An answer to Hirasaka and Muzychuk: every *p*-Schur ring over C_p^3 is Schurian

Dedicated to the memory of Jiping (Jim) Liu

Pablo Spiga^a and Qiang Wang^{b,1}

^aDepartment of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, CANADA ^bSchool of Mathematics and Statistics, Carleton University, Ottawa, Ontario,

K1S 5B6, CANADA

Abstract

In [HiMu] the authors, in their analysis on Schur rings, pointed out that it is not known whether there exists a non-Schurian p-Schur ring over an elementary abelian p-group of rank 3. In this paper we prove that every p-Schur ring over an elementary abelian *p*-group of rank 3 is in fact Schurian.

Introduction 1

Let H be a finite group with identity 1_H . We denote the group algebra of H over the field \mathbb{Q} of rational numbers by $\mathbb{Q}H$. For $B \subseteq H$ we define <u>B</u> to be the sum $\sum_{b \in B} b$, elements of this form will be called simple quantities, see [Wi]. A subalgebra \mathcal{A} of the group algebra $\mathbb{Q}H$ is called a Schur ring over H if the following conditions are satisfied:

- (1) there exists a basis of \mathcal{A} consisting of simple quantities $\underline{T}_0, \ldots, \underline{T}_r$;
- (2) $T_0 = \{1_H\}, \cup_{i=0}^r T_i = H \text{ and } T_i \cap T_j = \emptyset \text{ if } i \neq j;$ (3) for each *i* there exists *i'* such that $T_{i'} = \{t^{-1} \mid t \in T_i\}.$

We denote by Bsets(\mathcal{A}) the set $\{T_0, \ldots, T_r\}$, by Sym(H) the symmetric group on the set H, and by GL(V) the general linear group on the vector space V.

Email address: spiga@cs.uleth.ca, wang@math.carleton.ca.

¹ The research is supported by NSERC of Canada

A Schur ring \mathcal{A} over a *p*-group H is said to be a *p*-Schur ring, *p*-S ring for short, if every set in Bsets(\mathcal{A}) has size a power of p.

Consider a permutation group G in Sym(H) containing the right regular representation of H. Denote by $T_0 = \{1\}, T_1, \ldots, T_r$, the orbits of the stabilizer $G_1 = \{g \in G \mid 1^g = 1\}$. The transitivity module $V(H, G_1)$ of the group G is the vector space spanned by \underline{T}_i , for $i = 0, \ldots, r$. It was proved by Schur, see [Wi], that $V(H, G_1)$ is a Schur ring over H.

It is customary to say that a Schur ring \mathcal{A} is Schurian if \mathcal{A} is the transitivity module $V(H, G_1)$ of some group G containing the right regular representation of H.

It is well-known that not every Schur ring is the transitivity module of an appropriate group. Furthermore, it is easy to check that every p-S ring over an elementary abelian p-group of rank 1 or 2 is in fact Schurian.

Schur rings are a really powerful tool for solving some fairly hard isomorphism problems on Cayley graphs, see [HiMu] and [Mu]. In particular, in these applications of Schur rings it is important to have a good understanding of Schur rings over elementary abelian p-groups and hopefully to have a complete classification of these algebras. In this context, in [HiMu] the authors point out that it is not even known whether every p-S ring over an elementary abelian p-group of rank 3 is actually Schurian. In this paper we answer this question with the following theorem.

Theorem 1 Every p-S ring over an elementary abelian p-group of rank 3 is Schurian.

2 Proof of Theorem 1

Let \mathcal{A} be a Schur ring over H, we say that the subgroup K of H is an \mathcal{A} -subgroup of H if $\underline{K} \in \mathcal{A}$. We assume that the reader is familiar with the basic results on Schur rings and we refer the rusty reader to [Wi]. We present the results that we are going to extensively use, see [Zi] and [Wi].

Proposition 1 Let \mathcal{A} be a p-S ring over H. Then

(a) $\mathcal{O}_*(\mathcal{A}) = \{h \in H \mid \{h\} \in \text{Bsets}(\mathcal{A})\}\$ is a nontrivial \mathcal{A} -subgroup of H. (b) $\mathcal{O}^*(\mathcal{A}) = \langle \{T^{-1}T \mid T \in \text{Bsets}(\mathcal{A})\} \rangle\$ is a proper \mathcal{A} -subgroup of H.

Proposition 2 Let \mathcal{A} be a Schur ring over an abelian group H (additive notation), if $T \in Bsets(\mathcal{A})$ and i is coprime to |H| then $(i)T = \{it \mid t \in T\}$ lies in $Bsets(\mathcal{A})$.

Proposition 3 Let \mathcal{A} be a Schur ring. If $T, \{m\} \in Bsets(\mathcal{A})$ then $T + m = \{t + m \mid t \in T\}$ lies in $Bsets(\mathcal{A})$.

Proposition 4 Let \mathcal{A} be a Schur ring over H. If $T \in Bsets(\mathcal{A})$ then $St(T) = \{h \in H \mid Th = T \text{ and } hT = T\}$ is an \mathcal{A} -subgroup of H.

From now on let H be an elementary abelian p-group of rank 3 and let \mathcal{A} be a p-S ring over H. We use an additive notation for H.

The following is a well-known result, see for example [HiMu] page 351.

Lemma 1 If $T \in Bsets(\mathcal{A})$ and $|T| = p^2$ then \mathcal{A} is Schurian.

PROOF. It is easy to see that if \mathcal{B} is a *p*-S ring over an elementary abelian group M of rank 2 then either Bsets $(\mathcal{B}) = \{\{m\} \mid m \in M\}$ or there exists a subgroup L of order p in M such that Bsets $(\mathcal{B}) = \{L + m \mid m \in M \setminus L\} \cup \{\{l\} \mid l \in L\}$.

Let $T \in \text{Bsets}(\mathcal{A})$ such that $|T| = p^2$. Denote $\mathcal{O}^*(\mathcal{A})$ by R. Proposition 1(b) yields $p^2 = |T| \leq |T - T| \leq |R| \leq p^2$. Therefore, since $T - T \subseteq R$, we have T - T = R. This proves that T is a coset R + t of R. Now, Proposition 2 yields that $R + t, \ldots, R + (p-1)t$ are p-1 elements of $\text{Bsets}(\mathcal{A})$. These elements are distinct because otherwise |T| would be divisible by a proper divisor of p-1. Further $\bigcup_{i=1}^{p-1}(R+it) = H \setminus R$.

This says that for every U in Bsets (\mathcal{A}) either $U \subseteq R$ or U is a coset of R. In particular, $\{U \in \text{Bsets}(\mathcal{A}) \mid U \subseteq R\}$ determines a p-S ring over R. Therefore, by the comment made in the first paragraph of this proof we have that either Bsets $(\mathcal{A}) = \{\{r\} \mid r \in R\} \cup \{R + it \mid i = 1, \dots, p - 1\}$ or there exists a subgroup L of R of order p and $y \in R \setminus L$ such that Bsets $(\mathcal{A}) = \{\{l\} \mid l \in$ $L\} \cup \{L + iy \mid i = 1, \dots, p - 1\} \cup \{R + it \mid i = 1, \dots, p - 1\}$. We leave to the reader to check that in the latter case \mathcal{A} is the transitivity module of a Sylow psubgroup of Sym(H). In the former case, consider the affine permutation group $G = H \rtimes C_{\mathrm{GL}(H)}(R)$, where $C_{\mathrm{GL}(H)}(R)$ denotes the set of linear isomorphisms of H fixing pointwise R. The stabilizer of 0_H in G is $C_{\mathrm{GL}(H)}(R)$. The set of orbits of $C_{\mathrm{GL}(H)}(R)$ is exactly Bsets (\mathcal{A}) , therefore $\mathcal{A} = V(H, C_{\mathrm{GL}(H)}(R))$. \square

We note that if $\mathcal{O}_*(\mathcal{A}) = H$ then \mathcal{A} is Schurian, indeed $\mathcal{A} = V(H, 1_{\text{Sym}(H)})$. So, from now on we may assume that $|T| \leq p$ for any $T \in \text{Bsets}(\mathcal{A})$ and $\mathcal{O}_*(\mathcal{A}) \neq H$. We let K denote $\mathcal{O}_*(\mathcal{A})$.

Lemma 2 If $|K| = p^2$ then \mathcal{A} is Schurian.

PROOF. Let T be an element of Bsets(\mathcal{A}) of size p. We have $|\operatorname{St}(T)| \leq |T| = p$. If $\operatorname{St}(T) = 0_H$ then, by Proposition 3, $\{T + x \mid x \in K\}$ would be a set of p^2 disjoint elements in Bsets(\mathcal{A}) covering the whole of H, a contradiction. This and Proposition 4 prove that $\operatorname{St}(T) = L$ is a subgroup of K of order p and T = L + t for some $t \in H \setminus K$.

Let x_1, \ldots, x_p be a transversal of L in K. By Proposition 2 and Proposition 3, we have that $L + jt + x_i$ lies in Bsets(\mathcal{A}), for $i = 1, \ldots, p$ and $j = 1, \ldots, p-1$. This yields that Bsets(\mathcal{A}) = { $L + jt + x_i \mid i = 1, \ldots, p, j = 1, \ldots, p-1$ } \cup {{k} | $k \in K$ }.

Let l be a generator of L and $\varphi \in \operatorname{GL}(H)$ be the isomorphism of H mapping t into t+l and fixing pointwise K. Let G be the affine permutation group $H \rtimes \langle \varphi \rangle$. The set of orbits of $G_{0_H} = \langle \varphi \rangle$ is exactly $\operatorname{Bsets}(\mathcal{A})$. Therefore $\mathcal{A} = V(H, \langle \varphi \rangle)$.

From now on we may assume that K has order p.

Lemma 3 If $|\operatorname{St}(T)| = p$ for any $T \in \operatorname{Bsets}(\mathcal{A})$ of size p then \mathcal{A} is Schurian.

PROOF. Let T be in Bsets(\mathcal{A}) and |T| = p. Since St(T) is an \mathcal{A} -subgroup of H we have that St(T) = K. This proves that every element in Bsets(\mathcal{A}) of size p is a coset of K. Therefore Bsets(\mathcal{A}) = {{k} | k \in K} \cup {K + x | x \in H \setminus K}.

Let x, y, k be a basis of H such that $k \in K$. Let $\varphi_1, \varphi_2 \in GL(H)$ such that $\varphi_1 : x \mapsto x + k, y \mapsto y, k \mapsto k$ and $\varphi_2 : x \mapsto x, y \mapsto y + k, k \mapsto k$. The orbits of the group $\langle \varphi_1, \varphi_2 \rangle$ are the elements of Bsets(\mathcal{A}). Therefore $\mathcal{A} = V(H, \langle \varphi_1, \varphi_2 \rangle)$.

To prove Theorem 1 it remains to consider the case where there exists $T \in Bsets(\mathcal{A})$ of size p such that $St(T) = 0_H$.

Lemma 4 If $St(T) = 0_H$ for some $T \in Bsets(\mathcal{A})$ of size p then \mathcal{A} is Schurian.

PROOF. Let T be in Bsets(\mathcal{A}) such that $\operatorname{St}(T) = 0_H$ and |T| = p. By Proposition 2 and 3, we have that (i)T + k is an element of Bsets(\mathcal{A}) of size p, for $1 \leq i \leq p-1$ and $k \in K$.

We now prove 7 claims from which the lemma (and so Theorem 1) follows.

Claim 4.1 If $(i_1)T + k_1 = (i_2)T + k_2$ then $i_1 = i_2$ and $k_1 = k_2$.

Assume $k_1 \neq k_2$. Since $\operatorname{St}((i_1)T) = 0_H$, we have $i_1 \neq i_2$. Set $i = i_2^{-1}i_1$, $k = k_1 - k_2$ and l the order of i in \mathbb{F}_p^* . We have $(i)T + i_2^{-1}k = T$. Consider the permutation $\varphi \in \operatorname{Sym}(T)$ defined by $t^{\varphi} = it + i_2^{-1}k$. If t lies in T then the $\langle \varphi \rangle$ -orbit containing t, i.e. $\{t^{\varphi^i} \mid i \in \mathbb{Z}\}$, has exactly l elements, namely $t, it + i_2^{-1}k, i^2t + i_2^{-1}(i+1)k, \ldots, i^{l-1}t + i_2^{-1}(i^{l-2} + \cdots + i+1)k$. This proves that every $\langle \varphi \rangle$ -orbit has size divisible by l, therefore l divides |T| = p, a contradiction. Thus $i_1 = i_2$ and $k_1 = k_2$.

Claim 4.2 Bsets(\mathcal{A}) = {{k} | $k \in K$ } \cup {K+ix | i = 1, ..., p-1} \cup { $(i)T+k | i = 1, ..., p-1, k \in K$ }, for some $x \in H$.

Claim 4.1 says that the elements in $\{(i)T + k \mid i = 1, ..., p - 1, k \in K\}$ cover $p^3 - p^2$ elements of H. Therefore, in Bsets(\mathcal{A}) there is room only for other p - 1 sets of size p, having necessarily stabilizer K. So, there exists $x \in H$ such that $K + x \in Bsets(\mathcal{A})$. Thus, by Proposition 2, $K + ix \in Bsets(\mathcal{A})$ for any $1 \leq i \leq p - 1$. The claim is proved.

Note that $\bigcup_{i=0}^{p-1}(K+ix) = L$ is an \mathcal{A} -subgroup of H of order p^2 .

Claim 4.3 There exist t_1, t_2 in T and l in $L \setminus K$ such that $t_1 = t_2 + l$.

The set T+L cannot be the whole of H as $0 \notin T+L$. Therefore, $t_1+l_1 = t_2+l_2$ for some $t_1, t_2 \in T$, $l_1, l_2 \in L$ with $l_1 \neq l_2$. Hence $t_1 = t_2 + (l_2 - l_1)$. The element $l_2 - l_1$ cannot be in K otherwise we would have that $\operatorname{St}(T) = K$, a contradiction. So, $l_2 - l_1 \in L \setminus K$.

Claim 4.4 For any $t \in T$ there exists a unique $f_t \in K$ such that $t+l+f_t \in T$.

Since \underline{T} and $\underline{K+l}$ lie in \mathcal{A} and since \mathcal{A} , as vector space, is spanned by $\{\underline{U} \mid U \in \text{Bsets}(\mathcal{A})\}$, we have $\underline{T} \cdot \underline{K+l} = \sum_U c_U \underline{U}$, where \cdot denotes the product in the *p*-S ring \mathcal{A} .

By Claim 4.3, we have $c_T \ge 1$. Now, if $x_1 + (k_1 + l) = x_2 + (k_2 + l)$ for some $x_1, x_2 \in T$ and $k_1, k_2 \in K$ then $k_1 - k_2$ stabilizes T. Hence $k_1 = k_2$ and $x_1 = x_2$. This proves that $c_T = 1$. In particular, for any $t \in T$ there exists a unique $f_t \in K$ such that $t + f_t + l$ lies in T.

Fix a basis (e_1, e_2, e_3) of H such that $e_1 \in T$, $e_2 = l + f_{e_1}$ and $K = \langle e_3 \rangle$.

Claim 4.5 $T = \{e_1 + ie_2 + f(i)e_3 \mid 0 \le i \le p-1\}$ for some function $f: \mathbb{F}_p \to \mathbb{F}_p$ such that f(0) = 0 and f(1) = 0.

We prove that if $e_1 + ie_2 + f(i)e_3$ lies in T, for some $f(i) \in \mathbb{F}_p$, then there exists $f(i+1) \in \mathbb{F}_p$ such that $e_1 + (i+1)e_2 + f(i+1)e_3 \in T$. If i = 0 then, since $e_1 \in T$, we may take f(0) = 0. If $e_1 + ie_2 + f(i)e_3 \in T$ then, by Claim 4.4, there exists $ce_3 \in K$ such that $e_1 + ie_2 + f(i)e_3 + e_2 + ce_3 \in T$. In particular, define f(i+1) as f(i) + c.

The set $\{e_1 + ie_2 + f(i)e_3 \mid i \in \mathbb{F}_p\}$ has size p and is contained in T, therefore it is T. Finally, by Claim 4.4, $e_1 + l + f_{e_1} = e_1 + e_2 \in T$, so f(1) = 0.

Claim 4.6 For any $k \in \mathbb{F}_p \setminus \{0\}$ we have $\{f(i) - f(i-k) \mid i \in \mathbb{F}_p\} = \mathbb{F}_p$. In particular, we may assume f(2) = 1.

Using the description of T given in Claim 4.5, it is easy to check that

$$\underline{T} \cdot \underline{(-1)T} = p\underline{0}_H + \sum_{k=1}^{p-1} \underline{K + ke_2}.$$

In particular, $\{(e_1+ie_2+f(i)e_3)-(e_1+(i-k)e_2+f(i-k)e_3) \mid i \in \mathbb{F}_p\} = K+ke_2$, for any $k \neq 0$. So, $\{f(i) - f(i-k) \mid i \in \mathbb{F}_p\} = \mathbb{F}_p$ for any $k \neq 0$.

Note that f(2) cannot be 0, otherwise, since f(0) = f(1) = 0, we would have $\{f(i) - f(i-1) \mid i \in \mathbb{F}_p\} \subset \mathbb{F}_p$. Hence, without loss of generality, we may assume that f(2) = 1, indeed change the basis (e_1, e_2, e_3) in $(e_1, e_2, f(2)^{-1}e_3)$.

Claim 4.7 $f(x) = (x^2 - x)/2$.

Obviously, p must be odd if Claim 4.6 holds. A function g such that g(x+d) - g(x) is bijective for each $d \in \mathbb{F}_p^*$ is called a planar function. Gluck, Hiramine, Rónyai and Szönyi independently proved that any planar function over a finite field \mathbb{F}_p with odd prime p is a quadratic polynomial (see [Gl], or Proposition 2 in [Hi], or Theorem 1 in [RoSz]).

Hence $f(x) = ax^2 + bx + c$, for some $a, b, c \in \mathbb{F}_p$. Using f(0) = 0, f(1) = 0 and f(2) = 1, we have $f(x) = (x^2 - x)/2$.

Let $\varphi \in GL(H)$ such that $\varphi : e_1 \mapsto e_1 + e_2, e_2 \mapsto e_2 + e_3, e_3 \mapsto e_3$. Using Claims 4.2, 4.5, 4.7, the reader can verify that the orbits of the group $\langle \varphi \rangle$ are the elements of Bsets(\mathcal{A}). Therefore $\mathcal{A} = V(H, \langle \varphi \rangle)$. The proof of Lemma 4 and Theorem 1 is now complete. \Box

References

- [Gl] D. Gluck, A note on permutation polynomials and finite geometry, Discrete Mathematics 80 (1990), 97–100.
- [Hi] Y. Hiramine, A Conjecture on Affine Planes of Prime Order, Journal of Combinatorial Theory, Series A 52 (1989), 44–50.
- [HiMu] M. Hirasaka, M. Muzychuk, An Elementary Abelian Group of rank 4 Is a CI-Group, Journal of Combinatorial Theory, Series A 94, (2001), no. 2, 339– 362.
- [Mu] M. Muzychuk, An elementary abelian group of large rank is not a CI-Group, Discrete Mathematics 264 (2003), no. 1–3, 167–185.
- [RoSz] L. Rónyai and T. Szönyi, Planar Functions over Finite Fields, Combinatorica 9 (1989), no. 3, 315–320.
- [Wi] H. Wielandt, Finite Permutation Groups, Academic Press, Berlin, 1964.
- [Zi] P. H. Zieschang, An Algebraic Approach to Association Schemes, Lecture Notes in Math., Vol. 1628, Springer-Verlag, New York/Berlin, 1996.