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Abstract

Let p be a prime and q = pm. We investigate permutation properties of polynomials
P (x) = xr + xr+s + · · ·+ xr+ks (0 < r < q − 1, 0 < s < q − 1, and k ≥ 0) over a finite
field Fq. More specifically, we construct several classes of permutation polynomials of
this form over Fq. We also count the number of permutation polynomials in each class.
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1 Introduction

Let p be prime and q = pm. A polynomial is a permutation polynomial (PP) over Fq if

it induces a bijective map from Fq to itself. The study of permutation polynomials of a

finite field goes back to 19-th century when Hermite and later Dickson pioneered this area

of research. In recent years interest in permutation polynomials has increased due to their

applications in cryptography. For more background material on permutation polynomials

we refer to Chapter 7 of [4]. For a detailed survey of open questions and recent results see

[2], [3] and [6].

In general, finding classes of permutation polynomials of Fq is a challenging problem. Here

we are interested in permutation properties of polynomials P (x) = xr(1 + xs + · · · + xks).

These polynomials have been first considered by Matthews [5]. For r = 0 and s = 1, these

polynomials reduce to the polynomials 1+x+ · · ·+xk whose permutation behavior, for odd

q, has been described by Matthews in the same paper. The following general result has also

been proved in [5] (Theorem 5.1).

Theorem (Matthews) Let (r, s) = 1 and l = q−1
(s,q−1)

. Then P (x) = xr(1 + xs + · · · + xks)

is a permutation polynomial of Fq if

k + 1 ≡ 1 (mod l), (k + 1)s ≡ 1 (mod p), and (r, q − 1) = 1,
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or

k + 1 ≡ −1 (mod l), (k + 1)s ≡ (−1)s (mod p), and (r − s, q − 1) = 1.

We observe that in studying the permutation properties of the polynomial P (x) = xr(1+

xs + · · ·+xks), without loss of generality, we can assume that s | (q− 1). To explain this, let

(s, q− 1) = u and choose an integer t relatively prime to q− 1 such that st ≡ u (mod q− 1).

Since xt is a permutation polynomial of Fq, P (x) = xr(1+xs + · · ·+xks) is a PP if and only

if P (xt) is a PP. However, P (xt) = xrt(1 + xu + · · · + xku) in Fq[x], where u | (q − 1). So

from now on we assume that q − 1 = ls for some integer l. We also note that if l = 1, then

P (x) = xr(1 + xs + · · · + xks) is a PP if and only if (r, q − 1) = 1 and (k + 1, p) = 1. So in

the rest of this paper we assume that q − 1 = ls where l 6= 1.

Our first result states that for l 6= 2 if k + 1 ≡ ±1 (mod l) then conditions given in

Matthews’ theorem completely describe all permutation polynomials of the form P (x) =

xr(1 + xs + · · ·+ xks).

Proposition 1.1 Let q = pm, q − 1 = ls, and P (x) = xr(1 + xs + · · ·+ xks).

(i) If l 6= 2 and k + 1 ≡ 1 (mod l) then P (x) is a PP of Fq if and only if (r, s) = 1,

(k + 1)s ≡ 1 (mod p), and (r, q − 1) = 1.

(ii) If l 6= 2 and k + 1 ≡ −1 (mod l) then P (x) is a PP of Fq if and only if (r, s) = 1,

(k + 1)s ≡ (−1)s (mod p), and (r − s, q − 1) = 1.

(iii) If l = 2 and k + 1 ≡ ±1 (mod l) (i.e. k is even) then P (x) is a PP of Fq if and only if

(r, s) = 1, (k + 1)s ≡ (−1)r−1 (mod p), and (r, q − 1) = 1 or (r − s, q − 1) = 1.

In [8], the authors speculated that if P (x) = xr(1+xs + · · ·+xks) is a PP then k+1 ≡ ±1

(mod l). In other words permutation polynomials described by Matthews’ theorem are the

only possible such permutation polynomials. In the case s = 1 and q = p or p2, Park and

Lee [8] proved that in fact this statement is true.

In this paper we show that this assertion is not true in general. More precisely we

construct two new classes of permutation polynomials P (x) = xr(1+xs + · · ·+xks) different

from Matthews’ class. More generally, for odd q and odd l, we obtain necessary and sufficient

conditions under which the polynomial P (x) = xr(1+xs + · · ·+xks) becomes a permutation

polynomial of Fq (Theorem 4.1 and Corollary 4.2). We employ these conditions to construct

two new classes of permutation polynomials of the form P (x) = xr(1+xs + · · ·+xks). More

precisely, we prove the following theorems.

Theorem 5.2 Let p be an odd prime and q = pm. Let l be an odd positive integer such that

q − 1 = ls. Let 1) p ≡ −1 (mod l) or 2) p ≡ 1 (mod l) and l | m. Then the polynomial

P (x) = xr(1 + xs + · · · + xks) is a permutation polynomial of Fq if and only if (r, s) = 1,

(lp, k + 1) = 1 and (2r + ks, l) = 1.

Corollary 5.3 Under the conditions of Theorem 5.2 on q and l, there are exactly φ(q −
1)φ(l)(p− 1) permutation polynomials P (x) = xr(1 + xs + · · ·+ xks) (k ≥ 0, 0 < r < q − 1)

of Fq. Here, φ is the Euler totient function.
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Theorem 5.2 can be considered as a generalization of the main theorem of [1]. In the

next theorem, {Ln} is the Lucas sequence determined by the recurrence Ln = Ln−1 + Ln−2

and the initial conditions L0 = 2 and L1 = 1.

Theorem 5.4 Let q = pm with odd prime p, q − 1 = 5s, and P (x) = xr(1 + xs + ... + xks).

Then P (x) is a PP if and only if one of the following holds.

(i) k + 1 ≡ ±1 (mod 5), (r, s) = 1, (k + 1)s ≡ 1 (mod p) and (2r + ks, 5) = 1.

(ii) k + 1 ≡ ±2 (mod 5), (r, s) = 1, (k + 1)s ≡ 1 (mod p), (2r + ks, 5) = 1 and Ls = 2 in

Fp.

This theorem gives a generalization of a theorem of L. Wang (Theorem 2, [10]).

The method of the proof of the above theorems is based on Hermite’s Criterion for

permutation polynomials of Fq (see Section 4) and an application of an explicit representation

of the lacunary sum of the multinomial coefficients in terms of a primitive root of unity in

the algebraic closure of a finite field Fq (Lemma 3.2).

The structure of the paper is as follows. Section 2 gives the proof of Proposition 1.1. In

Section 3, we prove a Lemma which plays an important role in the rest of the paper. In

Section 4, we prove a general theorem regarding the permutation polynomials of the form

P (x) = xr(1 + xs + · · · + xks). In Section 5, we employ this theorem to prove the above

theorems.

Acknowledgment The third author would like to thank Daniel Panario for several helpful

discussions related to this work.

2 Proof of Proposition 1.1

Proof. (i) We assume that k +1 ≡ 1 (mod l) and l 6= 2. By Matthews’ theorem it is clear

that P (x) is a PP if (r, s) = 1, (k + 1)s ≡ 1 (mod p) and (r, q − 1) = 1. Now suppose that

P (x) is a PP. Then by Theorem 1.2 of [9], we have (r, s) = 1. Next we note that for a ∈ Fq,

if as 6= 1 then P (a) = ar and if as = 1 then P (a) = (k + 1)ar. Let S = {a ∈ Fq | as = 1},
so the permutation polynomial P (x) induces a bijection (k + 1)xr from S to (k + 1)S and a

bijection xr from Fq \ S to Fq \ (k + 1)S.

From Theorem 4.7 of [8] we have (k +1)s ≡ (−1)r−1 (mod p). We show that (k +1)s ≡ 1

(mod p). This is obvious when q is even or r is odd. We prove that if q is odd and P (x) is

a PP then in fact r is odd. To prove this, note that |S| = s = q−1
l

< q−1
2

, so we can choose

α ∈ Fq \ S such that −α ∈ Fq \ S. Now since xr is a bijection from Fq \ S to Fq \ (k + 1)S,

r cannot be even, otherwise αr = (−α)r. Therefore r is odd and so (k + 1)s ≡ 1 (mod p).

This shows that (k +1)xr permutes S and xr permutes Fq \S. Hence the polynomial xr is a

PP of Fq and so (r, q− 1) = 1. This completes the proof of the necessity of conditions given

in (i).

Proofs of (ii) and (iii) are similar to the above proof. �
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For odd l, we can combine parts (i) and (ii) of Proposition 1.1 to write the proposition

as the following single statement.

Corollary 2.1 Let l be an odd positive integer such that q − 1 = ls. Let k + 1 ≡ ±1

(mod l). Then P (x) = xr(1 + xs + · · · + xks) is a PP over Fq if and only if (r, s) = 1,

(k + 1)s ≡ 1 (mod p) and (2r + ks, l) = 1.

Corollary 2.2 Under the assumptions of Corollary 2.1 on q and l, there are exactly φ(q −
1)(p− 1, s) permutation polynomials P (x) = xr(1 + xs + · · ·+ xks) (k ≥ 0, k + 1 ≡ either 1

or −1 (mod l), 0 < r < q − 1) of Fq. Here (p− 1, s) is the greatest common divisor of p− 1

and s.

Proof. First of all note that we only need to consider k such that 0 ≤ k ≤ lp − 1. This

is true since if k ≡ k′ (mod lp) then ar(1 + as + · · · + aks) = ar(1 + as + · · · + ak′s) for any

a ∈ Fq. Also we assume that k + 1 ≡ 1 (mod l), the proof in the case k + 1 ≡ −1 (mod l) is

similar.

Next for fixed k with 0 ≤ k ≤ lp − 1 and (k + 1, l) = 1, we count the number of r’s

between 0 and q − 1 such that (r, s) = 1 and (2r + ks, l) = 1. We denote this number by

N(k). One can show that N(k) = φ(q − 1) (see [1], page 20 for a proof), where φ is Euler’s

phi function. Now let Fl,q
p be the set of non-zero elements of Fp that are l-th powers in Fq.

We have |Fl,q
p | = (p− 1, s). From here, since {1, l + 1, · · · , (p− 1)l + 1} forms a complete set

of residues modulo p, the number of k (0 ≤ k ≤ lp − 1) that is a multiple of l and k + 1 is

an l-th power in Fq is (p− 1, s).

Finally let M(q, l) be the number of permutation polynomials determined by conditions

given in Corollary 2.1. We have

M(q, l) =
∑

0≤k≤lp−1,k+1∈Fl,q
p

k+1≡1(mod l)

N(k) = φ(q − 1)(p− 1, s).

�

Example: From the above corollary, one can deduce that the total number of permutation

polynomials of the form P (x) = xr(1 + xs + · · · + xks) over any Fq such that 3 | (q − 1) is

2φ(q − 1)(p− 1, s). For example, there are 64 such permutation polynomials over F25, 1296

such permutation polynomials over F343, and 1536 such permutation polynomials over F625.

3 Lemma

Definition 3.1 The lacunary sum for the coefficient C(n, i, k) of xi in the polynomial ex-

pansion of g(x) = (1 + x + x2 + ... + xk)n is defined as

S(n, l, a, k + 1) =
nk∑
i=0

i≡a (mod l)

C(n, i, k),
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where

C(n, i, k) =
∑

n0 + n1 + · · · + nk = n

n1 + 2n2 + · · · + knk = i

n!

n0! n1! · · ·nk!
.

We next derive a formula for the lacunary sum of the multinomial coefficients over a

finite field. We use this formula in the proof of Theorem 4.1.

Lemma 3.2 Let (p, 2l) = 1, q = pm and η be a primitive 2l-th root of unity in the algebraic

closure of Fq. Let

Ek(x + x−1) =
xk+1 − x−(k+1)

x− x−1

be the Dickson polynomial of the second kind of degree k over Fq. Let n, l, a, and k be

integers. We have

S(n, l, a, k + 1) =
(k + 1)n + δl,a

l
+

1

l

b l−1
2

c∑
t=1

(
ηt(2a−kn) + η−t(2a−kn)

) (
Ek

(
ηt + η−t

))n
,

where

δl,a =

{
(−1)a if l is even and k is even

0 otherwise
.

Proof. Let g(x) = (1 + x + · · ·+ xk)n =
nk∑
i=0

C(n, i, k)xi. Then we have

nk∑
i=0

i≡a(mod l)

C(n, i, k)xi =
1

l

l−1∑
t=0

η2at

nk∑
i=0

C(n, i, k)η−2itxi =
1

l

l−1∑
t=0

η2atg(η−2tx).

From here we have

S(n, l, a, k + 1) =
(k + 1)n

l
+

1

l

l−1∑
t=1

η2atg(η−2t)

=
(k + 1)n

l
+

1

l

l−1∑
t=1

η2at

(
η−2(k+1)t − 1

η−2t − 1

)n

=
(k + 1)n

l
+

1

l

l−1∑
t=1

η2at−tn(k+1)+tn

(
η−t(k+1) − ηt(k+1)

η−t − ηt

)n

=
(k + 1)n

l
+

1

l

l−1∑
t=1

ηt(2a−kn)
(
Ek(η

t + η−t)
)n

.

Furthermore,

η(l−i)(2a−kn)(Ek(η
l−i + η−(l−i)))n = (−1)2a−knη−i(2a−kn)(−1)kn(Ek(η

i + η−i))n

= η−i(2a−kn)(Ek(η
i + η−i))n

5



for any 1 ≤ i ≤ b(l − 1)/2c. Finally we let

δl,a =

{
η

l
2
(2a−kn)(Ek(η

l
2 + η− l

2 ))n = (−1)a if l is even and k is even

0 otherwise
.

Therefore we have

S(n, l, a, k + 1) =
(k + 1)n + δl,a

l
+

1

l

b l−1
2

c∑
t=1

(
ηt(2a−kn) + η−t(2a−kn)

) (
Ek(η

t + η−t)
)n

.

�

4 The Main Theorem

In this section, we deduce some necessary and sufficient conditions regarding a permutation

polynomial in the form P (x) = xr(1 + x + · · ·+ xks), where 0 < r < q− 1, k ≥ 0, q− 1 = ls,

and l is odd. A classical result which describes the permutation polynomials of a finite field

is the following theorem of Hermite (Theorem 7.2, [4]).

Hermite’s Criterion: P (x) is a PP over Fq if and only if

(a) P (x) has exactly one root in Fq.

(b) For each integer n with 1 ≤ n ≤ q−2 and n 6≡ 0 (mod p), the reduction of [P (x)]n mod (xq−
x) has degree less than or equal to q − 2.

Next we consider the following conditions:

(i) (r, s) = 1

(ii) (l, k + 1) = 1

(iii) (2r + ks, l) = 1

(iv) (k + 1)s ≡ 1 (mod p)

(v)

l−1
2∑

t=1

(
η2tj + η−2tj

) (
Ek(η

t + η−t)
)jc0s

= −1 in Fq, for j = 1, · · · , l − 1, where η is a

primitive 2l-root of unity in Fq, Ek(x) is the Dickson polynomial of the second kind of

degree k over Fq, and c0 is the multiplicative inverse of r + k(s/2) modulo l.

Using Hermite’s Criterion and the lemma in the previous section, we obtain the following.

Theorem 4.1 Let l be an odd positive integer, p be an odd prime, q = pm and q − 1 = ls.

Let P (x) = xrf(xs) = xr(1 + xs + ... + xks). Then

(A) The conditions (i), (ii), (iii), (iv), and (v) imply that P (x) is a PP.

(B) If P (x) is a PP then (i), (ii) and (iv) hold.

(C) If P (x) is a PP and l < 2p + 1 then 2r + ks 6≡ 0 (mod l).
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Proof. (A) We assume that conditions (i) to (v) are satisfied. It is sufficient to verify

that Hermite’s Criterion holds under these assumptions. Note that if xs = 1, then f(xs) =

k + 1 6= 0 in Fq by (iv). Also if xs 6= 1, again (ii) implies that f(xs) = x(k+1)s−1
xs−1

has no zeroes

in Fq. Hence P (x) has only one zero in Fq and so the first condition of Hermite’s Criterion

is satisfied.

Next we observe that since (r, s) = 1 and

[P (x)]n = xrn(1 + xs + · · ·xks)n =
nk∑
i=0

C(n, i, k)xis+rn,

then the possible nonzero coefficient of xq−1 happens only if s|n. Let n = cs for some c

(1 ≤ c ≤ l − 1). Then we have

[P (x)]cs (mod xq − x) = S(cs, l,−cr, k + 1)xq−1 + · · · ,

for c = 1, · · · , l − 1. So to show that the second condition of Hermite’s criterion holds, it

is enough to show that S(cs, l,−cr, k + 1) = 0 in Fq for c = 1, · · · , l − 1. Let c0 be the

multiplicative inverse of r + k(s/2) modulo l, then for each c = 1, · · · , l − 1 there exists a

unique j (1 ≤ j ≤ l − 1) such that c = jc0 mod l. Thus by Lemma 3.2, (iv) and (v), for

c = 1, · · · , l − 1, we have

lS(cs, l,−cr, k + 1) = lS(jc0s, l,−jc0r, k + 1)

= (k + 1)jc0s +

l−1
2∑

t=1

(
η2tj + η−2tj

) (
Ek(η

t + η−t)
)jc0s

= 0

in Fq. This shows that [P (x)]cs (mod xq − x) has degree less than q− 1 and so by Hermite’s

criterion P (x) is a PP over Fq.

(B) We assume that P (x) = xr(1 + xs + ... + xks) is a PP. Then by Theorem 1.2 of [9],

we have (r, s) = 1 and thus (i) holds. Next by Theorem 4.7 of [8], (k + 1)s ≡ (−1)r−1 ≡
1 (mod p) and therefore (iv) holds. To prove (ii) note that if (l, k + 1) = e 6= 1 then

1 + xs + ... + xks = x(k+1)s−1
xs−1

has (e− 1)s zeros in Fq. Hence P (x) has more than one root in

Fq which is a contradiction. So (l, k + 1) = 1.

(C) Let us assume that 2r + ks ≡ 0 (mod l). Since P (x) is a PP, by Hermite’s criterion,

for c = 1, · · · , l − 1 we have S(cs, l,−cr, k + 1) = 0 in Fq. So from Lemma 3.2 and (iv), we

obtain that

0 = S(cs, l,−cr, k + 1)

=
(k + 1)cs

l
+

1

l

l−1
2∑

t=1

(
ηt(−2cr−kcs) + η−t(−2cr−kcs)

) (
Ek(η

t + η−t)
)cs

=
1

l
+

2

l

l−1
2∑

t=1

(
Ek(η

t + η−t)
)cs

(1)
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for c = 1, · · · , l − 1. Let αt = (Ek(η
t + η−t))

s
. Then from (1) we have

αi
1 + αi

2 + · · ·+ αi
l−1
2

= αi+1
1 + αi+1

2 + · · ·+ αi+1
l−1
2

= −1

2

for i = 1, · · · , l+1
2

. Next by renaming the variables αj’s we can assume that there are m

distinct αj’s with nj copies of each αj for j = 1, · · · , m. So we have

n1α
i
1 + n2α

i
2 + · · ·+ nmαi

m = n1α
i+1
1 + n2α

i+1
2 + · · ·+ nmαi+1

m = −1

2
(2)

for i = 1, · · · , m + 1. We consider the following system of linear equations
n1x1 + n2x2 + · · ·+ nmxm = −1

2

n1α1x1 + n2α2x2 + · · ·+ nmαmxm = −1
2

...

n1α
m−1
1 x1 + n2α2

m−1x2 + · · ·+ nmαm
m−1xm = −1

2

.

Since for any j, nj < p (this is true since l < 2p + 1) and αj’s are distinct, xj = αj for

j = 1, · · · , m is the unique solution of this system. However, by (2) xj = α2
j is also a solution.

So αj = α2
j for j = 1, · · · , m. This implies that for 1 ≤ t ≤ l−1

2
, αt = (Ek(η

t + η−t))
s
= 0 or 1

in Fq. Now note that if ηk+1 is a primitive 2(k + 1)-root of unity in the algebraic closure of

Fq, then

Ek(x) =
k∏

t=1

(
x− (ηt

k+1 + η−t
k+1)

)
.

From here since (k + 1, l) = 1, we have (Ek(η
t + η−t))

s 6= 0 and thus it is true that

(Ek(η
t + η−t))

s
= 1. Hence

l−1
2∑

t=1

(
Ek(η

t + η−t)
)s

=
l − 1

2

in Fq. However, from (1) we have

l−1
2∑

t=1

(
Ek(η

t + η−t)
)s

= −1

2

in Fq. Hence l−1
2

= −1
2

and so l ≡ 0 (mod p), this is a contradiction since l | pm − 1.

Therefore we have 2r + ks 6≡ 0 (mod l) and so (C) holds. �

Corollary 4.2 In Theorem 4.1, let l be an odd prime such that l < 2p + 1, then P (x) is a

PP if an only if conditions (i), (ii), (iii), (iv), and (v) hold.

Proof. It is enough to show that if P (x) is a PP then (v) holds. If P (x) is a PP, by

part (C) of Theorem 4.1, (2r + ks, l) = 1. Let c0 be the multiplicative inverse of r + k(s/2)

modulo l, then (v) follows immediately from S(c0js, l, −c0jr, k + 1) = 0 for j = 1, · · · , l− 1,

Lemma 3.2, and (iv). �
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5 Some Classes of Permutation Polynomials

In this section we employ Theorem 4.1 and Corollary 4.2 to construct two new classes of

permutation polynomials of Fq. We start with a lemma which describes certain finite fields

Fq in which every non-zero element in Fp can be written as an l-th power in Fq.

Lemma 5.1 Let l be an odd integer. Let p be an odd prime, q = pm, s = q−1
l

and α be any

nonzero element of Fp. Then

(i) If p ≡ −1 (mod l), we have αs = 1 in Fp.

(ii) If p ≡ 1 (mod l) and l | m, we have αs = 1 in Fp.

Proof. See [1] Lemma 4.1. �

For polynomials P (x) = xr(1 + xs + · · ·+ xks) over finite fields described in Lemma 5.1,

we can obtain the following simple conditions under which they are PP. The next result is a

generalization of the main theorem of [1].

Theorem 5.2 Let p be an odd prime and q = pm. Let l be an odd positive integer such that

q − 1 = ls. Let 1) p ≡ −1 (mod l) or 2) p ≡ 1 (mod l) and l | m. Then the polynomial

P (x) = xr(1 + xs + · · · + xks) is a permutation polynomial of Fq if and only if (r, s) = 1,

(lp, k + 1) = 1 and (2r + ks, l) = 1.

Proof. First we assume that P (x) is a PP. Then from Theorem 4.1 we know that (r, s) = 1

and (lp, k + 1) = 1. Now suppose that (2r + ks, l) = d with d > 1. Let u = l
d
. Then u < l

and 2ur +kus ≡ 0 (mod l). Since P (x) is a PP, we have S(us, l,−ur, k +1) = 0 in Fq. From

Lemma 3.2 we obtain

0 = S(us, l,−ur, k + 1) =
1

l
+

2

l

l−1
2∑

t=1

(Ek(η
t + η−t))us. (3)

Now note that ηt + η−t for 1 ≤ t ≤ l−1
2

are roots of the Dickson polynomial El−1(x).

Under given conditions for p, by Theorem 7 of [7] we know that El−1(x) splits in Fp[x]. So

ηt + η−t ∈ Fp and thus by Lemma 5.1 we have (Ek(η
t + η−t))s = 1. This together with (3)

imply that l = 0 in Fq, which is a contradiction, so (2r + ks, l) = 1.

To prove the sufficiency, we first note that from Lemma 5.1 (k + 1)s ≡ 1 (mod p) as long

as (p, k + 1) = 1. By applying Theorem 4.1, we only need to show that for j = 1, · · · , l − 1,

l−1
2∑

t=1

(
η2tj + η−2tj

) (
Ek(η

t + η−t)
)jc0s

= −1.

Again we have (Ek(η
t + η−t))s = 1 for 1 ≤ t ≤ l−1

2
. Thus

l−1
2∑

t=1

(
η2tj + η−2tj

) (
Ek(η

t + η−t)
)jc0s

=

l−1
2∑

t=1

(
η2tj + η−2tj

)
=

l−1∑
t=1

η2tj = −1,

for j = 1, · · · , l − 1. This completes the proof. �
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Corollary 5.3 Under the conditions of Theorem 5.2 on q and l, there are exactly φ(q −
1)φ(l)(p− 1) permutation polynomials P (x) = xr(1 + xs + · · ·+ xks) (k ≥ 0, 0 < r < q − 1)

of Fq. Here, φ is the Euler totient function.

Proof. Let N(k) be as defined in the proof of Corollary 2.2. Let N(q, l) be the number of

permutation polynomials determined by conditions given in Theorem 5.2 and µ(d) denote

the Möbius function. Then we have

N(q, l) =
∑

0≤k≤lp−1
(k+1,l)=1, k+1 6≡0 (mod p)

N(k)

= φ(q − 1)
∑

0≤k≤lp−1
k+1 6≡0 (mod p)

∑
d|(k+1,l)

µ(d)

= φ(q − 1)
∑
d|l

µ(d)
∑

1≤t≤ lp
d

t6≡0 (mod p)

1

= φ(q − 1)(p− 1)l
∑
d|l

µ(d)

d

= φ(q − 1)φ(l)(p− 1).

�

To describe our next result we need the following definition. We define the n-th Lucas

number Ln over Fp (p 6= 2) by the recurrence relation

Ln = Ln−1 + Ln−2 (4)

and the initial conditions L0 = 2 and L1 = 1. Let q = pm and q − 1 = 5s. Let η be a

primitive 10th-root of unity in Fq. Then one can show that Ln has representation

Ln = (η + η−1)n + (−(η2 + η−2))n (5)

over Fq.

We say that the sequence {Ln} is s-periodic over Fp if an+ks = an in Fp for integers k

and n. Some useful properties regarding the sequence {Ln} are the following.

(P1) If p 6= 2 and 5, {Ln} is 5s-periodic over Fp.

(P2) {Ln} is s-periodic over Fp if and only if Ls = 2 in Fp (see [10], Lemmas 6 and 7).

(P3) L2
n = L2n + (−1)n2.

Now we are set to state and prove the final result of this paper.

Theorem 5.4 Let q = pm with odd prime p, q− 1 = 5s, and P (x) = xrf(xs) = xr(1 + xs +

... + xks). Then P (x) is a PP if and only if one of the following holds.

(i) k + 1 ≡ ±1 (mod 5), (r, s) = 1, (k + 1)s ≡ 1 (mod p) and (2r + ks, 5) = 1.

(ii) k +1 ≡ ±2 (mod 5), (r, s) = 1, (k +1)s ≡ 1 (mod p), (2r + ks, 5) = 1 and Ls = 2 in Fp.
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Proof. First of all we note that (i) follows from Corollary 2.1.

We now consider the case for k + 1 ≡ 2 (mod 5). First we assume that P (x) is a PP of

Fq. Then from Corollary 4.2, we have (r, s) = 1, (k + 1)s ≡ 1 (mod p) and (2r + ks, 5) = 1.

It remains to show that in this case Ls = 2 in Fp. To do this we note that condition (v) in

Corollary 4.2 can be re-written as

2∑
t=1

(−1)tj(ηtj + η−tj)(Ek(η
t + η−t))jc1s = −1, (6)

for j = 1, 2, 3 and 4, where c1 is the multiplicative inverse of ks + 2r modulo 5. Here η is

a primitive 10-th root of unity in Fq. Also note that since k + 1 ≡ 2 (mod 5), we have

(Ek(η
t + η−t))s =

(
ηt(k+1) − η−t(k+1)

ηt − η−t

)s

= (ηt + η−t)s. (7)

Now considering (6) for j = 1 and 2 together with (7) and (5) yield

−Lc1s+1 = −1, and L2c1s+2 − 2L2c1s = −1.

By applying (4) in the latter identity, we have

Lc1s+1 = 1, and L2c1s−1 = −1.

Next by employing (P3) we have

L2c1s+2 − 2 = L2
c1s+1 = 1 = −L2c1s−1,

and thus

2 = L2c1s+2 + L2c1s−1 = L2c1s+1 + L2c1s + L2c1s−1 = 2L2c1s+1.

This follows that

L2c1s = L2c1s+1 − L2c1s−1 = 2,

and thus by applying (P3) and (P1) we have L2c1s = L4c1s = L8c1s = L16c1s = Lc1s = 2.

Since c1 is a nonzero element of F5, these equalities imply that Ls = 2. This completes the

proof of necessity of conditions given in (ii).

To prove the sufficiency of these conditions, by Corollary 4.2, we only need to show that

for j = 1, 2, 3 and 4, we have

2∑
t=1

(−1)tj(ηtj + η−tj)(Ek(η
t + η−t))jc1s = −1.

To establish these identities, we first note that

ηtj + η−tj = Dj(η
t + η−t),
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where Dj(x) denotes the Dickson polynomial of the first kind of degree j. We have Dj(−x) =

(−1)jDj(x). Let

Dj(x) = d
(j)
j xj + d

(j)
j−1x

j−1 + · · ·+ d
(j)
0 .

So

2∑
t=1

(−1)tj(ηtj + η−tj)
(
ηt + η−t

)jc1s

=
2∑

t=1

(−1)tjDj(η
t + η−t)

(
ηt + η−t

)jc1s

= (−1)j

j∑
m=0

d(j)
m

((
η + η−1

)jc1s+m
+

(
−(η2 + η−2)

)jc1s+m
)

= (−1)j

j∑
m=0

d(j)
m Ljc1s+m.

Since Ls = 2, from (P2) we know that Ljc1s+m = Lm. Applying this and (5) in the previous

identity yield

1 +
2∑

t=1

(−1)tj(ηtj + η−tj)
(
ηt + η−t

)jc1s
= 1 + (−1)j

j∑
m=0

d(j)
m Lm

= 1 +
2∑

t=1

(−1)tj(ηtj + η−tj)

= 0.

So condition (v) of Corollary 4.2 is satisfied and thus P (x) is a PP.

The proof of necessity and sufficiency of conditions given in (ii) for k + 1 ≡ −2 (mod 5)

is similar. The proof is now complete. �

Note: One can show that if q−1 = pm−1 = 5s for an odd prime p such that p 6≡ 1 (mod 5)

or 5 | m, then (k+1)s ≡ 1 (mod p) as long as k+1 6≡ 0 (mod p) and also Ls = 2 always hold

in Fp. Therefore in this case P (x) = xr(1 + xs + · · · + xks) is a PP if and only if (r, s) = 1,

(5p, k + 1) = 1 and 2r + ks 6≡ 0 (mod 5).
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