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Abstract

In [HiMu] the authors, in their analysis on Schur rings, pointed out that it is not
known whether there exists a non-Schurian p-Schur ring over an elementary abelian
p-group of rank 3. In this paper we prove that every p-Schur ring over an elementary
abelian p-group of rank 3 is in fact Schurian.

1 Introduction

Let H be a finite group with identity 1H . We denote the group algebra of H
over the field Q of rational numbers by QH. For B ⊆ H we define B to be the
sum

∑
b∈B b, elements of this form will be called simple quantities, see [Wi].

A subalgebra A of the group algebra QH is called a Schur ring over H if the
following conditions are satisfied:

(1) there exists a basis of A consisting of simple quantities T 0, . . . , T r;
(2) T0 = {1H}, ∪r

i=0Ti = H and Ti ∩ Tj = ∅ if i 6= j;
(3) for each i there exists i′ such that Ti′ = {t−1 | t ∈ Ti}.

We denote by Bsets(A) the set {T0, . . . , Tr}, by Sym(H) the symmetric group
on the set H, and by GL(V ) the general linear group on the vector space V .
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A Schur ring A over a p-group H is said to be a p-Schur ring, p-S ring for
short, if every set in Bsets(A) has size a power of p.

Consider a permutation group G in Sym(H) containing the right regular rep-
resentation of H. Denote by T0 = {1}, T1, . . . , Tr, the orbits of the stabilizer
G1 = {g ∈ G | 1g = 1}. The transitivity module V (H, G1) of the group G is
the vector space spanned by T i, for i = 0, . . . , r. It was proved by Schur, see
[Wi], that V (H, G1) is a Schur ring over H.

It is customary to say that a Schur ring A is Schurian if A is the transitivity
module V (H, G1) of some group G containing the right regular representation
of H.

It is well-known that not every Schur ring is the transitivity module of an
appropriate group. Furthermore, it is easy to check that every p-S ring over
an elementary abelian p-group of rank 1 or 2 is in fact Schurian.

Schur rings are a really powerful tool for solving some fairly hard isomorphism
problems on Cayley graphs, see [HiMu] and [Mu]. In particular, in these appli-
cations of Schur rings it is important to have a good understanding of Schur
rings over elementary abelian p-groups and hopefully to have a complete clas-
sification of these algebras. In this context, in [HiMu] the authors point out
that it is not even known whether every p-S ring over an elementary abelian
p-group of rank 3 is actually Schurian. In this paper we answer this question
with the following theorem.

Theorem 1 Every p-S ring over an elementary abelian p-group of rank 3 is
Schurian.

2 Proof of Theorem 1

Let A be a Schur ring over H, we say that the subgroup K of H is an A-
subgroup of H if K ∈ A. We assume that the reader is familiar with the basic
results on Schur rings and we refer the rusty reader to [Wi]. We present the
results that we are going to extensively use, see [Zi] and [Wi].

Proposition 1 Let A be a p-S ring over H. Then

(a) O∗(A) = {h ∈ H | {h} ∈ Bsets(A)} is a nontrivial A-subgroup of H.
(b) O∗(A) = 〈{T−1T | T ∈ Bsets(A)}〉 is a proper A-subgroup of H.

Proposition 2 Let A be a Schur ring over an abelian group H (additive
notation), if T ∈ Bsets(A) and i is coprime to |H| then (i)T = {it | t ∈ T}
lies in Bsets(A).
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Proposition 3 Let A be a Schur ring. If T, {m} ∈ Bsets(A) then T + m =
{t + m | t ∈ T} lies in Bsets(A).

Proposition 4 Let A be a Schur ring over H. If T ∈ Bsets(A) then St(T ) =
{h ∈ H | Th = T and hT = T} is an A-subgroup of H.

From now on let H be an elementary abelian p-group of rank 3 and let A be
a p-S ring over H. We use an additive notation for H.

The following is a well-known result, see for example [HiMu] page 351.

Lemma 1 If T ∈ Bsets(A) and |T | = p2 then A is Schurian.

Proof. It is easy to see that if B is a p-S ring over an elementary abelian group
M of rank 2 then either Bsets(B) = {{m} | m ∈ M} or there exists a subgroup
L of order p in M such that Bsets(B) = {L + m | m ∈ M\L} ∪ {{l} | l ∈ L}.

Let T ∈ Bsets(A) such that |T | = p2. Denote O∗(A) by R. Proposition 1(b)
yields p2 = |T | ≤ |T − T | ≤ |R| ≤ p2. Therefore, since T − T ⊆ R, we have
T −T = R. This proves that T is a coset R+ t of R. Now, Proposition 2 yields
that R+ t, . . . , R+(p−1)t are p−1 elements of Bsets(A). These elements are
distinct because otherwise |T | would be divisible by a proper divisor of p− 1.
Further ∪p−1

i=1 (R + it) = H\R.

This says that for every U in Bsets(A) either U ⊆ R or U is a coset of R. In
particular, {U ∈ Bsets(A) | U ⊆ R} determines a p-S ring over R. Therefore,
by the comment made in the first paragraph of this proof we have that either
Bsets(A) = {{r} | r ∈ R} ∪ {R + it | i = 1, . . . , p − 1} or there exists a
subgroup L of R of order p and y ∈ R\L such that Bsets(A) = {{l} | l ∈
L} ∪ {L + iy | i = 1, . . . , p− 1} ∪ {R + it | i = 1, . . . , p− 1}. We leave to the
reader to check that in the latter caseA is the transitivity module of a Sylow p-
subgroup of Sym(H). In the former case, consider the affine permutation group
G = H o CGL(H)(R), where CGL(H)(R) denotes the set of linear isomorphisms
of H fixing pointwise R. The stabilizer of 0H in G is CGL(H)(R). The set of
orbits of CGL(H)(R) is exactly Bsets(A), therefore A = V (H, CGL(H)(R)). 2

We note that if O∗(A) = H then A is Schurian, indeed A = V (H, 1Sym(H)).
So, from now on we may assume that |T | ≤ p for any T ∈ Bsets(A) and
O∗(A) 6= H. We let K denote O∗(A).

Lemma 2 If |K| = p2 then A is Schurian.

Proof. Let T be an element of Bsets(A) of size p. We have | St(T )| ≤ |T | = p.
If St(T ) = 0H then, by Proposition 3, {T + x | x ∈ K} would be a set of p2

disjoint elements in Bsets(A) covering the whole of H, a contradiction. This
and Proposition 4 prove that St(T ) = L is a subgroup of K of order p and
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T = L + t for some t ∈ H\K.

Let x1, . . . , xp be a transversal of L in K. By Proposition 2 and Proposition 3,
we have that L+ jt+xi lies in Bsets(A), for i = 1, . . . , p and j = 1, . . . , p− 1.
This yields that Bsets(A) = {L+jt+xi | i = 1, . . . , p, j = 1, . . . , p−1}∪{{k} |
k ∈ K}.

Let l be a generator of L and ϕ ∈ GL(H) be the isomorphism of H mapping t
into t+l and fixing pointwise K. Let G be the affine permutation group Ho〈ϕ〉.
The set of orbits of G0H

= 〈ϕ〉 is exactly Bsets(A). ThereforeA = V (H, 〈ϕ〉). 2

From now on we may assume that K has order p.

Lemma 3 If | St(T )| = p for any T ∈ Bsets(A) of size p then A is Schurian.

Proof. Let T be in Bsets(A) and |T | = p. Since St(T ) is an A-subgroup of H
we have that St(T ) = K. This proves that every element in Bsets(A) of size
p is a coset of K. Therefore Bsets(A) = {{k} | k ∈ K} ∪ {K + x | x ∈ H\K}.

Let x, y, k be a basis of H such that k ∈ K. Let ϕ1, ϕ2 ∈ GL(H) such that ϕ1 :
x 7→ x + k, y 7→ y, k 7→ k and ϕ2 : x 7→ x, y 7→ y + k, k 7→ k. The orbits of the
group 〈ϕ1, ϕ2〉 are the elements of Bsets(A). Therefore A = V (H, 〈ϕ1, ϕ2〉). 2

To prove Theorem 1 it remains to consider the case where there exists T ∈
Bsets(A) of size p such that St(T ) = 0H .

Lemma 4 If St(T ) = 0H for some T ∈ Bsets(A) of size p then A is Schurian.

Proof. Let T be in Bsets(A) such that St(T ) = 0H and |T | = p. By Propo-
sition 2 and 3, we have that (i)T + k is an element of Bsets(A) of size p, for
1 ≤ i ≤ p− 1 and k ∈ K.

We now prove 7 claims from which the lemma (and so Theorem 1) follows.

Claim 4.1 If (i1)T + k1 = (i2)T + k2 then i1 = i2 and k1 = k2.

Assume k1 6= k2. Since St((i1)T ) = 0H , we have i1 6= i2. Set i = i−1
2 i1,

k = k1 − k2 and l the order of i in F∗
p. We have (i)T + i−1

2 k = T . Consider

the permutation ϕ ∈ Sym(T ) defined by tϕ = it + i−1
2 k. If t lies in T then

the 〈ϕ〉-orbit containing t, i.e. {tϕi | i ∈ Z}, has exactly l elements, namely
t, it + i−1

2 k, i2t + i−1
2 (i + 1)k, . . . , il−1t + i−1

2 (il−2 + · · · + i + 1)k. This proves
that every 〈ϕ〉-orbit has size divisible by l, therefore l divides |T | = p, a
contradiction. Thus i1 = i2 and k1 = k2. �

Claim 4.2 Bsets(A) = {{k} | k ∈ K}∪{K+ix | i = 1, . . . , p−1}∪{(i)T +k |
i = 1, . . . , p− 1, k ∈ K}, for some x ∈ H.
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Claim 4.1 says that the elements in {(i)T + k | i = 1, . . . , p− 1, k ∈ K} cover
p3 − p2 elements of H. Therefore, in Bsets(A) there is room only for other
p − 1 sets of size p, having necessarily stabilizer K. So, there exists x ∈ H
such that K + x ∈ Bsets(A). Thus, by Proposition 2, K + ix ∈ Bsets(A) for
any 1 ≤ i ≤ p− 1. The claim is proved. �

Note that ∪p−1
i=0 (K + ix) = L is an A-subgroup of H of order p2.

Claim 4.3 There exist t1, t2 in T and l in L\K such that t1 = t2 + l.

The set T +L cannot be the whole of H as 0 /∈ T +L. Therefore, t1+l1 = t2+l2
for some t1, t2 ∈ T , l1, l2 ∈ L with l1 6= l2. Hence t1 = t2 + (l2 − l1). The
element l2 − l1 cannot be in K otherwise we would have that St(T ) = K, a
contradiction. So, l2 − l1 ∈ L\K. �

Claim 4.4 For any t ∈ T there exists a unique ft ∈ K such that t+l+ft ∈ T .

Since T and K + l lie in A and since A, as vector space, is spanned by {U |
U ∈ Bsets(A)}, we have T ·K + l =

∑
U cUU , where · denotes the product in

the p-S ring A.

By Claim 4.3, we have cT ≥ 1. Now, if x1 + (k1 + l) = x2 + (k2 + l) for some
x1, x2 ∈ T and k1, k2 ∈ K then k1−k2 stabilizes T . Hence k1 = k2 and x1 = x2.
This proves that cT = 1. In particular, for any t ∈ T there exists a unique
ft ∈ K such that t + ft + l lies in T . �

Fix a basis (e1, e2, e3) of H such that e1 ∈ T , e2 = l + fe1 and K = 〈e3〉.

Claim 4.5 T = {e1 + ie2 + f(i)e3 | 0 ≤ i ≤ p − 1} for some function
f : Fp → Fp such that f(0) = 0 and f(1) = 0.

We prove that if e1 + ie2 + f(i)e3 lies in T , for some f(i) ∈ Fp, then there
exists f(i+1) ∈ Fp such that e1 +(i+1)e2 +f(i+1)e3 ∈ T . If i = 0 then, since
e1 ∈ T , we may take f(0) = 0. If e1 + ie2 + f(i)e3 ∈ T then, by Claim 4.4,
there exists ce3 ∈ K such that e1 + ie2 + f(i)e3 + e2 + ce3 ∈ T . In particular,
define f(i + 1) as f(i) + c.

The set {e1 + ie2 + f(i)e3 | i ∈ Fp} has size p and is contained in T , therefore
it is T . Finally, by Claim 4.4, e1 + l + fe1 = e1 + e2 ∈ T , so f(1) = 0. �

Claim 4.6 For any k ∈ Fp\{0} we have {f(i) − f(i − k) | i ∈ Fp} = Fp. In
particular, we may assume f(2) = 1.

Using the description of T given in Claim 4.5, it is easy to check that

T · (−1)T = p0H +
p−1∑
k=1

K + ke2.
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In particular, {(e1+ie2+f(i)e3)−(e1+(i−k)e2+f(i−k)e3) | i ∈ Fp} = K+ke2,
for any k 6= 0. So, {f(i)− f(i− k) | i ∈ Fp} = Fp for any k 6= 0.

Note that f(2) cannot be 0, otherwise, since f(0) = f(1) = 0, we would have
{f(i) − f(i − 1) | i ∈ Fp} ⊂ Fp. Hence, without loss of generality, we may
assume that f(2) = 1, indeed change the basis (e1, e2, e3) in (e1, e2, f(2)−1e3). �

Claim 4.7 f(x) = (x2 − x)/2.

Obviously, p must be odd if Claim 4.6 holds. A function g such that g(x+d)−
g(x) is bijective for each d ∈ F∗

p is called a planar function. Gluck, Hiramine,
Rónyai and Szönyi independently proved that any planar function over a finite
field Fp with odd prime p is a quadratic polynomial (see [Gl], or Proposition
2 in [Hi], or Theorem 1 in [RoSz]).

Hence f(x) = ax2 + bx+ c, for some a, b, c ∈ Fp. Using f(0) = 0, f(1) = 0 and
f(2) = 1, we have f(x) = (x2 − x)/2. �

Let ϕ ∈ GL(H) such that ϕ : e1 7→ e1 + e2, e2 7→ e2 + e3, e3 7→ e3. Using
Claims 4.2, 4.5, 4.7, the reader can verify that the orbits of the group 〈ϕ〉 are
the elements of Bsets(A). Therefore A = V (H, 〈ϕ〉). The proof of Lemma 4
and Theorem 1 is now complete. 2
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