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Abstract. We show that, for any integer m with 3 < m ≤ min{p − 1, q/2}
where q = pn > 9 there exists a multiset M satisfying that 0 ∈ M has the
highest multiplicity q −m and

P
b∈M b = 0 such that every polynomial over

the finite field Fq with the prescribed range M has degree greater than q−m.

This implies that Conjecture 5.1 in [6] is false over any finite field Fq for p > 9
and k := m− 1 ≥ 3.

1. Introduction

Let Fq be a finite field of q = pn elements and F∗q be the set of all nonzero ele-
ments. Any mapping from Fq to itself can be uniquely represented by a polynomial
of degree at most q − 1. The degree of such a polynomial is called the reduced de-
gree. A value set of a polynomial f over Fq is the set Vf of images when view f as a
mapping from Fq to itself. The polynomial f is a permutation polynomial (PP) of
Fq if and only if the size |Vf | = q. The distribution of value sets of polynomials has
been studied in [3]. A lot of effort has been made in finding lower and upper bounds
of |Vf | if f is not a PP, see for example, [4, 7, 10, 12, 13, 14]. One of the most
known results in this area was due to Wan [13], who proved |Vf | ≤ q−d(q− 1)/ne,
which was first conjectured by Mullen [10]. Polynomials with prescribed sizes of
values sets such as minimal value set polynomials (that are polynomials f over Fq

with degree n satisfying |Vf | = dq/ne) have been studied in [2, 5]. The complete
classification of minimal value set polynomials over Fp and Fp2 is done in [11] and
it is still open for the general extension fields. All these results related |Vf | with
the degree n of the polynomial.

Let us also consider multiplicities of elements in the value sets of polynomials.
A multiset M of size q of field elements is called the range of the polynomial
f(x) ∈ Fq[x] if M = {f(x) : x ∈ Fq} as a multiset (that is, not only values, but also
multiplicities need to be the same). Here we use the set notation for multisets as
well. Biró [1] described polynomials whose range is a multiset with only two distinct
values. A nice reveal of connections among a combinatorial number theoretical
result, polynomials of prescribed ranges and hyperplanes in vector spaces over finite
fields can be found in [6], which we refer it to the readers for more details. In their
study of polynomials with prescribed range, Gács et al. recently proposed the
following conjecture on the ranges of polynomials and their degrees.

Conjecture 1 (Conjecture 5.1, [6]). Suppose M = {a1, a2, . . . , aq} is a multiset
of Fq with a1 + . . . + aq = 0, where q = pn, p prime. Let k <

√
p. If there is no

polynomial with range M of degree less than q − k, then M contains an element of
multiplicity at least q − k.
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We note that Conjecture 1 is equivalent to

Conjecture 2. Suppose M = {a1, a2, . . . , aq} is a multiset of Fq with a1+. . .+aq =
0, where q = pn, p prime. Let k <

√
p. If multiplicities of all elements in M are

less than q− k, then there exists a polynomial with range M of the degree less than
q − k.

In the case k = 2, Conjecture 1 holds by Theorem 2.2 in [6]. In particular,
Theorem 2.2 in [6] gives a complete description of M so that there is no polynomial
with range M of reduced degree less than q− 2. In this paper, we study the above
conjecture for k ≥ 3.

Suppose we take a prescribed range M such that the highest multiplicity in M
is q − k − 1. If the above conjecture were true then it follows that there exists
a polynomial, say g(x), with range M and the degree of g(x) is less than q − k.
On the other hand, if a ∈ M is the element with multiplicity q − k − 1 then the
polynomial g(x)−a has q−k− 1 roots and thus the degree of g(x) is at least equal
to the highest multiplicity q − k − 1 in M . Therefore the degree of g(x) must be
q − k − 1. This means that, if Conjecture 2 were true, then for every multiset M
with the highest multiplicity q− k− 1 where 1 ≤ k <

√
p there exists a polynomial

with range M of the degree q − k − 1.
Let M = {a1, a2, . . . aq} be a given multiset. We consider polynomials f(x) :

Fq → M , with the least degree. Let q − k − 1 be the highest multiplicity in M . If
a ∈ M is an element with multiplicity q − k − 1 then the polynomial f(x)− a has
the same degree as f(x) and 0 is in the range of f(x)− a such that 0 has the same
highest multiplicity q − k − 1. Therefore, we will consider only multisets M where
0 has the highest multiplicity for the rest of the article.

In particular, we prove the following theorem.

Theorem 1. Let Fq be a finite field of q = pn elements with q > 9. For every m
with 3 < m ≤ min{p − 1, q/2} there exists a mutiset M with

∑
b∈M b = 0 and the

highest mutiplicity q −m achieved at 0 ∈ M such that every polynomial over the
finite field Fq with the prescribed range M has degree greater than q −m.

In particular, for any p > 9 and 3 ≤ k <
√
p, if we take m = k + 1, i.e.,

3 < m <
√
p+1 ≤ min{p−1, q/2}, then Theorem 1 implies that Conjecture 2 fails.

2. Proof of Theorem 1

Let m be a fixed positive integer such that 3 < m ≤ min{p−1, q/2}. Because q >
9, such m exists. Let M be a multiset such that 0 ∈M has the highest multiplicity
q −m and

∑
b∈M b = 0. We note that the multiplicity of any nonzero element in

M ≤ q/2 and the highest multiplicity q−m ≥ q/2 is indeed achieved at 0. Consider
the polynomial f : Fq →M . Let U ⊆ Fq such that f(U) = {0q−m} (the multiset of
q −m zeros) and T = Fq \ U , i.e., x ∈ T implies f(x) 6= 0. Then |U | = q −m and
|T | = m and M = f(U) ∪ f(T ). Then a polynomial f : Fq →M can be written in
the form f(x) = h(x)P (x) where P (x) =

∏
s∈U (x − s) and h(x) 6= 0 has no zeros

in T . Then deg(f) ≥ deg(P ) = q −m. We note that there is a bijection between
polynomials of reduced degree with range M = {a1, . . . , aq} and the ordered sets
(b1, . . . , bq) (that is, permutations) of Fq: a permutation corresponds to the function
f(bi) = ai. For each U , there are many different h(x)’s corresponding to different
ordered sets (b1, . . . , bq) such that f(bi) = 0 for all bi ∈ U . However, if h(x) =
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λ ∈ F∗q then f(x) is a polynomial of the least degree and each polynomial f(x) is
uniquely determined by a set T and a nonzero scalar λ.

Thus we denote f(x) by

(1) f(λ,T )(x) = λ
∏

s∈Fq\T

(x− s).

Therefore its range M is also uniquely determined by T and λ. Denote by T the
family of all subsets of Fq of cardinality m, i.e.,

T = {T | T ⊆ Fq, |T | = m}.

Denote by M the family of all multisets M of order q containing 0, having the
highest multiplicity q −m achieved at 0 and whose sum of elements in M is equal
to the 0, i.e.,

M = {M | 0 ∈M, multiplicity(0) = q −m,
∑
b∈M

b = 0}.

Equation (1) uniquely determines a mapping

F : F∗q × T →M

where
(λ, T ) 7→ range(fλ,T (x)).

Also, the condition q−m < q−3 implies that deg(fλ,T ) < q−1. Now by Equation (1)
it follows that for every ŝ ∈ T we have

(2) fλ,T (ŝ) = λP (ŝ) = λ
∏

s∈Fq,s 6=ŝ

(ŝ−s)
( ∏

s∈T,s 6=ŝ

(ŝ−s)
)−1

= −λ
( ∏

s∈T,s 6=ŝ

(ŝ−s)
)−1

.

(Note that this equation does not hold for ŝ ∈ Fq \ T ). In the following we find
an upper bound of |range(F)| and a lower bound of |M| and show that |M| >
|range(F)|. This implies that Theorem 1 holds. Further, we will use notation
cT + b = {ct+ b | t ∈ T}.

First of all we observe

Lemma 1. Let λ and T be given. For any c ∈ F∗q and any b ∈ Fq, we have

f(λ,T )(ŝ) = f(cm−1λ,cT+b)(cŝ+ b), for ŝ ∈ T

i.e.,
F(λ, T ) = F(cm−1λ, cT + b).

Proof. Substituting in (2), we obtain f(cm−1λ,cT+b)(cŝ+b) = −cm−1λ(
∏

s∈T,s 6=ŝ((cŝ+
b)− (cs+ b)))−1 = −λ(

∏
s∈T,s 6=ŝ(ŝ− s))−1 = f(λ,T )(ŝ). �

In order to find an upper bound of the cardinality of range(F), we recall Burn-
side’s Lemma (see [9], p. 95).

Theorem 2 (Burnside’s Lemma). Let G be a permutation group acting on a set
X. For g ∈ G let ψ(g) denote the number of points of X fixed by g. Then the

number of orbits of G is equal to
1
|G|

∑
g∈G

ψ(g).

Now we obtain an upper bound of the cardinality of range(F).
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Lemma 2. Let m < p, d = gcd(q−1,m−1) and φ(i) be the Euler totient function.
Then

|range(F)| ≤ (q − 1)(q − 2) . . . (q −m+ 1)
m!

+
∑
i|d
i>1

φ(i)
( q−1

i
m−1

i

)
.

Proof. Let G be group of all non-constant linear polynomials in Fq[x] with the
composition operation. Then G acts on the set F∗q×T with Φ : G×(F∗q×T ) → F∗q×T ,
where

Φ : (cx+ b, (λ, T )) 7→ (cm−1λ, cT + b).
The elements of the same orbit

G(λ, T ) = {(cm−1λ, cT + b) | cx+ b ∈ G}
are all mapped to the same element M ∈ M by Lemma 1. By Burnside’s Lemma
the number of orbits N is given by

N =
1
|G|

∑
g∈G

|(F∗q × T )g|,

where g(x) = cx+ b, and

(F∗q × T )g = {(λ, T ) | (λ, T ) ∈ F∗q × T , (cm−1λ, cT + b) = (λ, T )}.
The equation cx+b = x over Fq is equivalent to (c−1)x = −b, which has exactly

one solution if c 6= 1; no solutions if c = 1 and b 6= 0; q solutions if c = 1 and b = 0.
If c 6= 1 and i := ord(c) | q − 1, then this linear polynomial has one fixed element
and q−1

i cycles of length i. Indeed, fk(x) = ckx+b(ck−1+. . .+c+1) = ckx+b ck−1
c−1 .

Thus f i(x) = x for all x ∈ Fq \ {b(1− c)−1}, and x 6= fk(x) for 1 ≤ k < i. If c = 1
and b 6= 0 then gp(x) = x + pb = x and thus g(x) has cycles of length p since
p = char(Fq).

Assume T = cT + b. Let s ∈ T . Then g(s) ∈ cT + b = T . So the cycle
(s, g(s), g2(s), . . . , gi(s) = s) is contained in T .

This means that, under the assumptions of c 6= 1 and T = cT + b, either T has
one fixed element and m−1

i cycles of the length i which are defined by permutation
g(x), or T has m

i cycles of the length i which are defined by permutation g(x). In
the latter case, the fixed element of g(x) is in Fq \ T .

In the former case, if c ∈ F∗q \{1} satisfies i = ord(c) | d = gcd(q−1,m−1) then

there are
( q−1

i
m−1

i

)
sets fixed by g(x). Moreover, cm−1 = (ci)

m−1
i = 1. Hence, for each

set T fixed by g(x) and any λ ∈ F∗q we must have (cm−1λ, cT + b) = (λ, T ). This
implies that

|(F∗q × T )g| = (q − 1)
( q−1

i
m−1

i

)
.

If c ∈ F∗q \{1} satisfies i = ord(c) | gcd(q−1,m) then there are
( q−1

i
m
i

)
sets T fixed

by g(x). But for each T fixed by g(x), cm−1 = c−1 6= 1 and thus (cm−1λ, cT + b) 6=
(λ, T ). Therefore

|(F∗q × T )g| = 0.

If c = 1 and b = 0 then g(x) = x. So |(F∗q × T )g| = (q − 1)
(

q
m

)
. If c = 1 and

b 6= 0 then cT + b 6= T . Otherwise, it implies that T contains elements of the cycles
of the length p which contradicts to m < p.
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Since d = gcd(q − 1,m− 1), we obtain

N =
1
|G|

∑
g∈G

|(F∗q × T )g|

=
1

q(q − 1)

(
(q − 1) ·

(
q

m

)
+

∑
c∈F∗q\{1}

i=ord(c)|d

b∈Fq

(q − 1)
( q−1

i
m−1

i

))
,

=
1

q(q − 1)

(
(q − 1) ·

(
q

m

)
+ q(q − 1)

∑
c∈F∗q\{1}

i=ord(c)|d

( q−1
i

m−1
i

))

=
(q − 1)(q − 2) . . . (q −m+ 1)

m!
+

∑
i>0,i|d,

φ(i)
( q−1

i
m−1

i

)
,

where φ(i) is the number of c’s such that the order of c is i > 1. Since two orbits
could possibly be mapped to the same multisetM ∈M we finally have an inequality

(3) |range(F)| ≤ (q − 1)(q − 2) . . . (q −m+ 1)
m!

+
∑

i>0,i|d

φ(i)
( q−1

i
m−1

i

)
.

�

Next we find a lower bound of the cardinality of

M = {M = {
q−m times︷ ︸︸ ︷
0, 0 . . . , 0 , b1, b2, . . . , bm}, bi 6= 0, i = 1, 2, . . . ,m,

m∑
i=1

bi = 0}.

Thus, we need to find the number of multisets {b1, . . . , bm} such that bi 6= 0 for
i = 1, . . . ,m and

(4) b1 + b2 + . . .+ bm = 0.

Although we can find a simpler exact formula for the number of solutions to Equa-
tion (4), we prefer the following lower bound for |M| which has the same format
as the upper bound of |range(F)| in order to compare them directly.

Lemma 3. Let A = 1 if m− 1 | q − 1 and A = 0 otherwise. If p > m ≥ 6 then

|M| ≥ (q − 1) . . . (q −m+ 2)(q − 2)
m!

+

∑
1<i<m−1

i|gcd(q−1,m−1)

q − 1
q

[(q − 1
m−1

i

)
+ (−1)

m−1
i

]
+A(q − 1).

If m = 4 then

|M| ≥ (q − 1)(q − 2)2

4!
.
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If m = 5 then

|M| ≥ (q − 1)(q − 2)2(q − 3)
5!

+A(q − 1).

Proof. In order to give a lower bound of |M|, we count two different classes of
families of multisets M . The first class contains families of those multisets M such
that all nonzero elements bi’s have the same multiplicities greater than one except
the last element bm. And the second family class contains those multisets M such
that if we do not consider bm−1 and bm, then all other elements bi have multiplicity
one. First, we count those multisets M such that all nonzero elements bi’s have
the same multiplicities greater than one except the last element bm. That is, for
any i such that 1 < i < m − 1 and i | gcd(q − 1,m − 1), we want to choose m−1

i

pairwise distinct nonzero elements bj ’s, each of multiplicity i, so that

m−1
i∑

j=1

ibj 6= 0

(the sum being equal to zero would imply bm = 0, a contradiction). For each such
i, we denote the family of these multisets by Mi.

We note that each multiset M ∈Mi can be written as

M = {
q−m times︷ ︸︸ ︷
0, 0, . . . , 0 ,

i times︷ ︸︸ ︷
b1, . . . , b1, . . . ,

i times︷ ︸︸ ︷
bm−1

i
, . . . , bm−1

i
, bm}.

Obviously each multiset is invariant to the ordering of the elements b1, . . . , bm−1
i

.
By [8, Theorem 1.2], the number of sets with pairwise distinct nonzero elements

b1, . . . , bm−1
i

such that
∑m−1

i
j=1 bj 6= 0 is

∑
b∈F∗q

N(
m− 1
i

, b,F∗q) =
q − 1
q

[(q − 1
m−1

i

)
+ (−1)

m−1
i

]
and thus

|Mi| =
q − 1
q

[(q − 1
m−1

i

)
+ (−1)

m−1
i

]
.

Similarly, if m− 1 | q− 1, we denote by Mm−1 the set of multisets M such that all
bi’s are the same nonzero element for i = 1, . . . ,m− 1 and their sum together with
bm is zero. It is easy to see that there are q − 1 such M ’s, i.e., |Mm−1| = q − 1.

Now we show that Mi ∩ Mj = ∅ for 1 < i 6= j ≤ m − 1. We prove this
by contradiction and we use heavily the fact that, for each i, there are m−1

i + 1
distinct elements inM ∈Mi if bm 6= bk for 1 ≤ k ≤ m−1

i and there are m−1
i distinct

elements in M if bm = bk for some k. Assume that Mi ∩ Mj 6= ∅. Obviously,
m−1

i 6= m−1
j because i 6= j. Hence either m−1

i + 1 = m−1
j or m−1

j + 1 = m−1
i .

Assume that M ∈ Mi ∩ Mj for some j < i ≤ m − 1. Then m−1
i + 1 = m−1

j .
This implies that, in the multiset M , we have m−1

i elements of multiplicity i and
one element of multiplicity 1 since M ∈ Mi. Moreover, the number of elements
of multiplicity j is m−1

j − 1 and there is one element of multiplicity j + 1 since
M ∈ Mj . Because i > j, we must have i = j + 1 and j = 1 by comparing the
multiplicities. However, this implies we must have m−1

i = 1 and m−1
j − 1 = 1.

Hence i = m− 1 and j = m−1
2 , contradicts to that i = j + 1 for m > 3. Therefore
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Mi ∩Mj 6= ∅ for all 1 < i 6= j ≤ m− 1. Now for m ≥ 4 we have

|
⋃

1<i≤m−1

i|gcd(q−1,m−1)

Mi| = A(q − 1) +
∑

1<i<m−1

i|gcd(q−1,m−1)

q − 1
q

[(q − 1
m−1

i

)
+ (−1)

m−1
i

]
.

Next we count those multisets M such that all nonzero elements bi’s have mul-
tiplicities one if we do not consider the last two elements bm−1, bm. That is,
b1, . . . , bm−2 are pairwise distinct nonzero elements, bm−1 6= 0 is chosen in a way

such that
m−1∑
j=1

bj 6= 0, and bm is uniquely determined by
m∑

j=1

bj = 0. Elements bm−1

and bm−2 can be equal to some of the elements previously chosen. The family of
such multisets is denoted by M0. Since that bm−1 and bm could be same as one of
bj ’s where j = 1, . . . ,m− 2, the highest mulitiplicity could be at most 3.

Consider all (q − 1) . . . (q − m + 2) different ordered tuples (b1, . . . , bm−2). If

−
m−2∑
j=1

bj 6= 0 we can choose bm−1 in q − 2 ways and otherwise there are q − 1

choices for bm−1. Thus in total there are at least (q − 1) . . . (q − m + 2)(q − 2)
ordered tuples (b1, . . . , bm).

Let S1 be the number of such ordered tuples with all elements pairwise distinct,
S2 be the number of ordered tuples with m−2 elements of the multiplicity one and
one elements of the multiplicity two, S3 be the number of tuples with exactly two
elements of the multiplicity two and all other elements of the multiplicity one, and
S4 be the number of tuples with exactly one element of the multiplicity three and
all other elements of the multiplicity one. Because multisets are invariant to the
ordering, there are at least

S1

m!
+

S2

(m− 1)!
+

S3

(m− 2)!2!
+

S4

(m− 2)!
≥ (q − 1) . . . (q −m+ 2)(q − 2)

m!

such multisets in M0, i.e.,

|M0| ≥
(q − 1) . . . (q −m+ 2)(q − 2)

m!
.

We note that each multiset from M0 contains at least m − 2 distinct elements
and each multiset from Mi with i > 1 contains at most m−1

i +1 ≤ m−1
2 +1 distinct

elements. Since m−1
2 + 1 < m− 2 for m ≥ 6 we have that M0 ∩Mi = ∅ as long as

m ≥ 6. Therefore we can conclude that for m ≥ 6 we have

|M| ≥ |M0|+ |
⋃

1<i≤m−1

i|gcd(q−1,m−1)

Mi| ≥
(q − 1) . . . (q −m+ 2)(q − 2)

m!
+

∑
1<i<m−1

i|gcd(q−1,m−1)

q − 1
q

[(q − 1
m−1

i

)
+ (−1)

m−1
i

]
+A(q − 1).

Let m = 4. Then

|M| ≥ |M0| ≥
(q − 1)(q − 2)(q − 2)

4!
.
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If m = 5, then i > 1 and i | gcd(4, q − 1) imply i = 2 or i = 4. Obviously
M0 ∩M4 = ∅ because each element in a multiset of M0 has multiplicity at most
3. Now we have

|M| ≥ |M0|+ |M4|

=
(q − 1)(q − 2)(q − 3)(q − 2)

5!
+A(q − 1).

�

We need the following simple result to compare the bounds of M and |range(F)|
in order to complete the proof of Theorem 1.

Lemma 4. (i) For m ≥ 4, we have

(q − 1)(q − 2) . . . (q −m+ 1)
m!

<
(q − 1) . . . (q −m+ 2)(q − 2)

m!
.

(ii) If 1 < i < m− 1, m ≥ 4 and i | gcd(q − 1,m− 1) then

φ(i)
( q−1

i
m−1

i

)
<
q − 1
q

[(q − 1
m−1

i

)
+ (−1)

m−1
i

]
,

where φ(i) denotes the Euler’s totient function.
(iii) If i = m− 1 | q − 1, then

φ(m− 1)
( q−1

i
m−1

i

)
< q − 1,

where φ(m) denotes the Euler’s totient function.

Proof. (i) Clearly, q −m+ 1 < q − 2 for m ≥ 4.

(ii) Using φ(i) < i, −1 ≤ (−1)
m−1

i ≤ 1 and qi
q−1

( q−1
i

m−1
i

)
> 1, to prove (ii) it is

enough to prove

2
q

q − 1
i

( q−1
i

m−1
i

)
<

(
q − 1
m−1

i

)
,

which follows from q−1
i − k < q − 1− k for k = 3, 4, . . . , m−1

i − 1 and

2qi
q − 1

(
q − 1
i

(
q − 1
i

− 1)) < (q − 1)(q − 2).

Indeed, the last inequality reduces to 0 < (i− 2)q2 − (i− 2)q + 2i, which trivially
holds for all q.

(iii) If i = m− 1 | q − 1 then φ(m− 1) q−1
m−1 < q − 1. �

Proof of Theorem 1: If p > m ≥ 6 it follows directly from Lemmas 2, 3, 4.
If m = 5, m < p implies p ≥ 7. Then for q > 9 we have

|range(F)| ≤ (q − 1)(q − 2)(q − 3)(q − 4)
5!

+ φ(2)
( q−1

2

2

)
+Aφ(4)

q − 1
4

=
(q − 1)(q − 2)(q − 3)(q − 4)

5!
+

(q − 1)(q − 3)
8

+A
q − 1

2

≤ (q − 1)(q − 2)(q − 3)(q − 2)
5!

+A(q − 1)

≤ |M|.



ON A CONJECTURE OF POLYNOMIALS WITH PRESCRIBED RANGE 9

If m = 4 and 3 - q − 1 then the result follows directly from Lemmas 2, 3, and 4
(i). If 3 | q − 1 then

|range(F)| ≤ (q − 1)(q − 2)(q − 3)
4!

+ φ(3)
q − 1

3
<

(q − 1)(q − 2)2

4!
< |M|

holds for q > 18. Note that m ≤ p implies p ≥ 5. The only possible prime power
9 < q ≤ 18 such that p ≥ 5 and 3 | q − 1 is q = 13. It is easy to compute that the
number of all the possible solutions to Equation (4) with desired properites over
F13 is |M| = 105 by a computer program. For q = 13, then gcd(q − 1,m− 1) = 3
and thus |range(F)| ≤ 63 < 105 = |M|. Hence the proof is complete. �

If m = 2 and m = 3 these polynomials satisfying the conjecture do exist. Indeed,
if m = 2 and b2 = −b1, then we can construct the minimum degree polynomial
f(x) = λ

∏
s∈Fq\T (x − s) with the prescribed range M = {0, . . . , 0, b1,−b1} by

letting T = {b−1
1 , 0} and λ = 1.

For the casem = 3, for any multisetM = {0, . . . , 0, b1, b2, b3} with b1+b2+b3 = 0
such that b1, b2, b3 are all nonzero there exists a polynomial f(x) = λ

∏
s∈Fq\T (x−s)

of the least degree with range M . Indeed, let T = {b2,−b1, 0} and λ = b1b2b3.
Then using b3 = −(b1 + b2) we obtain f(b2) = b1b2b3

−1
(b2+b1)b2

= b1, f(−b1) =
b1b2b3

−1
(−b1−b2)(−b1)

= b2, and f(0) = b1b2b3
−1

(b1)(−b2)
= b3.
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[6] A. Gács, T. Héger, Z. L. Nagy, D. Pálvölgyi, Permutations, hyperplanes and polynomials

over finite fields, Finite Field Appl. 16 (2010), 301-314.

[7] R. Guralnick and D. Wan, Bounds for fixed point free elements in a transitive group and
applications to curves over finite fields, Israel J. Math. 101 (1997), 255-287.

[8] J. Li and D. Wan, On the subset sum problem over finite fields, Finite Field Appl. 14 (2008),

911-929.
[9] J. H. van Lint, R.M. Wilson, A Course in Combinatorics, Cambridge University Press 2001.

[10] G. L. Mullen, Permutation polynomials over finite fields, Finite fields, coding theory, and

advances in communications and computing (Las Vegas, NV, 1991), 131-151, Lecture Notes
in Pure and Appl. Math., 141, Dekker, New York, 1993.

[11] W. H. Mills, Polynomials with minimal value sets, Pacific J. Math. 14 (1964), 225-241.

[12] G. Turnwald, A new criterion for permutation polynomials, Finite Fields Appl. 1 (1995),
64-82.

[13] D. Wan, A p-adic lifting lemma and its applications to permutation polynomials, In Finite
fields, coding theory, and advances in communications and computing (Las Vegas, NV, 1991),

Lecture Notes in Pure and Appl. Math., Vol. 141, 209 -216. Dekker, New York, 1993.
[14] D. Wan, J. Shiue, and C. Chen, Value sets of polynomials over finite fields, Proc. Amer.

Math. Soc. 119 (1993), no. 3, 711-717.
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