − θ(s2))
...

s
(i+1)m
m

(
sm − θ(sm))

 =



0
...
0

a′q−1−(i+1)m−j
0
...
0


.

Let ~y = y~ej , y ∈ Fq, where ~ej = (0, . . . , 0, 1, 0, . . . 0)T and 1 is at j-th position. Denote by

V :=


1 1 . . . 1
s1 s2 . . . sm
...

...
. . .

...
sm−11 sm−12 . . . sm−1m

 .
Then solutions of the system V ~x = ~y, where y varies over Fq, form a vector subspace of the Fmq over

Fq. As there are q different vectors ~y and V is a regular matrix, this subspace has q elements with a basis
of one vector and all its elements are linearly dependent. Namely, if matrix equations above are satisfied

then vectors (sim1 (s1− θ(s1)), . . . , simm (sm− θ(sm)))T and (s
(i+1)m
1 (s1− θ(s1)), . . . , s

(i+1)m
m (sm− θ(sm)))T

are linearly dependent. Hence zsimk (sk−θ(sk)) = s
(i+1)m
k (sk−θ(sk)) for some z ∈ F∗q . As 0 6∈ T it follows
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that smk = z for all k = 1, 2, . . . ,m and some z ∈ F∗q . As sk are distinct, equation xm − z = 0 has all
solutions in Fq and thus m | q − 1.

The converse follows directly from Equation (2).

Lemma 5. Let m | q−1 and ψ be primitive m-th root of unity in Fq. Let f(x) be the polynomial induced
by the cycle of the form

(s, sψi, sψ2i, sψ3i, . . . , sψ(m−1)i)

for some s ∈ F∗q and positive integer i. Then f(x)− x has (q − 1)/m possible nonzero coefficients a′q−um
where u = 1, 2, . . . , q−1m and all other coefficients are equal to the zero.

Proof. By Lemma 1 (or the main theorem in [16]), the coefficients ai of induced polynomial f(x) are
given by

a′q−1−t =
m−1∑
j=0

(sψj)t(sψj − sψj+i)

= (1− ψi)st+1
m−1∑
j=0

ψj(t+1).

If gcd(t + 1,m) 6= m then
∑m−1
j=0 ψj(t+1) = 0 and thus a′q−1−t = 0. If gcd(t + 1,m) = m then we have

t = um− 1 and
∑m−1
j=0 ψj(t+1) = m. Therefore

aq−um = st+1(1− ψi)m+ δq−um1 ,

where u = 1, 2, . . . , q−1m . Thus a′q−um = aq−um − δq−um1 can have at most q−1
m possible non-zeros.

We note that a1 = 0 (i.e., a′1 = −1) if and only if m(1 − ψi) = −1. More generally, we can prove
Theorem 2.

Proof of Theorem 2. (a) We first prove that any mapping θ moving an m-set T = {s, sψ, . . . , sψm−1}
(s 6= 0) defined by θ(sψj) = (1 +m−1)sψj induces a polynomial with (q − 1)/m− 1 nonzero coefficients.
By Lemma 1, we obtain

a′k =

m−1∑
j=0

(sψj)q−1−k(sψj − θ(sψj))

=

m−1∑
j=0

(sψj)q−1−k(sψj − (1 +m−1)sψj))

= −
m−1∑
j=0

(sψj)q−km−1.

Similar to the proof of Lemma 5, we know that a′k = 0 if and only if gcd(q−k,m) 6= m. If gcd(q−k,m) = m
then a′q−um = −sum for 1 ≤ u ≤ (q − 1)/m. Hence aq−um 6= 0 for 1 ≤ u ≤ (q − 1)/m − 1. However,
a′1 = −sq−1 = −1 implies that a1 = −a′1 + 1 = 0. Hence there are exactly (q − 1)/m − 1 nonzero
coefficients in f(x).

10



Conversely, we need to prove that if a polynomial f(x) moves m elements and contains the least
number of possible nonzero coefficients, then it must be defined by θ(sψj) = (1 +m−1)sψj on the set T .
By the proof of Theorem 1, the least number of the nonzero coefficients is (q − 1)/m − 1. In this case,
q − 1 = vm and in particular, each m-block contains at most 1 nonzero coefficient at the last position,
i.e., a′q−im 6= 0 i = 1, 2, . . . , v− 1 and a1 = 0. By Lemma 4, all moved elements are roots of xm − sm = 0
for some s 6= 0. Moreover, a′q−1−j = a′q−1−j−ms

m and a′1 = −1. Thus j = um where u < v. Consider

V =


1 1 . . . 1
s sψ . . . sψm−1

...
...

. . .
...

sm−1 (sψ)m−1 . . . (sψm−1)m−1

 .
By the proof of Lemma 4, we obtain that all solutions of the system V x = b~em are linearly dependent

when b varies in Fq. Because s((1 − ψ), ψ(1 − ψ), ψ2(1 − ψ), . . . , ψm−1(1 − ψ)) is a solution to V x =
sm(1−ψ)m~em and (s− θ(s), sψ− θ(sψ), . . . , sψm−1− θ(sψm−1)) is a solution to V x = a′q−1−m~em by the
proof of Lemma 4, there exists a ∈ Fq such that

sψj − θ(sψj) = a(sψj − sψj+1).

This implies that

θ(sψj) = (1− a)sψj + asψj+1 = sψj(1− a+ aψ), j = 0, 1, . . . ,m− 1.

Now a′1 = −1 and Lemma 1 implies 1− a+ aψ = 1 +m−1.
(b) Similar to the proof of Lemma 5, the induced permutation polynomial from θ has q−1

m possible nonzero
coefficients. Moreover, by Lemma 1, we know

a1 = 1 +

m∑
j=0

sq−2j (sj − θ(sj)) = 1 +

m∑
j=1

sq−2j (sj − ψisj) = 1 + (1− ψi)m.

Hence a1 = 0 if and only if ψi = 1+m−1. Therefore f has q−1
m −1 nonzero coefficients if ψi = 1+m−1.

For the polynomial which moves m elements, the following general result regarding its degree holds.

Theorem 4. Let f(x) be a polynomial over Fq with degree at most q − 1. If f has exactly k < q fixed
elements of Fq, then the degree of f is at least k. This lower bound is achieved for

(
q
k

)
(q−1) polynomials.

Proof. Let T be the subset of Fq which contains all the elements in Fq not fixed by f . Since the polynomial
f(x) fixes elements of the set Fq \ T then it can be written as

f(x) = x+ h(x)
∏

s∈Fq\T

(x− s)

where h(x) is some polynomial with no zeros in T . Indeed, for every s ∈ Fq \ T , f(s) − s = 0 implies
(x− s) | f(x)−x and so

∏
s∈Fq\T (x− s) | f(x)−x. Now if h(x) has a zero a ∈ T then a would be a fixed

element of f(x), a contradiction. Therefore, deg(f) ≥ k = deg(
∏
s∈Fq\T (x − s)). Further deg(f(x)) = k

if and only if h(x) = c where c ∈ Fq \ {0} and so there are q− 1 polynomials of the least degree with this
property for the fixed set T of moved elements and in total there are

(
q
k

)
(q − 1) polynomials of degree k

with k fixed elements.
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Now we derive some lower bounds for the number of permutation polynomials with the given degree
at most q −m where m | q − 1 and at most q−1

m nonzero coefficients.

Proposition 1. Let m | q − 1. Then
(a) There are at least (m−1) q−1m permutation polynomials, each moves m elements, has the degree q−m,

and has at most q−1
m nonzero coefficients. In particular, if ψ is m-th root of unity and 1 +m−1 = ψi for

some i then there are exactly q−1
m permutation polynomials of degree q −m, each moves m elements and

has exactly q−1
m − 1 nonzero coefficients.

(b) There are at least m
q−1
m − 1 permutation polynomials with the degree at most q−m and at most q−1

m
nonzero coefficients.

(c) The number of permutation polynomials of degree at most q −m is at least q2(m
q−1
m − 1).

(d) The number of permutation polynomials of the degree q − m which induce full m-cycles is at least
q q−1m ϕ(m).
(e) The number of the permutation polynomials of the degree q −m which moves m elements is at least
q q−1m (m− 1).

Proof. (a) Let ξ be a generator of F∗q . Let m | q−1. Let ψ = ξ
q−1
m and let w = ξk, k ∈ {0, 1, . . . , q−1m −1}.

By Theorem 2, permutation polynomials induced by θi,k : wψj → wψj+i, where i ∈ {1, 2, . . . ,m− 1} are
permutation polynomials which moves the m elements and has at most q−1

m non-zero coefficients (these
are aq−um’s where u = 1, . . . , (q−1)/m−1). For different choices of i and k we have distinct permutations
with this property. Therefore there are at least (m − 1) q−1m permutation polynomials of degree q −m
which move m elements and have at most q−1

m nonzero coefficients. The rest of proof of (a) follows from

Theorem 2 (b). where j = 0, 1, 2, . . . , q−1m − 1 are permutation polynomials of degree q −m, each moves

m elements,and has exactly q−1
m − 1 nonzero coefficients.

(b) If k 6= k′, then permutations θi,k and θi,k′ are disjoint. By Corollary 1, composition of distinct
permutations θi,k has also at most q−1

m nonzero coefficients because the positions of q−1
m − 1 nonzero

coefficients of θi,k are determined by q and m only and 1 extra nonzero coefficient comes from the
coefficient of x. Thus we can obtain( q−1

m

1

)
(m− 1) +

( q−1
m

2

)
(m− 1)2 + . . .+

( q−1
m
q−1
m

)
(m− 1)

q−1
m = m

q−1
m − 1,

such permutations by varying the number of k’s from 1 to q−1
m . Thus the lower bound for the number of

permutation polynomials of the degree at most q −m and at most q−1
m nonzero coefficients is

m
q−1
m − 1.

(c) For any permutation polynomial in the proof of (b), composition with the linear polynomial x+ b
from the right side and the linear polynomial x+ c from the left side results in a permutation polynomial

of the same degree. Hence there are q2(m
q−1
m −1) such polynomials. We now show that these polynomials

are all distinct. Indeed, if the permutation θi,k is composed by x + b from right and x + c from the left
then we have mapping θi,k(x+ b) + c which sends elements ξkψj− b to ξkψj+i+ c and sends x to x+ b+ c
otherwise. Obviously, for different choices of b, c, i, k we have different mappings.

(d) If we want to estimate the lower bound for the number of permutation polynomials of the degree
q−m we should note that conjugation with a linear polynomial does not change the degree. To obtain the
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number of m-cycles with a given property we can take the set T = {1, ψ, ψ2, . . . , ψm−1} and the mapping
θi : ψj → ψj+i. If gcd(i,m) = 1 then θi is full cycle on T . Then mappings (ax + b) ◦ θi ◦ (ax + b)−1 :
aT + b→ aT + b are full cycles on the set aT + b where a = ξt, for t = 0, 1, . . . , q−1m − 1. Thus there are
at least

q
q − 1

m
ϕ(m)

permutation polynomials of the degree q −m which induce full m-cycles. This bound was obtained in
[12, Theorem 1.1].

(e) From the previous case it immediately follows that the number of permutation that moves the m
elements of the set aT + b, not necessarily full cycles, of the degree q −m is at least

q
q − 1

m
(m− 1)

as we don’t necessarily have gcd(m, k) = 1.

We remark that the lower bound in (b) can be improved. In fact, in the proof of (b) we con-
sidered permutations θi,k which moves m elements and have at most q−1

m nonzero coefficients a′q−um,

u = 1, 2, . . . , q−1m − 1, by Theorem 2. Similarly, we can consider permutation polynomials (denote corre-

sponding mapping by θdi,k ) which moves dm elements and have at most q−1
dm nonzero coefficients a′q−s(dm),

s = 1, 2, . . . , q−1dm . By Corollary 1, composition of disjoint permutations θi,k and θdi,k induces a permuta-

tion polynomial with degree q −m and at most q−1
m nonzero coefficients. We omit the details since the

expressions are more complicated.

5. An algorithm for computing the coefficients of polynomials

It is usual to use Lagrange interpolation formula or variations of it such as f(x) =
∑
s∈Fq θ(s)(1−(x−

s)q−1) (see [11])) or Equation (3) for calculating coefficients of a polynomial induced by a mapping θ over
a finite field. The classical Lagrange interpolation formula needs O(q2) operations. In general we cannot
expect any algorithm with performance better than O(q) because there are q coefficient to determine.
Here we will give algorithm for computing the polynomial induced by given mapping θ : Fq → Fq of
complexity O(q3/2). Let θ′ : Fq → Fq be a given mapping. Let θ(x) = θ′(x) − θ′(0), i.e., θ(0) = 0. We
want to find a polynomial f(x) such that f(x) and f(x)− f(0) induce mapping θ and θ′ respectively.

Let 1 < m be a factor of q−1 of moderate size (it is desirable to choosem ≈
√
q − 1 if one can and it will

be justified in Equation (9)). Let D < F∗q be a cyclic subgroup of order m, i.e., D = {d1, d2, . . . , dm} =

{x | x ∈ Fq, xm = 1} and si, i = 1, 2, . . . , q−1m are distinct representatives of the equivalence classes
siD. For each equivalence class siD, let fi(x) be a polynomial induced by the mapping φi such that
φi |siD= θ |siD and φi fixes all other elements of Fq. So fi(x) moves at most m elements (say mi ≤ m

elements) and all the moved elements in siD are roots of the equation xm = smi . Hence coefficients b
(i)
q−1−j

of fi(x)− x can be computed directly by using Lemma 1 for j = 0, . . . ,m− 1. For j = m, . . . , q − 2, for
the purpose of computational efficiency, we apply Lemma 4 to obtain biq−1−j = biq−1−j−ms

m
i . Finally we

apply the following result to find coefficients of f(x).

Lemma 6. Let Ti for i = 1, . . . , h be pairwise disjoint subsets of Fq and 0 6∈
⋃h
i=1 Ti. Let φi, i =

1, 2, . . . h, be mappings such that φi moves elements of set Ti and let the polynomial induced by φi be

13



fi(x) =
∑q−1
j=0 a

(i)
j xj. Define the mapping

θ(x) =

{
φi(x), x ∈ Ti, i = 1, 2, . . . h;

x, x ∈ Fq \ (
⋃h
i=1 Ti).

Then the polynomial induced by θ is f(x) =
∑h
i=1 fi(x) − (h − 1)x. In particular, the coefficient c′1 of

f(x)− x is c′1 =
∑h
i=1 a

(i)
1 − h.

Proof. By Lemma 1 and 0 6∈
⋃h
i=1 Ti, the coefficients of the polynomial induced by θ are given by

ck =
∑

s∈∪hi=1Ti

sq−1−k(s− θ(s)) + δk1 , k = 1, . . . q − 2,

cq−1 =
∑

s∈∪hi=1Ti

sq−1(s− θ(s)),

c0 = 0,

Then for k = 2, 3, . . . , q − 2 we have

ck =

h∑
i=1

∑
s∈Ti

sq−1−k(s− φi(s)) =

h∑
i=1

a
(i)
k .

Further

cq−1 =

h∑
i=1

∑
s∈Ti

sq−1(s− φi(s)) =

h∑
i=1

a
(i)
q−1,

and

c′1 =

h∑
i=1

∑
s∈Ti

sq−1−1(s− φi(s)) =

h∑
i=1

a
(i)′
1 =

h∑
i=1

(a
(i)
1 − 1) =

h∑
i=1

a
(i)
1 − h.

Hence c1 =
∑h
i=1 a

(i)
1 − (h− 1) and f(x) =

∑h
i=1 fi(x)− (h− 1)x.

Now we present the following algorithm to compute the coefficients of a polynomials induced by a
given mapping.

Input: a given mapping θ with θ(0) = 0 over Fq, 1 < m | q−1, a cyclic subgroup D = {d1, d2, . . . , dm},
and distinct coset representatives si, i = 1, . . . , q−1m .

Output: coefficients ai of the polynomial induced by θ.
Algorithm:
Set a1 = − q−1m + 1 and aj = 0 for j = 0, 2, 3, . . . , q − 1.

FOR i = 1, 2, . . . , q−1m
{

Set bj = 0, for j = 1, 2 . . . q − 1;
(1) FOR z = 1, 2, . . . ,m

a← sidz
Qz = a− θ(a)
FOR t = 0, 1, . . . ,m− 2
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bq−1−t ← bq−1−t +Qz;
Qz ← Qz · a

bq−1−(m−1) ← bq−1−(m−1) +Qz;

(2) FOR u = 1, 2, . . . , q−1m − 1
W ← sumi ;
FOR t = 0, 1, . . . ,m− 1

bq−1−um−t ←W · bq−1−t
(3) FOR j = 1, 2, . . . , q − 1

aj ← aj + bj .

}
To evaluate bj where j = q − 1, . . . , q−m in Step (1) we need m2+m additions and m2 multiplications.

Suppose we need 1 multiplication for each (smi )u (if elements smi are represented as ψj where ψ is a
primitive element of F∗q). So there are totally (m + 1)( q−1m − 1) multiplications in Step (2) to compute
bj , j = q −m − 1, . . . , 1. To correct coefficients of f(x) in Step (3) we need q − 1 additions. Therefore
for i = 1, 2, . . . , q−1m there are m2 + (m+ 1)( q−1m − 1) multiplications and m+m2 + (q − 1) additions or

2m2 + 2(q − 1)− 1 + q−1
m operations. Thus in total there are

h(m) =
q − 1

m
(2m2 + 2(q − 1)− 1 +

q − 1

m
) = 2(q − 1)m+

2(q − 1)2 − (q − 1)

m
+

(q − 1)2

m2

operations. Note that the above expression is quite complicated to find the minimal value of h(m) by
computing its derivative. Instead, we choose m =

√
q − 1 directly. Then we have

h(
√
q − 1) = 4(q − 1)3/2 + (q − 1)−

√
q − 1 = O(q3/2). (9)

If the number of operations for calculating each (sui )m is m− 1 in Step (2) (the worst possible case),
then the above algorithm still has complexity O(q3/2) in a similar way.

We should also note that it is not always possible to find m | q − 1 such that m ≈
√
q − 1. If q = p2n

then we should choose m = pn + 1. In any case for 1 < m < q − 1 where m ≈ (q − 1)1/k k ≥ 2 this
algorithm is better than O(q2).

There exists a fast version of Lagrange interpolation algorithm which is a divide-and conquer algorithm
and it is based on polynomial multiplication over finite fields. It is known from [19] that FFT based
algorithm are superior to the classical algorithms for polynomials of degree 25 modulo 100-bit prime.
Here the fast interpolation algorithm needs O(q(log q)2 log log q) operations (see [8]). Asymptotically
this fast Lagrange interpolation algorithm has better performance than ours. However, our algorithm is
simple and can be used for computations by hand when q is small. Moreover, we have the exact counts
for the number of operations for any q.

We note that the above algorithm is also suitable for parallel computing because coefficients for the
distinct equivalent classes can be calculated simultaneously by distinct processors.

In the case when the number mθ of moved elements by the mapping θ is small, i.e., mθ ≤ 2
√
q − 1−1

we should apply an algorithm which directly follows from the Lemma 1:
Input: a given mapping θ over Fq and set t = {s1, s2, . . . , smθ} of the moved elements by θ.
Output: coefficients ai of the polynomial induced by θ.
Algorithm:
Set a1 = 1, a0 = θ(0) and aj = 0 for j = 2, 3, . . . , q − 1.
FOR i = 1, 2, . . . ,mθ
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{ Q = si − θ(si)
FOR t = 0, 1, . . . , q − 2
{aq−1−t ← aq−1−t +Q;
Q← Q · si }

}
aq−1 ← aq−1 − a0.

This algorithm has qmθ + 1 additions and (q − 1)mθ multiplications, i.e., totally (2q − 1)mθ + 1
operations, which has better performance than the previous algorithm.

6. Proof of Theorem 3

In this section, we study the minimum number of nonzero coefficients of f(x) which is induced by
a given mapping θ that moves m > 1 elements such that m - q − 1. In order to complete the proof of
Theorem 3 we need the following lemmas.

Lemma 7. Let m < q−1
2 . Let T = {s1, s2, . . . , sm} be the set of all elements of Fq moved by f(x).

Assume m - (q − 1) and 0 6∈ T . If two successive m-blocks, i-th and (i + 1)-th block, have one nonzero
coefficient in each m-block, respectively, then s1, s2, . . . , sm are roots of the polynomial

P (x) = xkd − bx(k−1)d + b2x(k−2)d − . . .+ (−1)kbk =
x(k+1)d − (−b)k+1

xd + b
,

where m = kd and (k + 1)d | q − 1 and −b = vd for some v ∈ F∗q .

Lemma 8. If there exists an integer d such that m = kd, (k + 1)d | q − 1, and the moved elements by

θ are roots of the polynomial P (x) = x(k+1)d−(−b)k+1

xd+b
for some −b = vd ∈ F∗q , then the number of the

nonzero coefficients of f(x) is at least 2 q−1
(k+1)d − 1.

Let us first prove Theorem 3.

Proof of Theorem 3. First we show that ifm > q−1
2 then any of these two lower bounds is 1. Obviously,

if m > q−1
2 then b 32b

q−1
m cc = 1. Also, if m = kd > q−1

2 , then (k+ 1)d | q− 1 implies (k+ 1)d = q− 1 and

so 2 q−1
(k+1)d − 1 = 1 as well. Therefore we have a trivial lower bound when m > q−1

2 .

Assume now m < q−1
2 . If there is exactly one non-zero coefficient in each of two successive m-blocks

then, by Lemma 7, s1, s2, . . . , sm are solutions of the equation

x(k+1)d − (−b)k+1

xd + b
= 0.

On the other hand by Lemma 8, 2 q−1
(k+1)d − 1 is the least number of nonzero coefficients in the polynomial

with given set of moved elements.
Otherwise, the nonzero coefficients in the successive m-blocks in the best case have a pattern of

1, 2, 1, 2, . . ., (or 2, 1, 2, 1, . . .). Let q − 1 = vm + r. If v is even, the least number of nonzero coefficients
is 3

2v = 3
2b

q−1
m c. If v is odd, the least number of nonzero coefficients is either 3

2 (v − 1) + 1 = 3
2b

q−1
m c −

1
2

or 3
2 (v − 1) + 2 = 3

2b
q−1
m c+ 1

2 . Both are greater than or equal to b 32b
q−1
m cc.
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We demonstrate now a few examples which meet the lower bounds in the theorem.
First, we consider F11, T = {1,−1, 2,−2} and f(x) = 4x7 + 9x5 + 7x3. Indeed, in this case, m = 4.

As 3m
2 - q− 1, the lower bound for the number of nonzero coefficients is b 32b

q−1
m cc = 3. This set of moved

elements is not the solution set of the equation of x(k+1)d−(−b)k+1

xd+b
= 0.

Secondly, let Fq = F26 , d = 3, m = 2d = 6 - q − 1 = 63 and 3d = 9 | 63. The polynomial

f(x) = x+ x64−x
x6+x3+1 = x4 − x10 + x13 − x19 + x22 − x28 + x31 − x37 + x40 − x46 + x49 − x55 + x58 moves

6 elements which are solutions of x6 + x3 + 1 = x9+1
x3+1 = 0 and it has 2 q−13d − 1 = 13 nonzero coefficients.

Further b 32b
63
6 cc = 15 > 2 q−13d − 1.

Finally, an example of monomial which satisfies the trivial bound is f(x) = x2 over F4 = {0, 1, α, α+1}
with α2 = α+ 1.

We end this section with the proofs of Lemma 7 and Lemma 8.

Proof of Lemma 7. Let f(x) =
∑q−1
k=0 akx

k be any polynomial moving m elements such that a0 = 0,
i.e., 0 6∈ T . Let a′k be defined as in Section 2. Let q − 1 = ms+ r where 1 ≤ r ≤ m− 1.

For t ≥ 0 by Equation (5), we have the following recurrence relation

a′q−1−m−t =

m−1∑
j=0

r
(t)
j a′q−1−j .

Assume that in the first m-block all coefficients are zeros except a′q−1−j0 where 0 ≤ j0 ≤ m− 1. This
means that, for q − 1−m ≥ t ≥ 0,

a′q−1−m−t =

m−1∑
i=0

r
(t)
i a′q−1−i = r

(t)
j0
a′q−1−j0 .

Thus
a′q−1−m−t = 0 if and only if r

(t)
j0

= 0. (10)

Assume that the coefficients in the second block satisfies a′q−1−m = a′q−1−m−1 = . . . = a′q−1−m−(h−1) =

a′q−1−m−(h+1) = . . . = a′q−2m = 0 and a′q−1−m−h 6= 0. As a consequence of Theorem 1, we must have

0 ≤ h ≤ j0. Moreover, by Equation (10), we have

r
(t)
j0

= 0 for t = 0, . . . , h− 1, h+ 1, . . . ,m− 1, and r
(h)
j0
6= 0

Hence we now divide our discussions into two cases:
CASE I: Assume that a′q−1−m = 0, i.e, h > 0.
Using the fact that

r
(t)
j0

= 0 for t = 0, . . . , h− 1, and r
(h)
j0
6= 0,

and the recurrence relation (7), i.e.,

r
(t)
j0

= r
(0)
j0
At + r

(0)
j0−1At−1 + . . .+ r

(0)
j0−tA0,

we can show that r
(t)
j0

= r
(0)
j0−t = 0 for t = 1, 2, . . . h− 1. Indeed, for t = 1,

0 = r
(1)
j0

= r
(0)
j0
A1 + r

(0)
j0−1A0 = r

(0)
j0−1,
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and more generally

0 = r
(t)
j0

= r
(0)
j0
At + r

(0)
j0−1At−1 + . . .+ r

(0)
j0−tA0 = 0 + r

(0)
j0−tA0 = r

(0)
j0−t.

On the other hand, we have

0 6= r
(h)
j0

= r
(0)
j0
Ah + r

(0)
j0−1Ah−1 + . . .+ r

(0)
j0−hA0 = r

(0)
j0−h.

Since r
(0)
j0

= · · · = r
(0)
j0−h+1 = 0, by Equations (7) and (8), we have for t > h that

r
(t)
j0

= r
(0)
j0
At + r

(0)
j0−1At−1 + . . .+ r

(0)
j0−tA0 = At−hr

(0)
j0−h +At−h−1r

(0)
j0−h−1 + . . .+A0r

(0)
j0−t

= (At−h−1r
(0)
m−1 +At−h−2r

(0)
m−2 + . . .+A0r

(0)
m−(t−h))r

(0)
j0−h +At−h−1r

(0)
j0−h−1 + . . .+A0r

(0)
j−t

= At−h−1(r
(0)
m−1r

(0)
j0−h + r

(0)
j0−h−1) +At−h−2(r

(0)
m−2r

(0)
j0−h + r

(0)
j0−h−2) + . . .+

+A0(r
(0)
m−(t−h)r

(0)
j0−h + r

(0)
j0−t).

Using the fact that r
(t)
j0

= 0 for t = h+ 1, we obtain

r
(h+1)
j0

= A0(r
(0)
m−1r

(0)
j0−h + r

(0)
j0−h−1) = 0

and thus (r
(0)
m−1r

(0)
j0−h + r

(0)
j0−h−1) = 0. More generally, for any h ≤ t ≤ m − 1, we have r

(t)
j0

=

A0(r
(0)
m−(t−h)r

(0)
j0−h + r

(0)
j0−t) = 0, i.e.,

r
(0)
j0−hr

(0)
m−(t−h) + r

(0)
j0−t = 0, t = h+ 1, h+ 2, . . .m− 1.

As in Lemma 3, r
(0)
i = 0 for i < 0. Hence for t = j0 + 1, . . . ,m − 1, we obtain r

(0)
j0−t = 0 and thus

r
(0)
m−(j0−h)−1 = . . . = r

(0)
h+1 = 0 because r

(0)
j0−h 6= 0.

In summary, our assumption of having the nonzero coefficients at (q−1−j0)-th and (q−1−m−h)-th

positions in the first two m-blocks of coefficients lead us to the following relations on coefficients r
(0)
k :

(a) r
(0)
j0−t = 0 for t = 1, 2, . . . h− 1,

(b) r
(0)
j0−h 6= 0,

(c) r
(0)
m−(j0−h)−1 = . . . = r

(0)
h+1 = 0, and

(d) r
(0)
j0−hr

(0)
m−(t−h) + r

(0)
j0−t = 0, t > h.

We remark that conditions (b)-(d) still hold even for h = 0, which will be considered in case II.
We continue our discussion with the following three sub-cases:

(1) Assume that j0 − h < m − (j0 − h) < j0. Then it follows from (a) that r
(0)
m−(j0−h) = 0 and then

from (d) that r
(0)
0 = 0 because j0 > h (as a result of Theorem 1). However, we know that 0 is fixed

element of f(x) and thus si 6= 0. Hence by definition r
(0)
0 = s1 · · · sm 6= 0, a contradiction.

(2) Assume that m − (j0 − h) ≥ j0 > j0 − h. Then from (a) and (c) we obtain r
(0)
m−(j0−h)−1 = . . . =

r
(0)
u = 0 where u = min{h+ 1, j0 − h+ 1}.
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If h < j0−h then r
(0)
j0−h = 0, a contradiction to (b). Therefore u = j0−h+1. Using xm = P (x)+r(0)(x)

together with relation (d) we obtain

m∏
i=1

(x− si) = xm − r(0)m−1xm−1 − . . .− r
(0)
m−(j0−h)x

m−(j0−h) − r(0)j0−hx
j0−h − . . .− r(0)0 =

(xm−(j0−h) − r(0)j0−h)(xj0−h − r(0)m−1xj0−h−1 − . . .− r
(0)
m−(j0−h)) = (xm−(j0−h) − r(0)j0−h)R(x).

Because xm−(j0−h)− r(0)j0−h | P (x), P (x) | xq−1− 1 and r
(0)
j0−h 6= 0, we obtain that m− (j0− h) | q− 1.

Because m - q− 1, j0−h 6= 0, i.e., deg(R(x)) > 1. Denote d = m− (j0−h) and r
(0)
j0−h = b. Then we have

d < m.
Let us arrange the elements of T in a way such that the solutions of the xd−b = 0 are at the beginning

of list (i.e., s1, . . . , sd are solutions to xd − b = 0) and other elements at the end (sd+1, . . . , sm). If we
look at the system of equations for the coefficients of the induced polynomial in the first block

1 . . . 1 1 . . . 1
s1 . . . sd sd+1 . . . sm
...

. . .
. . .

...
b . . . b sdd+1 . . . sdm
...

. . .
. . .

...

bsj0−h−11 . . . bsj0−h−1d sm−1d+1 . . . sm−1m


 s1 − θ(s1)

...
sm − θ(sm)

 =



0
...
0

aq−1−j0
0
...
0


.

Under our assumption, d = m− j0 +h > j0−h. Subtracting the first j0−h rows multiplied by b from the
last j0 − h rows in the augmented matrix of the above system, the last j0 − h rows of the matrix become

0 . . . 0 sdd+1 − b . . . sdm − b |0
...

. . .
...

...
. . .

... |
...

0 . . . 0 s
d+(j0−h)−1
d+1 − bs(j0−h)−1d+1

... s
d+(j0−h)−1
m − bs(j0−h)−1m |0

 ,
which generates a homogeneous system of the equations of m− d unknown variables 1 1 . . . 1

sd+1 sd+2 . . . sm

.

.

.

.
.
.

s
(j0−h)−1
d+1

s
(j0−h)−1
d+2

. . . s
(j0−h)−1
m


s

d
d+1 − b 0 . . . 0

0 sdd+2 − b . . . 0

.

.

.

.
.
.

.

.

.

0 . . . 0 sdm − b

[sd+1 − θ(sd+1)

.

.

.
sm − θ(sm)

]
=

[
0

.

.

.
0

]
,

i.e., 
1 1 . . . 1

sd+1 sd+2 . . . sm
...

. . .

s
(j0−h)−1
d+1 s

(j0−h)−1
d+2 . . . s

(j0−h)−1
m


(sdd+1 − b)(sd+1 − θ(sd+1))

...
(sdm − b)(sm − θ(sm))

 =

0
...
0

 .
Because the above coefficient matrix is regular and sdj 6= b for j = d + 1, . . .m from the assumption,

we must have θ(sj) = sj for j = d+ 1, . . .m, a contradiction.

19



(3) Assume that j0 > (j0 − h) ≥ m − (j0 − h). Because of (a) and r
(0)
j0

= 0, there exists e ≥ j0 such

that r
(0)
e = r

(0)
e−1 = . . . = r

(0)
j0

= . . . = r
(0)
(j0−h)+1 = 0.

But relation (d)

r
(0)
j0−hr

(0)
m−(t−h) + r

(0)
j0−t = 0, t > h

implies that for any y such that j0 − h+ 1 ≤ y ≤ e and t = m+ h− y > h we have m− (t− h) = y and

0 = r(0)y = r
(0)
j0−(m+h−y) = r

(0)
y−(m−(j0−h)).

Using now this result in (d) with t = 2m+2h−y−j0 (indeed, t > h because t−h = 2m+h−y−j0 =

(m − (j0 − h)) + (m − y) > 0), we obtain m − (t − h) = j0 − (m + h − y) and r
(0)
y−2(m−(j0−h)) =

r
(0)
j0−(2m+2h−y−j0) = r

(0)
2j0−2m−2h+y = 0. More generally, we have

r(0)e = r
(0)
e−(m−(j0−h)) = r

(0)
e−2(m−(j0−h)) = . . . = 0,

r
(0)
e−1 = r

(0)
e−1−(m−(j0−h)) = r

(0)
e−1−2(m−(j0−h)) = . . . = 0,

...

r
(0)
(j0−h)+1 = r

(0)
(j0−h)+1−(m−(j0−h)) = r

(0)
(j0−h)+1−2(m−(j0−h)) = . . . = 0,

where indices are well defined.
Thus polynomial P (x) has blocks of the coefficients of the length d = m− (j0 − h) with say l successive

zeros and g successive possibly nonzero elements where l + g = d. Block of coefficients r
(0)
e = r

(0)
e−1 =

. . . = r
(0)
j0

= . . . = r
(0)
(j0−h)+1 = 0 is block of l zero coefficients and block r

(0)
(j0−h), r

(0)
(j0−h)−1, . . . , r

(0)
(j0−h)−g+1

is block of possibly nonzero coefficients.

In relation (d), we have r
(0)
j0−hr

(0)
m−(t−h) +r

(0)
j0−t = 0 for t > h. Put t = h+1, t = h+2, . . . , t = h+g−1

to obtain

r
(0)
j0−hr

(0)
m−1 + r

(0)
j0−h−1 = 0,

r
(0)
j0−hr

(0)
m−2 + r

(0)
j0−h−2 = 0,

...
r
(0)
j0−hr

(0)
m−g+1 + r

(0)
j0−h−g+1 = 0,

Similarly putting in (d) t = j0 − (g − 1), j0 − (g − 2), . . . , j0 (note that j0 − (g − 1) > d− (g − 1) > l =
e− (j0 − h) ≥ j0 − (j0 − h) = h), we obtain

r
(0)
j0−hr

(0)
m−(j0−h)+(g−1) + r

(0)
g−1 = 0, .

r
(0)
j0−hr

(0)
m−(j0−h)+(g−2) + r

(0)
g−2 = 0,

...
r
(0)
j0−hr

(0)
m−(j0−h) + r

(0)
0 = 0.
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Also as r
(0)
0 6= 0 and r

(0)
m−(j0−h)r

(0)
j0−h + r

(0)
0 = 0 it implies that r

(0)
m−(j0−h) 6= 0 so that m − (j0 − h) 6=

y± k(m− (j0−h)) for any j0−h+ 1 ≤ y ≤ e and k = 0, 1, 2, . . . . Thus the coefficients of the polynomial
P (x) at the beginning and at the end are possible non-zeros.

In particular, we show that there are exactly g nonzero coefficients at the end. Indeed, r
(0)
m−j0−h 6= 0,

r
(0)
0 6= 0, and d = m − (j0 − h) = l + g imply that there exists one block of zero coefficients among the

last d + 1 coefficients of P (x). Moreover, r
(0)
m−(j0−h)−1 = . . . = r

(0)
h+1 = 0 must be the block of l zero

coefficients. Suppose not, this implies that m− (j0 − h)− 1− h = m− j0 − 1 < l = m− (j0 − h)− g and
thus h > g− 1. Also this block of zero coefficients must be embedded into a block of nonzero coefficients.

Hence m − j0 − 1 < g and r
(0)
h 6= 0. Note that r

(0)
0 6= 0, there are h − 1 coefficients from r

(0)
h−1 to

r
(0)
1 . However, l > h, there are not enough coefficients which could form a block of l zero coefficients, a

contradiction.
Because there are m+ 1 coefficients in P (x), this implies that m+ 1 = k(m− (j0 − h)) + g for some

k. Hence m = k(m− (j0 − h)) + g − 1. Note m− (m− (j0 − h)) = j0 − h, then we can write

m∏
i=1

(x− si) = xm − r
(0)
m−1x

m−1 − . . . r
(0)
m−g+1x

m−g+1 + 0 + . . .+ 0

−r
(0)
j0−hx

j0−h − r
(0)
j0−h−1x

j0−h−1 − . . .− r
(0)
j0−h−g+1x

j0−h−g+1 + 0 + . . .+ 0

−r
(0)

(j0−h)−(m−(j0−h))x
(j0−h)−(m−(j0−h)) − . . .

−r
(0)

(j0−h)−(g−1)−(m−(j0−h))x
(j0−h)−(g−1)−(m−(j0−h)) + 0 + . . .+ 0

−r
(0)

(j0−h)−2(m−(j0−h))x
(j0−h)−2(m−(j0−h)) − . . .

−r
(0)

(j0−h)−(g−1)−2(m−(j0−h))x
(j0−h)−(g−1)−2(m−(j0−h)) + 0 + . . .+ 0

− . . .

−r
(0)

(j0−h)−(k−2)(m−(j0−h))x
(j0−h)−(k−2)(m−(j0−h)) − . . .

−r
(0)

(j0−h)−(g−1)−(k−2)(m−(j0−h))x
(j0−h)−(g−1)−(k−2)(m−(j0−h)) + 0 + . . .+ 0

−r
(0)
g−1x

g−1 − r
(0)
g−2x

g−2 − . . .− r
(0)
0 .

Using again the relation (d) to the nonzero coefficients we have that r
(0)
j0−hr

(0)
m−u = −r(0)m−u−(m−(j0−h)) =

−r(0)j0−h−u for 0 ≤ u ≤ g − 1. Hence r
(0)
m−u = −(r

(0)
j0−h)−1r

(0)
j0−h) = (r

(0)
j0−h)−2r

(0)
j0−h−(m−(j0−h)) =

−(r
(0)
j0−h)−3r

(0)
j0−h−2(m−(j0−h)) = . . ..

Let b = r
(0)
j0−h, finally we have

m∏
i=1

(x− si)

= (xk(m−(j0−h)) − bx(k−1)(m−(j0−h)) + . . .+ (−b)k)(xg−1 − r
(0)
m−1x

g−2 − . . .− r
(0)
m−g+1)

:= Q(x)R(x).

Assume R(x) 6= 1, again as in the previous case if we put zeros of the Q(x) first, then we can reduce
the augmented matrix using rows i,m − (j0 − h) + i, 2(m − (j0 − h)) + i, . . . , k(m − (j0 − h)) + i for
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i = 0, 1, . . . , g − 1 so that the last g rows (note that j0 > g) have a form
0 . . . 0 Q(sm−(g−1))s

m−(g−1)
m−(g−1) . . . Q(sm)s

m−(g−1)
m |0

...
. . .

...
...

. . .
... |

...

0 . . . 0 Q(sm−(g−1))s
m
m−(g−1)

... Q(sm)smm |0

 ,
which implies that Q(si) = 0 for i = m− (g − 1), . . . ,m, a contradiction.

Hence R(x) = 1. Then

m∏
i=1

(x− si) = xk(m−(j0−h)) − bx(k−1)(m−(j0−h)) + . . .+ (−1)kbk

= xkd − bx(k−1)d + b2x(k−2)d − . . .+ (−1)kbk,

where d = m− (j0 − h) and kd = m.
CASE II: Assume a′q−m−1 6= 0 and this is the only nonzero coefficient in the second m-block. Then

the relations (b)-(d) still hold for h = 0. That is,

(b’) r
(0)
j0
6= 0,

(c’) r
(0)
m−j0−1 = . . . = r

(0)
1 = 0, and

(d’) r
(0)
j0
r
(0)
m−t + r

(0)
j0−t = 0, t > 0.

We start from the block of zeros r
(0)
1 = r

(0)
2 = . . . = r

(0)
m−j0−1 = 0 given in relation (c’). Suppose

j0 = 0. Then we have a′q−1 = a′q−1−m = 0. By Lemma 4, we must have m | q − 1, a contradiction.

Hence j0 > 0. Because r
(0)
j0
6= 0, we must have j0 > m−j0−1 by relation (c’) and thus 2j0−m+1 > 0.

Taking now t = j0 − 1, j0 − 2 . . . , 2j0 −m + 1 (that is, j0 − t = 1, 2, . . . ,m − j0 − 1) in relation (d’) we

obtain the following block of zeros r
(0)
m−j0+1 = r

(0)
m−j0+2 = . . . = r

(0)
2m−2j0−1 = 0. If j0 6= m − j0, then

j0 > 2m − 2j0 − 1 because r
(0)
j0
6= 0. Continuing this process we can see that in the polynomial P (x)

we have blocks of the length m− j0 with a first nonzero element and all other zeros in each block up to
the leading coefficient. Note that this process must be stop after a finite number of times. In summary,
we have blocks of zeros of the length m − j0 − 1 and nonzero elements between them, i.e., coefficients

r
(0)
s(m−j0) for s = 1, . . . are nonzero. Also r

(0)
j0

is nonzero so j0 = s(m − j0) for some s > 0. In (d’) we

take t = 1, 2, . . . ,m− j0 − 1 and it follows that we have block of zeros with the length m− j0 − 1 in the

beginning. So coefficients r
(0)
0 , . . . , r

(0)
m−1 have blocks of the length m − j0 with same distribution of the

zero and nonzero elements and therefore (m− j0) | m. Thus the polynomial P (x) is of the form

P (x) = xm − bxj0 + b2xj0−(m−j0) − . . .+ (−b)
m

m−j0 ,

for some b ∈ Fq. Taking d = m− j0 and m = kd we can write this as

P (x) = xkd − bx(k−1)d + b2x(k−2)d − . . .+ (−1)kbk.

Summarizing both cases I and II, we conclude that if there is exactly one nonzero coefficient in both
first and second m-block then polynomial P (x) is of the form

P (x) = xkd − bx(k−1)d + b2x(k−2)d − . . .+ (−1)kbk,
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for some b ∈ Fq and m = kd. Finally we want to show that (k+ 1)d | q− 1. If k = 1 then P (x) = xd− bd.
As all solutions of P (x) = 0 are in Fq it implies that m = d | q − 1, a contradiction and thus k > 1. In
particular,

(xkd − bx(k−1)d + b2x(k−2)d − . . .+ (−1)kbk)(xd − (−b)) = x(k+1)d − (−b)k+1.

Hence

P (x) =
x(k+1)d − (−b)k+1

xd − (−b)
.

This means that there are at least kd distinct solutions in Fq for the equation x(k+1)d − (−b)k+1 = 0
because these are solutions of P (x) = 0. In particular, this implies b 6= 0. Let ψ be a generator of
multiplicative group Fq \ {0}. Then −b = ψu for some 0 ≤ u < q − 1. Equation x(k+1)d = ψu(k+1) has
solution in Fq of the form x = ψv where v and l are solutions of the Diophantine equation v(k + 1)d =
u(k + 1) + l(q − 1). Let h = gcd((k + 1)d, q − 1). Then h | u(k + 1). So we have a Diophantine equation

v (k+1)d
h = l q−1h + u(k+1)

h . If v0 is the least nonnegative integer which satisfies the given Diophantine

equation then all other solutions are of the form v = v0 + w q−1
h where w is integer and v0 <

q−1
h . But

there are at least kd solutions of this equation in the range 0 ≤ v < q − 1 for w = 0, 1, . . . , h − 1. This

implies that h−1 ≥ kd. However, for k > 1 we have h > kd ≥ (k+1)d
2 and h | (k+1)d. Hence this implies

h = (k + 1)d and thus (k + 1)d | q − 1. Also −b = ψu = ψu1d = vd.
Hence we proved the result with the assumption that two nonzero coefficients are in the first two

m-blocks. But Lemma 2 implies that the same results holds for any two successive m-blocks.

Proof of Lemma 8. As in Theorem 4, any polynomial which moves T and has degree ≤ q − 1 can be
represented by

f(x) = x+ h(x)
∏

s∈Fq\T

(x− s) = x+ h(x)(xd + b)
xq − x

x(k+1)d − (−b)k+1

where h(x) is polynomial with deg(h(x)) ≤ q − 1 − |Fq \ T | = kd − 1 and with no zeros in T . Let
h(x) = h0+h1x+. . .+hkd−1x

kd−1. Define hj = 0 for j = kd, kd+1, . . . , (k+1)d−1. Then xq−x
x(k+1)d−(−b)k+1 =

x(x(k+1)d( q−1
d(k+1)

−1) + . . .+ (−b)u(k+1)x(k+1)d( q−1
d(k+1)

−1−u) + . . .+ (−b)(k+1)( q−1
d(k+1)

−1)) and thus

h(x)
xq − x

x(k+1)d − (−b)k+1
=

(k+1)d−1∑
i=0

hix
i

q−1
(k+1)d

−1∑
u=0

(−b)(k+1)( q−1
d(k+1)

−1−u)x(k+1)du+1

=

q−1
(k+1)d

−1∑
u=0

(k+1)d−1∑
i=0

hi(−b)(k+1)( q−1
d(k+1)

−1−u)x(k+1)du+1+i

=

q−2∑
j=1

djx
j ,

where we write j − 1 = ud(k + 1) + i with i < d(k + 1) and dj = hi(−b)(
q−1
d(k+1)

−1−u)(k+1). Finally,

multiplying by xd + b gives the polynomial f(x)−x =
∑q−1
j=1 a

′
jx
j with coefficients a′j = bdj + dj−d where

dj = 0 if j ≤ 0. We consider the coefficients a′j according to three different ranges of i’s.
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First, if j − 1 = ud(k + 1) + i where kd > i ≥ d then bdj + dj−d = 0 if and only if bhi + hi−d = 0.
Secondly, if i < d then j − d = ud(k + 1) + i − d = (u − 1)d(k + 1) + dk + i and thus dj−d =

hdk+i(−b)(
q−1
d(k+1)

−u))(k+1) = 0 by the definition of hdk+i. Therefore a′j = bdj = 0 if and only if hi = 0.
Thirdly, if kd ≤ i < (k + 1)d then we have that hi = 0 and thus dj = 0. This implies a′j = dj−d = 0

if and only if hi−d = 0.
Now, using the fact that at least one of the coefficients hi is nonzero, we show that in every block

of successive coefficients a′ud(k+1)+1, . . . , a
′
(u+1)d(k+1) we have at least two nonzero coefficients. Indeed,

assume ht 6= 0. By the definition of h(x), 0 ≤ ht ≤ kd − 1. Let j = ud(k + 1) + t + 1. Note that
a′j = bdj + dj−d and a′j+d = bdj+d + dj . If both are nonzero then we have two nonzero coefficients in this
block of successive coefficients.

Suppose a′j = 0. Because a′j = bdj + dj−d and dj = ht(−b)(
q−1
d(k+1)

−1−u)(k+1) 6= 0, we obtain that
ht−d 6= 0. If a′j−d 6= 0, then we find one nonzero coefficient; otherwise, a′j−d = bdj−d + dj−2d = 0 implies
ht−2d 6= 0. If t − 2d < d, then this implies that a′j−2d 6= 0. If t − 2d ≥ d, then we consider ht−3d and
continue this process until we find some s0 > 1 such that a′j−s0d 6= 0 and t− s0d > 0.

Similarly, a′j+d = 0 implies ht+d 6= 0. If kd ≤ t + 2d, then a′j+2d 6= 0. Otherwise, a′j+2d = bdj+2d +
dj+d = 0 if and only if bht+2d + dt+d = 0. If a′j+2d = 0, then ht+d 6= 0 implies that ht+2d 6= 0. Thus we
can find s1 > 1 such that a′j+s1d 6= 0 and t+ s1d < d(k + 1) similarly.

Therefore there are at least two nonzero coefficient in every block of successive coefficients a′ud(k+1)+1,

. . ., a′(u+1)d(k+1). In total, we have at least 2 q−1
(k+1)d nonzero coefficients in f(x). In particular, if a′1 = −1

then in the best case we have 2 q−1
(k+1)d − 1 nonzero coefficients in f(x).

We remark that this best case can be achieved for h(x) = µxi((−b)z−1 + (−b)z−2xd + (−b)z−3x2d −
. . .+x(z−1)d) where 0 ≤ i < d and z ≤ k. Indeed, by expanding the expression of f(x)−x as in the proof

of Lemma 8, we can obtain that a′ud(k+1)+i+1 = µ(−b)k+1(−b)(
q−1
d(k+1)

−u))(k+1) 6= 0, a′ud(k+1)+sd+i+1 = 0

for s = 1, 2, . . . , z − 1 and a′ud(k+1)+zd+i+1 6= 0. In particular, if i = 0 then a′1 = µ(−b)k+1+ q−1
d . If

µ(−b)k+1+ q−1
d = −1 then we achieve this lower bound. As long as h(x) does not have zeros in the set

of moved elements T and thus h(x) has no common roots with P (x) = x(k+1)d−(−b)k+1

xd+b
which is the case

that gcd(k + 1, z) = 1, the corresponding f(x) has exactly 2 q−1
(k+1)d − 1 nonzero coefficients.

Next we prove that h(x) does not have zeros in the set of moved elements T . Let −b = vd. If z > 1
and i = 0 then

f(x) = x+ µx(xdz − vdz)

q−1
(k+1)d

−1∑
u=0

vu(k+1)dx(
q−1

(k+1)d
−1−u)(k+1)d.

If ψ is (k+1)d-th primitive root of unity in Fq then all moved elements are of the form x = ψlv where
l = 1, 2 . . . , (k+ 1)d and (k+ 1) - l. However, (ψlv)zd = (−b)zψlzd 6= (−b)z because (k+ 1)d - lzd. Hence
h(x) does not have zeros in the set of moved elements T .
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Since we have

f(vψl)

= vψl + µvψl(vdzψldz − vdz)v(
q−1

(k+1)d
−1)(k+1)d

q−1
(k+1)d

−1∑
u=0

ψu(k+1)d

= vψl + µvψl(vdzψldz − vdz)v(
q−1

(k+1)d
−1)(k+1)d q − 1

(k + 1)d

= vψl + vψl(µ
q − 1

(k + 1)d
vq−1−(k+1)d+dz)ψldz − vψl(µ q − 1

(k + 1)d
vq−1−(k+1)d+dz),

we can choose µ such that µ q−1
(k+1)dv

q−1−(k+1)d+dz = 1. Then we have

f(vψl) = cψl + vψl(dz+1) − vψl = vψl(dz+1).

This mapping induces a permutation if gcd(k + 1, dz + 1) = 1. Hence in this case we have permutation
polynomials with minimal number of nonzero coefficients. The similar results hold for z = 1.

Finally we note that polynomials in Theorem 2 are of the form f(x) = x+ µ xq−x
xm−zm .

Conclusions

In many applications we want to have polynomials with small number of nonzero coefficients (sparse
polynomials). For examples, sparse irreducible polynomials are important in efficient hardware imple-
mentation of feedback shift registers and finite field arithmetic ([1], [9], [22]). In this paper we show how
to obtain such polynomials for a given set of moved elements. In particular, some classes of polynomials
with small number of nonzero coefficients are studied. Moreover, using Lemma 6 and Corollary 1 we
can combine these mappings to construct polynomials with bigger sets of moved elements and similar
property.
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