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Abstract. We study the explicit factorization of 2nr-th cyclotomic polynomials over finite field Fq

where q, r are odd with (r, q) = 1. We show that all irreducible factors of 2nr-th cyclotomic polynomials
can be obtained easily from irreducible factors of cyclotomic polynomials of small orders. In particular,
we obtain the explicit factorization of 2n5-th cyclotomic polynomials over finite fields and construct
several classes of irreducible polynomials of degree 2n−2 with fewer than 5 terms.

1. Introduction

Let p be prime, q = pm, and Fq be a finite field of order q. Let Qn(x) denote the n-th cyclotomic
polynomial

Qn(x) =
∏

0<j≤n,(j,n)=1

(x− ζj),

where ζ is a primitive n-th root of unity. Clearly xn − 1 =
∏

d|n Qd(x) and the Möbius inversion formula
gives Qn(x) =

∏
d|n(xd−1)µ(n/d) where µ is the Möbius function. If (q, n) = 1, then it is well known that

Qn(x) can be factorized into φ(n)/d distinct monic irreducible polynomials of the same degree d over Fq,
where d is the least positive integer such that qd ≡ 1 (mod n) (see [8, Theorem 2.47]). Basically we know
the number and the degree of irreducible factors of cyclotomic polynomials. However, factoring cyclotomic
polynomials Qn(x) over the finite field Fq explicitly still remains a fundamental question. Moreover, it
is also known that explicit factorization of cyclotomic polynomials is related to the factorization of other
interesting classes of polynomials. For example, Fitzgerald and Yucas [4] recently discovered a nice link
between the factors of Dickson polynomials over finite fields and factors of cyclotomic polynomials and
self-reciprocal polynomials. This means that factoring cyclotomic polynomials explicitly provides an
alternative way to factor Dickson polynomials explicitly.

Explicit factorization of 2n-th cyclotomic polynomials Q2n(x) over Fq is given in [8] when q ≡ 1
(mod 4) and in [9] when q ≡ 3 (mod 4). Recently, Fitzgerald and Yucas [5] have studied explicit factors
of Q2nr(x), where r is prime and q ≡ ±1 (mod r) over finite field Fq in order to obtain explicit factor-
ization of Dickson polynomials. This gives a complete answer to the explicit factorization of cyclotomic
polynomials Q2n3(x) and thus Dickson polynomials D2n3(x) of the first kind over Fq. However, the
general situation for arbitrary r remains open. Without loss of generality we assume that (2r, q) = 1. In
this paper, we reduce the problem of factorizing all 2nr-th cyclotomic polynomials over Fq into factor-
izing a finite number of lower degree cyclotomic polynomials over Fq. In particular, we give the explicit
factorization of Q2nr(x) over Fq where r = 5. The method we are using is a combination of case by case
analysis, factorizing low degree polynomials, and the recursive construction based on basic properties of
cyclotomic polynomials.
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The irreducible factors of these cyclotomic polynomials are sparse polynomials (polynomials with a
few nonzero terms). Sparse irreducible polynomials are important in efficient hardware implementation
of feedback shift registers and finite field arithmetic ([1], [7], [10]). The second focus of our paper is to
explicitly construct sparse irreducible polynomials of high degree. We remark that explicit construction
of irreducible polynomials in general has attracted a lot of attention and a lot of progress has made in
the past two decades. Most of these constructions are iterated constructions which extend the classical
transformation f(x) → f(xn). A a nice survey on this topic as of year 2005 can be found in [3]. Here we
are interested in sparse irreducible polynomials and the classical transformation is used. Therefore the
main tool in the paper is the following classical result which helps us to construct high degree irreducible
polynomials based on low degree irreducible polynomials.

Lemma 1.1 (Theorem 3.35 in [8]). Let f1(x), f2(x), . . . , fN (x) be all distinct monic irreducible poly-
nomials in Fq[x] of degree m and order e, and let t ≥ 2 be an integer whose prime factors divide e but
not (qm − 1)/e. Assume also that qm ≡ 1 (mod 4) if t ≡ 0 (mod 4). Then f1(xt), f2(xt), . . . , fN (xt) are
all distinct monic irreducible polynomials in Fq[x] of degree mt and order et.

In Section 2, we describe the methodology used in this paper to factor Q2nr(x) over Fq. We prove
that all irreducible factors of Q2nr(x) can be obtained easily from irreducible factors of Q2Lr(x) where
L is a small constant depending on q and r (Theorem 2.2). This also gives a way to construct sparse
irreducible polynomials of high degree 2nr over Fq. We note that the result in this section is true for
any odd q, r such that (q, r) = 1. Then the rest of paper deals with r = 5. In Section 3, we obtained
the factorization results of Q2n5(x) when q ≡ ±1 (mod 5). Since our results (Theorems 3.2, 3.4, 3.5) for
middle term are substantial simplification of the corresponding results in [5], we include proofs for the sake
of completeness. Moreover, we obtain several classes of irreducible binomials/trinomials of degree 2n−2

over Fq where q ≡ ±1 (mod 5). We note that our explicit factorization results are given in terms of 2n-th
primitive roots of unity and it may cause additional task to compute these roots. However, we also could
reformulate these results in terms of solving system of nonlinear recurrence relations, which seems pretty
fast when providing examples for small fields. In Section 4, we consider the situation when q ≡ 13, 17
(mod 20). We obtain the explicit factorization of Q2n5(x) in Theorems 4.1. Moreover, we can construct
several classes of irreducible polynomial of five terms with degree 2m (Corollary 4.2). Then the cases of
q ≡ 3, 7 (mod 20) are considered in Section 5. In Theorem 5.1 we show that coefficients of the irreducible
factors of 2n5-th cyclotomic polynomials are obtained from the coefficients of irreducible factors of 2n−15-
th cyclotomic polynomials by solving some simple systems of nonlinear recurrence relations for n ≤ L.
Similarly we construct a class of irreducible polynomials over these fields (Corollary 5.2). We note that it
is very fast to solve these systems of nonlinear recurrence relations and to obtain the factors of cyclotomic
polynomials. As an illustration, we provide two tables of examples in Section 5.

We note that the sparse irreducible polynomials constructed in this paper and their reciprocal poly-
nomials can both be written in the form of xn + g(x), where the degree of g(x) is at most 3n/4. It is
well known that irreducible polynomials of the form xn + g(x) with g(x) of small degree are desirable in
implementing pseudo-random number generators and in constructing elements of provable high orders in
finite fields (see the survey paper [6]). We wonder whether or not irreducible polynomials constructed in
this paper could be useful in some of applications mentioned in [6].

2. Methodology and notations

In this section, we describe the method that we are using in this paper. First of all we recall the
following basic results on cyclotomic polynomials.

Lemma 2.1. [8, Exercise 2.57]
(a) Q2n(x) = Qn(−x) for n ≥ 3 and n odd.
(b) Qmt(x) = Qm(xt) for all positive integers m that are divisible by the prime t.



ON EXPLICIT FACTORS OF CYCLOTOMIC POLYNOMIALS OVER FINITE FIELDS 3

(c) Qmtk(x) = Qmt(xtk−1
) if t is a prime and m, k are arbitrary positive integers.

Let us start with the factorizations of Qr(x) and Q2r(x) = Qr(−x). Applying Lemma 2.1, we have
Q2nr(x) = Q2n−1r(x2) for n ≥ 2. Hence the key to continue the process of factorization is to factor
Q2n−1r(x2) into a product of irreducible polynomials once we obtain the factorization of Q2n−1r(x).

Now, we show that we can reach to the end after only a finite number of iterations. Let v2(k) denotes
the highest power of 2 dividing k and Li = v2(qi−1) for i ≥ 1. In particular, let L := Lφ(r) = v2(qφ(r)−1)
where φ is the Euler’s phi function. Then we have the following result.

Theorem 2.2. Let q = pm be a power of an odd prime p, let r ≥ 3 be any odd number such that (r, q) = 1,
and let L := Lφ(r) = v2(qφ(r) − 1), the highest power of 2 dividing qφ(r) − 1 with φ(r) the Euler’s phi
function. For any n ≥ L and any irreducible factor f(x) of Q2Lr(x) over Fq, f(x2n−L

) is also irreducible
over Fq. Moreover, all irreducible factors of Q2nr(x) are obtained in this way.

Proof. Since q, r are odd, we have φ(r) is even and then n ≥ L ≥ 2. By [8, Theorem 2.47], 2Lr-th
cyclotomic polynomial Q2Lr(x) has φ(2Lr)/m distinct monic irreducible factors of the same degree m,
where m is the least positive integer such that qm ≡ 1 (mod 2Lr). Due to the fact that qφ(r) ≡ 1 (mod r)
and L = v2(qφ(r)− 1), we have qφ(r) ≡ 1 (mod 2Lr). This implies that m ≤ φ(r). By the definition of L,
we must have 2L+1 - (qm−1). Since each factor has order e = 2Lr and 2 - (qm−1)/e, by Lemma 1.1, each
irreducible polynomial f(x) of Q2Lr(x) generates an irreducible factor f(x2) of Q2L+1r(x). More generally,
f(x2n−L

) is also irreducible factor of Q2nr(x) since L ≥ 2 implies that 4 | qm − 1. Moreover, f(x2n−L

)
has degree m2(n−L) and order 2nr. Hence there are φ(2nr)/(m2n−L) = 2n−1φ(r)/(m2n−L) = φ(2Lr)/m
distinct irreducible factors for Q2nr(x). Therefore all irreducible factors of Q2nr(x) are constructed from
irreducible factors of Q2Lr(x) over Fq. �

We remark that there exists a simple formula for v2(qi − 1). For odd q, by Proposition 1 in [2], we
have

(1) v2(qi−1) = v2(q−1)+v2(qi−1+qi−2+. . .+1) =
{

v2(q − 1) + v2(i) + v2(q + 1)− 1, if i is even;
v2(q − 1), if i is odd.

Since r is odd, we must have φ(r) is even. In particular, we have v2(qφ(r) − 1) = v2(q − 1) + v2(φ(r)) +
v2(q + 1)− 1.

Theorem 2.2 tells us that a recursive way of factoring 2nr-th cyclotomic polynomials essentially requires
only finitely many factorizations of low degree polynomials (at most L iterations starting from Qr(x)).
This also gives a way to construct irreducible polynomials from low degree irreducible polynomials. The
fact that we use the classical transformation on low degree polynomials can guarantee the resulting high
degree irreducible polynomials are sparse polynomials.

For n < L, since each irreducible factor f(x) of Q2n−1r(x) has the same degree m and f(x2) may not
be irreducible polynomial of degree 2m, we need to factor f(x2) further. And in most cases, we need
to factor f(x2) into two irreducible polynomials of degree m. We see more in detail for r = 5 in the
forthcoming sections. This involves the process of factoring certain types of polynomials of degree 8 into
two quartic polynomials.

Finally we fix some other notations for the rest of the paper.
Let Ω(k) denote the set of primitive k-th root of unity. In particular, Ω(20) = {1}, Ω(21) = {−1}. Let

ρn denote an arbitrary element in Ω(2n).
The expression

∏
a∈A · · ·

∏
b∈B fi(x, a, . . . , b) denotes the product of distinct irreducible polynomials

fi(x, a, . . . , b) satisfying conditions a ∈ A, . . ., b ∈ B. For example, in the expression∏
w∈Ω(5)

∏
ρn∈Ω(2n)

(
x2 − (ρn + ρ−1

n )wx + w2
)
,

we only take distinct factors because both ρn and ρ−1
n yield the same coefficient (ρn + ρ−1

n )w.
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Let
(

a
p

)
denote the Legendre symbol and the following basic results on Legendre symbols are also

used in the paper.
(i)

(
2
p

)
= 1 if and only if p ≡ 1, 7 (mod 8);

(ii)
(
−2
p

)
= 1 if and only if p ≡ 1, 3 (mod 8);

(iii)
(

5
p

)
= 1 if and only if p ≡ ±1,±9 (mod 20).

3. The case q ≡ ±1 (mod 5)

Recall that Li = v2(qi − 1), the highest power of 2 dividing qi − 1 for i ≥ 1. If q ≡ ±1 (mod 5) and
q ≡ 1 (mod 4) (i.e., q = 20k + 1 or q = 20k + 9), then L4 = L2 + 1, L2 = L1 + 1, and L1 = 4 + v2(5k) or
L1 = 2 + v2(5k + 2), respectively. Moreover, ρ1 = −1 must be a square and thus ρ2

2 = ρ1.
Similarly, if q ≡ ±1 (mod 5) and q ≡ 3 (mod 4) (i.e., q = 20k +11 or q = 20k +19), then L4 = L2 +1,

L1 = 1, L2 = 3+ v2(5k +3) or L2 = 3+ v2(5k +5), respectively. Moreover, ρ1 = −1 can not be a square.
We have the following results for these four different cases. The first result is the same as in [5], so we

omit the proof.

Theorem 3.1. Let q ≡ 1 (mod 20). Then we have the following factorization of Q2n5(x) over Fq.
(i) Q5(x) =

∏
w∈Ω(5)(x− w) and Q10(x) =

∏
w∈Ω(5)(x + w).

(ii) If 2 ≤ n ≤ L1, then
Q2n5(x) =

∏
w∈Ω(5)

∏
ρn∈Ω(2n)

(x− wρn) .

(iii)if n ≥ L2 = L1 + 1, then

Q2n5(x) =
∏

w∈Ω(5)

∏
ρL1∈Ω(2L1 )

(
x2n−L1 − wρL1

)
.

Theorem 3.2. Let q = 20k+11 for some non-negative integer k. Then we have the following factorization
of Q2n5(x) over Fq.

(i) For n = 0, 1, 2, we have

Q5(x) =
∏

w∈Ω(5)

(x− w) , Q10(x) =
∏

w∈Ω(5)

(x + w) , Q20(x) =
∏

w∈Ω(5)

(
x2 + w

)
.

(ii) if 3 ≤ n < L2, then

Q2n5(x) =
∏

w∈Ω(5)

∏
ρn∈Ω(2n)

(
x2 − (ρn + ρ−1

n )wx + w2
)
.

(iii) if n ≥ L2, then

Q2n5(x) =
∏

w∈Ω(5)

∏
ρL2∈Ω(2L2 )

(
x2n−L2+1

− (ρL2 − ρ−1
L2

)wx2n−L2 − w2
)

.

In particular, if k is even then L2 = 3 and for any n ≥ 3,

Q2n5(x) =
∏

w∈Ω(5)

∏
c2=−2

(
x2n−2

+ cwx2n−3
− w2

)
.

Proof. In this case, L1 = v2(q− 1) = 1, L2 = v2(q2− 1) = 3 + v2(5k + 3), and L4 = L2 + 1. We note that
L2 = 3 if n is even. It is obvious that Q5(x) =

∏
w∈Ω(5) (x− w), and Q10(x) = Q5(−x) =

∏
w∈Ω(5) (x + w)

because 5 | q − 1. Moreover, −1 is a non-square in Fq when q ≡ 3 (mod 4). Hence x2 + w is irreducible
in Fq[x] and then Q20(x) = Q10(x2) =

∏
w∈Ω(5)

(
x2 + w

)
. Now Q40(x) = Q20(x2) =

∏
w∈Ω(5)

(
x4 + w

)
.
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Since gcd(40, q) = 1 and q2 ≡ 1 (mod 40), by Theorem 2.47 in [8], Q40(x) factors into φ(40)/2 = 8
distinct monic quadratic irreducible polynomials in Fq[x]. Hence x4 + w can be factorized into a product
of two monic quadratic polynomials. Let x4 + w = (x2 + ax + b)(x2 + cx + d) where a, b, c, d ∈ Fq.
Comparing both sides, we have a + c = 0, b + d + ac = 0, bd + ad = 0, and bd = w. Replacing a by −c,
we obtain b + d − c2 = 0, (b − d)c = 0, and bd = w. Here we can write w = v4 where v = w−1 because
w5 = 1. Using the fact that −1 is a non-square in this case, we can only have two possible solutions
(c 6= 0 because, otherwise, b2 = −v4, a contradiction): (i) b = d = v2, a = −c, and c2 = 2v2 if 2 is a
square; (ii) b = d = −v2, a = −c, and c2 = −2v2 if −2 is a square. We note that q ≡ 4k + 3 (mod 8).
Hence if k is even, then q ≡ 3 (mod 8); otherwise, q ≡ 7 (mod 8). Moreover, q ≡ 3 (mod 8) implies
that the characteristic p of Fq also satisfies p ≡ 3 (mod 8), therefore −2 is a square in Fq if k is even.
Similarly, 2 is a square in Fq if k is odd. As w ranges over Ω(5), v also ranges over Ω(5). Hence we obtain

Q40(x) =



∏
w∈Ω(5)

∏
c2=−2

(
x2 + cwx− w2

)
, if k is even;

∏
w∈Ω(5)

∏
c2=2

(
x2 + cwx + w2

)
, if k is odd;

If k is even, then L2 = 3 and 2n−2 - (q2−1)/40 for n ≥ 3. Moreover, each x2 + cwx−w2 with c2 = −2
is an irreducible polynomial of degree 2 and order 40. If n ≥ 4, then 2n−2 ≡ 0 (mod 4) and q2 − 1 ≡ 0
(mod 4). Hence by Lemma 1.1, we have that x2n−2

+ cwx2n−3 − w2 is irreducible and

Q2n5(x) = Q235(x2n−3
) =

∏
w∈Ω(5)

∏
c2=−2

(
x2n−2

+ cwx2n−3
− w2

)
.

In particular, ρ3 − ρ−1
3 = ρ3 + ρq

3 ∈ Fq and (ρ3 − ρ−1
3 )2 = −2.

If k is odd, then L2 > 3. For each n such that 3 ≤ n < L2, we have ρq+1
n = 1 for any ρn ∈ Ω(2n).

Hence ρn + ρ−1
n = ρn + ρq

n ∈ Fq for 3 ≤ n < L2. In particular, ρ2 + ρ−1
2 = 0 and

(
±(ρ3 + ρ−1

3 )
)2

= 2.
Therefore

Q40(x) =
∏

w∈Ω(5)

∏
ρ3∈Ω(23)

(
x2 − (ρ3 + ρ−1

3 )wx + w2
)
.

Let w = u2. Then for each 3 ≤ n < L2, we have(
x4 − (ρn−1 + ρ−1

n−1)u
2x2 + u4

)
=

(
x2 − (ρn + ρ−1

n )ux + u2
) (

x2 + (ρn + ρ−1
n )ux + u2

)
.

Hence, for odd k and 3 ≤ n < L2, we obtain

Q2n5(x) =
∏

w∈Ω(5)

∏
ρn∈Ω(2n)

(
x2 − (ρn + ρ−1

n )wx + w2
)
.

We note that in the above expression we only take distinct irreducible factors.
Finally, for odd k and n ≥ L2, it is easy to see that ρ

2(q+1)
L2

= 1 and ρq+1
L2

6= 1. This implies that
ρq+1

L2
= −1 and thus ρL2 − ρ−1

L2
∈ Fq. Moreover,(

x4 − (ρL2−1 + ρ−1
L2−1)u

2x2 + u4
)

=
(
x2 − (ρL2 − ρ−1

L2
)ux− u2

) (
x2 + (ρL2 − ρ−1

L2
)ux− u2

)
.

Hence

Q2L25(x) =
∏

w∈Ω(5)

∏
ρL2∈Ω(2L2 )

(
x2 − (ρL2 − ρ−1

L2
)wx− w2

)
.
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Since q2 ≡ 1 (mod 2L25) and 2 - (q2−1)/2L25, by Lemma 1.1, we conclude that x4−(ρL2−ρ−1
L2

)wx2−w2

is irreducible and

Q2L5(x) = Q2L25(x
2) =

∏
w∈Ω(5)

∏
ρL2∈Ω(2L2 )

(
x4 − (ρL2 − ρ−1

L2
)wx2 − w2

)
.

The rest of proof follows directly from Theorem 2.2 and the fact that L4 = L2 + 1 in this case. �

It is not difficult to see from the proof that we can also reformulate the above result as follows.

Corollary 3.3. Let q ≡ 11 (mod 20). For any 2 ≤ n ≤ L2, we have

Q2n5(x) =
∏

w∈Ω(5)

∏
an,bn

(
x2 + anx + bn

)
,

where an, bn are all the solutions to the system of nonlinear recurrence relations{
a2

n = 2bn − an−1

b2
n = bn−1,

with initial values a2 = 0 and b2 = w ∈ Ω(5). For n > L2,

Q2n5(x) =
∏

w∈Ω(5)

∏
aL2 ,bL2

(
x2n−L2+1

+ aL2x
2n−L2 + bL2

)
.

Theorem 3.4. Let q = 20k + 9, w ∈ Ω(5) be fixed, and Li = v2(qi − 1) for i ≥ 1. Then we have the
following factorization of Q2n5(x) over Fq.

(i) For n = 0, 1, we have

Q5(x) =
∏

j=1,2

(
x2 − (wj + w−j)x + 1

)
, Q10(x) =

∏
j=1,2

(
x2 + (wj + w−j)x + 1

)
.

(ii) if 2 ≤ n ≤ L1, then

Q2n5(x) =
∏

ρn∈Ω(2n)

∏
an=ρn(wj+w−j)

j=1,2

(
x2 + anx + ρ2

n

)
.

(iii) if n ≥ L2 = L1 + 1, then

Q2n5(x) =
∏

ρL1∈Ω(2L1 )

∏
a2

L2
=ρL1

(2−wj−w−j)

j=1,2

(
x2n−L2+1

+ aL2x
n−L2 + ρL1

)
.

In particular, if k is odd then L2 = 3 and for any n ≥ 3,

Q2n5(x) =
∏

ρ2∈Ω(22)

∏
a2
3=ρ2(2−wj−w−j)

j=1,2

(
x2n−2

+ a3x
n−3 + ρ2

)
.

Proof. Let q = 20k+9. Then L1 = 2+v2(5k+2), L2 = L1+1, and L4 = L2+1. In particular, if k is odd,
then L1 = 2. As 5 - q−1, w ∈ Ω(5) implies w 6∈ Fq. However, 5 | q+1 implies a = w+w−1 = w+wq ∈ Fq.
Hence Q5(x) =

∏
j=1,2

(
x2 − (wj + w−j)x + 1

)
, and Q10(x) = Q5(−x) =

∏
j=1,2

(
x2 + (wj + w−j)x + 1

)
.

Let a1 = wj + w−j for j = 1 or 2. Then Q20(x) = Q10(x2) =
∏

a1=w+w−1
j=1,2

(
x4 + a1x

2 + ρ0

)
. Again,

q2 ≡ 1 (mod 2L15) and Theorem 2.47 in [8] imply that Q2n5(x) factors into distinct monic quadratic
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polynomials. In order to factor Q20(x), we need to factor x4 +a1x
2 + ρ0 into monic quadratic irreducible

polynomials. Let x4 + a1x
2 + ρ0 = (x2 + bx + c)(x2 + dx + e) where b, c, d, e ∈ Fq. Then we obtain

b + d = 0
c + e + bd = a1

be + cd = 0
ce = ρ0

Hence b = −d. Continue to solve the above system, either we have b = −d = 0 or e = c. If b = −d = 0,
then c satisfies that c2 − ac + 1 = 0, contradicts to that x2 − ax + 1 is irreducible. Hence e = c. Let
x4 + a1x

2 + ρ0 = (x2 + a2x + c)(x2 − a2x + c). Therefore e = c = ±ρ1 ∈ Fq and a2
2 = ±2ρ1 − a1. Since

we can verify directly that a2 = ρ2(w3j + w−3j) ∈ Fq are solutions to a2
2 = 2ρ1 − a1 where ρ2

2 = ρ1, we
obtain

Q20(x) =
∏

ρ2∈Ω(22)

∏
a2=ρ2(wj+w−j)

j=1,2

(
x2 + a2x + ρ2

2

)
.

Now
Q40(x) = Q20(x2) =

∏
ρ2∈Ω(22)

∏
a2=ρ2(wj+w−j)

j=1,2

(
x4 + a2x

2 + ρ2
2

)
.

If k is odd, then L1 = 2. Let
(
x4 + a2x

2 + ρ2
2

)
=

(
x2 + a3x + ρ2

) (
x2 − a3x + ρ2

)
where a3, ρ2 ∈ Fq.

Hence a2
3 = 2ρ2−a2. Since 2ρ2−ρ2(wj +w−j) = −ρ2(w3j−w−3j)2 ∈ Fq and both ρ2 and −(w3j−w−3j)2

are non-square elements in Fq, there exist a3 ∈ Fq such that a2
3 = 2ρ2 − a2. Hence

Q40(x) =
∏

ρ2∈Ω(22)

∏
a2=ρ2(wj+w−j)

j=1,2

∏
a2
3=2ρ2−a2

(
x2 + a3x + ρ2

)
.

We note that L2 = 3 implies 2 - (q2 − 1)/40. By Lemma 1.1, x4 + a3x
2 + ρ2 is irreducible and

Q80(x) = Q40(x2)
∏

ρ2∈Ω(22)

∏
a2=ρ2(wj+w−j)

j=1,2

∏
a2
3=2ρ2−a2

(
x4 + a3x

2 + ρ2

)
.

Moreover, for any n > 4, by Theorem 2.2, we conclude x2n−2
+ a3x

2n−3
+ ρ2 is irreducible. Hence for

odd k and n ≥ 3 we have

Q2n5(x) =
∏

ρ2∈Ω(22)

∏
a2
3=ρ2(2−wj−w−j)

j=1,2

(
x2n−2

+ a3x
n−3 + ρ2

)
.

If k is even, then L1 ≥ 3. For any 3 ≤ n < L1, we have ρn ∈ Fq and an = ρn(wj + w−j) ∈ Fq. Let
ρn−1 = ρ2

n. Moreover, 2ρn−1−a2
n = 2ρn−1−ρn−1(w2j +w−2j +2) = −ρn−1(w2j +w−2j) = −an−1. Then

x4 − an−1x
2 + ρ2

n−1 =
(
x2 + anx + ρn−1

) (
x2 − anx + ρn−1

)
,

We note ρn−1 ranges over Ω(2n−1) if and only if −ρn−1 ranges over Ω(2n−1) for n ≥ 3. This implies that,

Q2n5(x) =
∏

ρn∈Ω(2n)

∏
an=ρn(wj+w−j)

j=1,2

(
x2 + anx + ρ2

n

)
,

for any 3 ≤ n < L1. Similarly, for n = L2, we have Q2n5(x) = Q2L2−15(x2). Let
(
x4 + aL2−1x

2 + ρ2
L2−1

)
=(

x2 + aL2x + ρL2−1

) (
x2 − aL2x + ρL2−1

)
where aL2 , ρL2−1 ∈ Fq. Hence a2

L2
= 2ρL2−1 − aL2−1. Since
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2ρL2−1 − ρL2−1(wj + w−j) = −ρL2−1(w3j − w−3j)2 ∈ Fq and both ρL2−1 and −(w3j − w−3j)2 are non-
square elements in Fq, there exist aL2 ∈ Fq such that a2

L2
= 2ρL2−1 − aL2−1. Note that L1 = L2 − 1, we

have
Q2L25(x) =

∏
ρL1∈Ω(2L1 )

∏
aL1

=ρL1
(wj+w−j)

j=1,2

∏
a2

L2
=2ρL1−aL1

(
x2 + aL2x + ρL1

)
.

For n = 4, then the result follows from Lemma 1.1 and Q2n5(x) = Q2L25(x2n−L2 ). For n > 4, the
results follows from Theorem 2.2. Hence

Q2n5(x) =
∏

ρL1∈Ω(2L1 )

∏
a2

L2
=ρL1

(2−wj−w−j)

j=1,2

(
x2n−L2+1

+ aL2x
n−L2 + ρL1

)
.

�

Theorem 3.5. Let q = 20k + 19, w ∈ Ω(5) be fixed, and ρ2 = ρ2n−2

n . Then we have the following
factorization of Q2n5(x) over Fq.

(i) for n = 0, 1, we have

Q5(x) =
∏

j=1,2

(
x2 − (wj + w−j)x + 1

)
, Q10(x) =

∏
j=1,2

(
x2 + (wj + w−j)x + 1

)
.

(ii)
Q20(x) =

∏
ρ2∈Ω(22)

∏
a2=ρ2wj+(ρ2wj)−1

j=1,2

(
x2 + a2x + 1

)
.

(iii) if 3 ≤ n < L2, then

Q2n5(x) =
∏

ρn∈Ω(2n)

∏
an=ρ2ρnwj+(ρ2ρnwj)−1

j=1,2

(
x2 + anx + 1

)
.

(iv) if n ≥ L2, then

Q2n5(x) =
∏

ρL2∈Ω(2L2 )

∏
aL2

=ρ2ρL2
wj−(ρ2ρL2

wj)−1

j=1,2

(
x2n−L2+1

+ aL2x
2n−L2 − 1

)
.

In particular, if k is even then L2 = 3 and for any n ≥ 3,

Q2n5(x) =
∏

ρ3∈Ω(23)

∏
a3=ρ2ρ3wj−(ρ2ρ3wj)−1

j=1,2

(
x2n−2

+ a3x
2n−3

− 1
)

.

Proof. In this case, L1 = 1, L2 = 3+v2(k +1), and L4 = L2 +1. Again, 5 - q−1 implies that if w ∈ Ω(5)
then w 6∈ Fq. However, w ∈ Fq2 . Moreover, −1 is a non-square element. Again, it is trivial to obtain

Q5(x) =
∏

j=1,2

(
x2 − (wj + w−j)x + 1

)
, Q10(x) =

∏
j=1,2

(
x2 + (wj + w−j)x + 1

)
.

Let a1 denotes wj +w−j for j = 1 or 2. The assumption q ≡ 19 (mod 20) forces that we have (ρ2w
j)q+1 =

1 and thus ρ2w
j + (ρ2w

j)−1 = ρ2w
j + (ρ2w

j)q ∈ Fq. Moreover,

x4 + a1x
2 + 1 = (x2 + a2x + 1)(x2 − a2x + 1),

where a2 = ρ2(w3j − w−3j) = ρ2w
3j + (ρ2w

3j)−1 ∈ Fq. Therefore,

Q20(x) =
∏

ρ2∈Ω(22)

∏
a2=ρ2(wj−w−j)

j=1,2

(
x2 + a2x + 1

)
=

∏
ρ2∈Ω(22)

∏
a2=ρ2wj+(ρ2wj)−1

j=1,2

(
x2 + a2x + 1

)
.
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If k is even then L2 = 3. For n = 3, let ρ2
3 = ρ2 and a3 = ρ2ρ3w

3j − (ρ2ρ3w
3j)−1. We claim that that

a3 ∈ Fq. First, we note that ρq
2 = ρ−1

2 , and wqj = w−j . Moreover, ρq
3 = −ρ−1

3 because ρ
2(q+1)
3 = 1 and

ρq+1
3 6= 1. Then

aq
3 = (ρ2ρ3w

3j − (ρ2ρ3w
3j)−1)q = ρq

2ρ
q
3w

3jq − ρ−q
2 ρ−q

3 w−3jq = (ρ−1
2 )(−ρ−1

3 )w−3j − (ρ2(−ρ3)w3j) = a3

Moreover, (x2+a3x−1)(x2−a3x−1) = x4+a2x+1 holds as a consequence of a2
3 = −ρ2w

j−ρ−1
2 w−j−2 =

−a2 − 2. Hence
Q40(x) =

∏
ρ3∈Ω(23)

∏
a3=ρ2ρ3wj−(ρ2ρ3wj)−1

j=1,2

(
x2 + a3x− 1

)
.

The rest of proof for even k follows from Lemma 1.1 and Q2n5(x) = Q40(x2n−3
).

If k is odd, then L2 > 3. For any 3 ≤ n < L2, we have ρq+1
n = 1. This implies that (ρ2ρnwj)q+1 =

1. Hence an = ρ2ρnwj + (ρ2ρnwj)−1 = ρ2ρnwj + (ρ2ρnwj)q ∈ Fq. Since 2 − a2
3 = 2 − (ρ2ρ3w

3j +
(ρ2ρ3w

3j)−1)2 = ρ2w
j + (ρ2w

j)−1 = a2, we have x4 + a2x
2 + 1 = (x2 + a3x + 1)(x2 − a3x + 1), and thus

Q40(x) =
∏

ρ3∈Ω(23)

∏
a3=ρ2ρ3wj+(ρ2ρ3wj)−1

j=1,2

(
x2 + a3x + 1

)
.

We note that ρn−1 ranges over Ω(2n−1) if and only if ρ2ρn−1 ranges over Ω(2n−1) for n ≥ 4. Indeed,
for n ≥ 4, we have (ρ2ρn−1)2

n−1
= (ρn−1)2

n−1
= 1 and (ρ2ρn−1)2

n−2
= (ρn−1)2

n−2 6= 1. This simplifies
that

Q40(x) =
∏

ρ3∈Ω(23)

∏
a3=ρ3wj+(ρ3wj)−1

j=1,2

(
x2 + a3x + 1

)
.

Now we can see that 2− a2
n = 2− (ρ2ρnw3j + (ρ2ρnw3j)−1)2 = ρn−1w

j + (ρn−1w
j)−1 is one of an−1’s

as ρn−1 ranges over Ω(2n−1) for n ≥ 4. Therefore

Q2n5(x) = Q2n−15(x2) =
∏

ρn−1∈Ω(2n−1)

∏
an−1=ρ2ρn−1wj+(ρ2ρn−1wj)−1

j=1,2

(
x4 + an−1x

2 + 1
)

=
∏

ρn∈Ω(2n)

∏
an=ρ2ρnwj+(ρ2ρnwj)−1

j=1,2

(
x2 + anx + 1

)
=

∏
ρn∈Ω(2n)

∏
an=ρnwj+(ρnwj)−1

j=1,2

(
x2 + anx + 1

)
if k is odd and 4 ≤ n < L2. This completes the proof of (iii).

Finally, for n = L3, let ρ2
L2

= ρL2−1 and aL2 = ρ2ρL2w
3j−(ρ2ρL2w

3j)−1. We claim that that aL2 ∈ Fq.
First, we note that ρq

2 = ρ−1
2 , and (wj)q = w−j . Moreover, ρq

L2
= −ρ−1

L2
holds because ρ

2(q+1)
L2

= 1 and
ρq+1

L2
6= 1. Then

aq
L2

= (ρ2ρL2w
3j−(ρ2ρL2w

3j)−1)q = ρq
2ρ

q
L2

w3jq−ρ−q
2 ρ−q

L2
w−3jq = (ρ−1

2 )(−ρ−1
L2

)w−3j−(ρ2(−ρL2)w
3j) = aL2

Since a2
L2

= −ρL2−1w − ρ−1
L2−1w

−1 − 2 = −aL2−1 − 2 for a different choice of ρL2−1, we can verify
easily that (x2 + aL2x− 1)(x2 − aL2x− 1) = x4 + aL2−1x + 1 . Hence

Q2L25(x) =
∏

ρL2∈Ω(2L2 )

∏
aL2

=ρ2ρL2
wj−(ρ2ρL2

wj)−1

j=1,2

(
x2 + aL2x− 1

)
.

The rest of proof of (v) follows from Lemma 1.1 and Q2n5(x) = Q2L2 (x2n−L2 ).
�
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Again, we can reformulate the previous two results as follows:

Corollary 3.6. Let q ≡ 9, 19 (mod 20). Let w ∈ Ω(5) be fixed. For any 2 ≤ n ≤ L2, we have

Q2n5(x) =
∏

an,bn

(
x2 + anx + bn

)
,

where an, bn are all the solutions to the system of nonlinear recurrence relations{
a2

n = 2bn − an−1

b2
n = bn−1,

for initial values (a1, b1) = (w + w−1, 1) and (a1, b1) = (w2 + w−2, 1). For n > L2,

Q2n5(x) =
∏

aL2 ,bL2

(
x2n−L2+1

+ aL2x
2n−L2 + bL2

)
.

Finally we give the following classes of irreducible binomials and trinomials.

Corollary 3.7. Let w ∈ Ω(5), L1 = v2(q − 1), L2 = L1 + v2(q + 1), and ρn ∈ Ω(2n) where ρ2 = ρ2n−2

n .
(i) f(x) = xn−L1 − wρL1 is irreducible over Fq for any q ≡ 1 (mod 20) and any n ≥ L2;
(ii) f(x) = x2n−L2+1 − (ρL2 − ρ−1

L2
)wx2n−L2 − w2 is irreducible over Fq for any q ≡ 11 (mod 20) and

any n ≥ L2;
(iii) f(x) = x2n−L2+1

+ aL2x
2n−L2 + ρL1 is irreducible over Fq for any q ≡ 9 (mod 20), any n ≥ L2,

and any aL2 satisfying a2
L2

= 2ρL1 − ρL1(w + w−1);
(iv) f(x) = x2n−L2+1

+aL2x
2n−L2 −1 is irreducible over Fq for any q ≡ 19 (mod 20), any n ≥ L2, and

any aL2 satisfying a2
L2

= ρ2ρL2w − (ρ2ρL2w)−1,

4. The case q ≡ ±2 (mod 5) and q ≡ 1 (mod 4)

We note that if q ≡ ±2 (mod 5) and q ≡ 1 (mod 4) (i.e., q ≡ 13 (mod 20) or q ≡ 17 (mod 20)), then
L4 = L2 + 1 and L2 = L1 + 1. Moreover, ρ1 = −1 must be a square and thus there exists ρ2 ∈ Fq such
that ρ2

2 = ρ1.

Theorem 4.1. Let q ≡ ±2 (mod 5) and q ≡ 1 (mod 4). Then we have the following factorization of
2n5-th cyclotomic polynomial Q2n5(x) over Fq.

(i) If 0 ≤ n ≤ L1, then

Q2n5(x) =
∏

ρn∈Ω(2n)

(
x4 + ρnx3 + ρ2

nx2 + ρ3
nx + ρ4

n

)
.

(ii) If n = L2 (i.e., L2 = L1 + 1), then

Q2n5(x) =
∏

ρn−1∈Ω(2n−1)

∏
a2

n=5ρn−1

(
x4 + anx3 + 3ρn−1x

2 + anρn−1x + ρ2
n−1

)
.

(iii) If n ≥ L4 = L2 + 1, then Q2n5(x) can be factorized as

∏
ρL1∈Ω(2L1 )

∏
a2

L2
=5ρL1

∏
a2

L4
=(2ρ2−1)aL2

(
x2n−L4+2

+ aL4x
3·2n−L4 + aL2ρ2x

2n−L4+1
+ (−5ρL1)a

−1
L4

x2n−L4 − ρL1

)
,

if (2ρ2 − 1)aL2 is a square;∏
ρL1∈Ω(2L1 )

∏
a2

L2
=5ρL1

∏
a2

L4
=−(2ρ2+1)aL2

(
x2n−L4+2

+ aL4x
3·2n−L4 + (−aL2ρ2)x2n−L4+1

+ (−5ρL1)a
−1
L4

x2n−L4 − ρL1

)
,

if (2ρ2 − 1)aL2 is a non− square.
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Proof. Since the smallest positive d satisfying qd ≡ 1 (mod 5) is 4 under our assumption, by Theorem
2.47 in [8], for all 0 ≤ n ≤ L4, Q2n5 factors into a product of φ(2n5)/4 = 2n−1 distinct monic irreducible
polynomials of degree 4.

(i) If n ≤ L1, then ρn ∈ Ω(2n) ⊆ Fq. Hence x4 + ρnx3 + ρ2
nx2 + ρ3

nx + ρ4
n ∈ Fq[x]. The factorization

of Q2n5(x) when n = 0, 1 is trivial. Moreover, it is straightforward to verify that for ρ2
n = ρn−1

x8+ρn−1x
6+ρ2

n−1x
4+ρ3

n−1x
2+ρ4

n−1 =
(
x4 + ρnx3 + ρ2

nx2 + ρ3
nx + ρ4

n

) (
x4 − ρnx3 + ρ2

nx2 − ρ3
nx + ρ4

n

)
.

Hence (i) follows from Q2n5(x) = Q2n−15(x2) and the consequences of Theorem 2.47 in [8] as mentioned
above.

(ii) From (i) and Lemma 2.1, we have

Q2L25(x) = Q2L15(x
2) =

∏
ρL1∈Ω(2L1 )

(
x8 + ρL1x

6 + ρ2
L1

x4 + ρ3
L1

x2 + ρ4
L1

)
.

Here 5 is a non-square in Fq under the assumption of our theorem due to the fact that the Legendre

symbol
(

5
p

)
= 1 iff p ≡ ±1,±9 (mod 20). Hence 5ρL1 is a square element in Fq as ρL1 is also a non-square

element in Fq. Let a2
L2

= 5ρL1 . Then ±aL2 ∈ Fq. Hence x4± aL2x
3 +3ρL1x

2± aL2ρL1x+ ρL1−1 ∈ Fq[x].
One can also easily verify that

x8 + ρL1x
6 + ρ2

L1
x4 + ρ3

L1
x2 + ρ4

L1
=

∏
a2

L2
=5ρL1

(
x4 + aL2x

3 + 3ρL1x
2 + aL2ρL1x + ρ2

L1

)
.

Therefore the rest of proof of (ii) follows.
(iii) We first consider n = L4. Since L4 = L2 + 1, we essentially need to factor x8 + aL2x

6 + 3ρL1x
4 +

aL2ρL1x
2 + ρL1−1 into two monic quartic polynomials in Fq[x], where ρL1 ∈ Ω(2L1) and a2

L2
= 5ρL1 .

Again −1 is a square element and 5 is a non-square imply that −(2ρ2 + 1)aL2(2ρ2 − 1)aL2 = −(4ρ2
2 −

1)a2
L2

= 5a2
L2

is a non-square element in Fq. Hence either −(2ρ2 + 1)aL2 or (2ρ2 − 1)aL2 (exactly one of
them) is a square element in Fq.

If (2ρ2 − 1)aL2 is a square, we let a2
L4

= (2ρ2 − 1)aL2 . Then

x8 + aL2x
6 + 3ρL1x

4 + aL2ρL1x
2 + ρ2

L1
=

∏
a2

L4
=(2ρ2−1)aL2

(
x4 + aL4x

3 + ρ2aL2x
2 + (−5ρL1)a

−1
L4

x− ρL1

)
If (2ρ2−1)an−1 is a non-square then −(2ρ2+1)aL2 is a square. In this case, we let a2

L4
= −(2ρ2+1)aL2 .

Then

x8 + aL2x
6 + 3ρL1x

4 + aL2ρL1x
2 + ρ2

L1
=

∏
a2

L4
=−(2ρ2+1)aL2

(
x4 + aL4x

3 − ρ2aL2x
2 + (−5ρL1)a

−1
L4

x− ρL1

)
Since each quartic polynomial is in Fq[x] and Q2L45(x) factors into product of quartic polynomials, every
such quartic polynomial must be irreducible. Hence (iii) is proved for n = L4. The rest of proof follows
from Theorem 2.2. �

Corollary 4.2. Let q ≡ ±2 (mod 5) and q ≡ 1 (mod 4). Let ρn ∈ Ω(2n), ρ2n−2

n = ρ2, and a2
L2

= 5ρL1 .
(i) If 2(ρ2−1)aL2 is a square, then x2n−L4+2

+aL4x
3·2n−L4 +aL2ρ2x

2n−L4+1
+(−5ρL1)a

−1
L4

x2n−L4 −ρL1

is irreducible over Fq for each choice of ρn, aL2 , and a2
L4

= (2ρ2 − 1)aL2 ;
(ii) otherwise, x2n−L4+2

+ aL4x
3·2n−L4 + (−aL2ρ2)x2n−L4+1

+ (−5ρL1)a
−1
L4

x2n−L4 − ρL1 is irreducible
over Fq for each choice of ρn, aL2 , and a2

L4
= −(2ρ2 + 1)aL2 .



12 LIPING WANG AND QIANG WANG

5. The case q ≡ ±2 (mod 5) and q ≡ 3 (mod 4)

We note that if q ≡ ±2 (mod 5) and q ≡ 3 (mod 4) (i.e., q ≡ 3 (mod 20) or q ≡ 7 (mod 20)), then
L := L4 = L2 + 1 and L1 = 1. However, L2 = 3 + v2(5k + 1) for q = 20k + 3 and L2 = 3 + v2(5k + 3) for
q = 20k + 7.

Theorem 5.1. Let q ≡ ±2 (mod 5) and q ≡ 3 (mod 4). Then we have the following factorization of
Q2n5(x) over Fq.

(i) If 0 ≤ n ≤ 1, then

Q2n5(x) =
∏

ρn∈Ω(2n)

(
x4 + ρnx3 + ρ2

nx2 + ρ3
nx + ρ4

n

)
.

(ii) If 2 ≤ n ≤ L2, then

Q2n5(x) =
∏

an,bn,cn

(
x4 + anx3 + bnx2 + cnx + 1

)
,

where an, bn, cn satisfies the following system of nonlinear recurrence relations 2bn − a2
n = an−1

2 + b2
n − 2ancn = bn−1

2bn − c2
n = cn−1,

for initial values a1 = −1, b1 = 1, and c1 = −1.
(iii) If n ≥ L = L4 = L2 + 1, then

Q2n5(x) =
∏

aL,bL,cL

(
x2n−L+2

+ aLx3·2n−L

+ bLx2n−L+1
+ cLx2n−L

− 1
)

,

where aL, bL, cL satisfies the following system of nonlinear recurrence relations 2bL − a2
L = aL−1

−2 + b2
L − 2aLcL = bL−1

−2bL − c2
L = cL−1,

for each triple aL−1, bL−1, cL−1 obtained in (ii).

Proof. (i) Under the assumptions that q ≡ ±2 (mod 5) and q ≡ 3 (mod 4), Q2n5(x) factors into a
product of φ(2n5)/4 = 2n−1 distinct monic irreducible polynomials of degree 4. It is trivial to check
Q5(x) =

∏
w∈Ω(5)(x− w) = x4 + x3 + x2 + x + 1 and Q10(x) = Q5(−x) = x4 − x3 + x2 − x + 1.

(ii) Since Q2n5(x) = Q2n−15(x2), it is enough to study the factors of x8 +an−1x
6 +bn−1x

4 +cn−1x
2 +1.

Again, the consequence that each irreducible factor of Q2n5(x) has degree 4 simplifies the problem and
thus we only need to consider the following irreducible factorization

x8 + an−1x
6 + bn−1x

4 + cn−1x
2 + 1

=
(
x4 + d3x

3 + d2x
2 + d1x + d0

) (
x4 + e3x

3 + e2x
2 + e1x + e0

)
Since all the roots of an irreducible factor are the conjugates of a primitive 2nr-th root of unity,

d0 and e0 are of form β1+q+q2+q3
for some primitive 2nr-th root of unity β. Under our assumptions,

5 | 1 + q + q2 + q3. Moreover, v2(1 + q + q2 + q3) = v2(q + 1) + 1 = L2. This implies that for 2 ≤ n ≤ L2

we have 2n5 | 1 + q + q2 + q3. Hence d0 = e0 = 1. Then one can easily show that e3 = −d3 and e1 = −d1

because coefficients of x7 and x vanish in the product. This forces that d2 = e2. Hence we have

x8 + an−1x
6 + bn−1x

4 + cn−1x
2 + 1

=
(
x4 + anx3 + bnx2 + cnx + 1

) (
x4 − anx3 + bnx2 − cnx + 1

)
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By comparing both sides of the above equation, we conclude an, bn, cn (2 ≤ n ≤ L2) must satisfy the
following system of nonlinear recurrence relations 2bn − a2

n = an−1

2 + b2
n − 2ancn = bn−1

2bn − c2
n = cn−1.

We note that the above system has exactly two solutions for each n due to the fact that the factorization
is unique,

(iii) For n = L = L2 + 1, we have 2Lr - 1 + q + q2 + q3. But 2L2r | 1 + q + q2 + q3 implies that
d0 = e0 = −1. So we must have

x8 + an−1x
6 + bn−1x

4 + cn−1x
2 + 1

=
(
x4 + anx3 + bnx2 + cnx− 1

) (
x4 − anx3 + bnx2 − cnx− 1

)
Hence aL, bL, cL satisfy the following system of nonlinear recurrence relations 2bL − a2

L = aL−1

−2 + b2
L − 2aLcL = bL−1

−2bL − c2
L = cL−1,

for each triple aL−1, bL−1, cL−1 obtained in (ii). The rest of proof follows from Theorem 2.2. �

We note that if q ≡ 3 (mod 20) and k is even, or, q ≡ 7 (mod 20) and k is odd, then L = 4. So the
factorization over these fields is very fast. We also note that for small n’s the solutions (an, bn, cn) of the
above systems of nonlinear recurrence relations can be explicitly expressed in some cases. For example,
for q ≡ 3 (mod 20) and q > 3, the solutions (a2, b2, c2) satisfy that a2

2 = −5, b2 = 3ρ1, c2 = a2ρ1. If k is
even, then a2

3 = 2− a2, b3 = 1, and c3 = 3a−1
3 ; if k is odd, then a2

3 = −2− a2, b3 = −1, and c3 = 3a−1
3 .

For q ≡ 7 (mod 20), if k is odd, then a2
3 = 2− a2, b3 = 1, and c3 = 3a−1

3 ; if k is even, then a2
3 = −2− a2,

b3 = −1, and c3 = 3a−1
3 .

Corollary 5.2. Let q ≡ ±2 (mod 5) and q ≡ 3 (mod 4). Denote L = v2(q4 − 1). Let a1 = −1, b1 = 1,
and c1 = −1. For each aL, bL, cL satisfying 2bL − a2

L = aL−1

−2 + b2
L − 2aLcL = bL−1

−2bL − c2
L = cL−1,

and  2bm − a2
m = am−1

2 + b2
m − 2amcm = bm−1

2bm − c2
m = cm−1,

where 2 ≤ m ≤ L− 1, the polynomial

x2n−L+2
+ aLx3·2n−L

+ bLx2n−L+1
+ cLx2n−L

− 1

is irreducible over Fq for any n ≥ L.

Finally we use some examples to illustrate our results. We provide the following tables for coefficients
(an, bn, cn) appeared in the factorization of Q2n5(x) over Fq where q = 7 or 67. We note that (an, bn, cn)’s
are computed using MAPLE programs, which are simple implementations of solving the systems of
nonlinear recurrence relations as stated in Theorem 5.1.
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Table 1. Factorization of Q2n5(x) over Fq where q = 7 (k is even, L4 = 5)

n 1 2 3 4 5

(an, bn, cn) (−1, 1, 1)
(3, 4, 4)
(4, 4, 3)

(3, 6, 1)
(4, 6, 6)
(1, 6, 3)
(6, 6, 4)

(0, 5, 3)
(0, 5, 4)
(2, 4, 3)
(5, 4, 4)
(3, 5, 0)
(4, 5, 0)
(3, 4, 2)
(4, 4, 5)

(0, 0, 2)
(0, 0, 5)
(3, 1, 6)
(4, 1, 1)
(1, 5, 6)
(6, 5, 1)
(1, 3, 5)
(6, 3, 2)
(2, 0, 0)
(5, 0, 0)
(6, 6, 3)
(1, 6, 4)
(1, 2, 6)
(6, 2, 1)
(5, 4, 1)
(2, 4, 6)

Table 2. Factorization of Q2n5(x) over Fq where q = 67 (k is odd, L4 = 4)

n 1 2 3 4

(an, bn, cn) (−1, 1, 1)
(14, 64, 53)
(53, 64, 14)

(16, 1, 63)
(51, 1, 4)
(4, 1, 51)
(63, 1, 16)

(21, 61, 63)
(46, 61, 4)
(33, 34, 53)
(34, 34, 14)
(14, 33, 34)
(53, 33, 33)
(4, 6, 16)
(63, 6, 21)

6. Conclusion

In this paper, we obtain the explicit factorization of cyclotomic polynomials of Q2nr(x) over finite
fields where r = 5 and construct several classes of irreducible polynomials of degree 2n−2 with fewer than
5 terms. Our approach is recursive, i.e., we derive the factorization of Q2kr(x) from the factorization of
Q2k−1r(x2). We show that we can do it with at most Lφ(r) = v2(qφ(r) − 1) iterations. A key component
of our approach for r = 5 is to factor certain types of polynomials of degree 8 into two quartic irreducible
polynomials. It would be more desirable to obtain explicit factors of Q2nr(x) for arbitrary r. One would
expect that it involves the factorization of certain types of polynomials of degree 2m where m | φ(r) into
a product irreducible polynomials of degree less than or equal to m. Another contribution of this paper
is the construction of several classes of irreducible polynomials over finite fields with at most 5 nonzero
terms. We note that one can also construct more classes of irreducible polynomials for other choices of r
as a consequence of Theorem 2.2.
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