An answer to Hirasaka and Muzychuk: every p-Schur ring over C_{p}^{3} is Schurian

Dedicated to the memory of Jiping (Jim) Liu
Pablo Spiga ${ }^{\text {a }}$ and Qiang Wang ${ }^{\mathrm{b}, 1}$
${ }^{\text {a }}$ Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, CANADA
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, K1S 5B6, CANADA

Abstract

In [HiMu] the authors, in their analysis on Schur rings, pointed out that it is not known whether there exists a non-Schurian p-Schur ring over an elementary abelian p-group of rank 3 . In this paper we prove that every p-Schur ring over an elementary abelian p-group of rank 3 is in fact Schurian.

1 Introduction

Let H be a finite group with identity 1_{H}. We denote the group algebra of H over the field \mathbb{Q} of rational numbers by $\mathbb{Q} H$. For $B \subseteq H$ we define \underline{B} to be the sum $\sum_{b \in B} b$, elements of this form will be called simple quantities, see [Wi]. A subalgebra \mathcal{A} of the group algebra $\mathbb{Q} H$ is called a Schur ring over H if the following conditions are satisfied:
(1) there exists a basis of \mathcal{A} consisting of simple quantities $\underline{T}_{0}, \ldots, \underline{T}_{r}$;
(2) $T_{0}=\left\{1_{H}\right\}, \cup_{i=0}^{r} T_{i}=H$ and $T_{i} \cap T_{j}=\emptyset$ if $i \neq j$;
(3) for each i there exists i^{\prime} such that $T_{i^{\prime}}=\left\{t^{-1} \mid t \in T_{i}\right\}$.

We denote by $\operatorname{Bsets}(\mathcal{A})$ the set $\left\{T_{0}, \ldots, T_{r}\right\}$, by $\operatorname{Sym}(H)$ the symmetric group on the set H, and by GL (V) the general linear group on the vector space V.

[^0]A Schur ring \mathcal{A} over a p-group H is said to be a p-Schur ring, p-S ring for short, if every set in $\operatorname{Bsets}(\mathcal{A})$ has size a power of p.

Consider a permutation group G in $\operatorname{Sym}(H)$ containing the right regular representation of H. Denote by $T_{0}=\{1\}, T_{1}, \ldots, T_{r}$, the orbits of the stabilizer $G_{1}=\left\{g \in G \mid 1^{g}=1\right\}$. The transitivity module $V\left(H, G_{1}\right)$ of the group G is the vector space spanned by \underline{T}_{i}, for $i=0, \ldots, r$. It was proved by Schur, see [Wi], that $V\left(H, G_{1}\right)$ is a Schur ring over H.

It is customary to say that a Schur $\operatorname{ring} \mathcal{A}$ is Schurian if \mathcal{A} is the transitivity module $V\left(H, G_{1}\right)$ of some group G containing the right regular representation of H.

It is well-known that not every Schur ring is the transitivity module of an appropriate group. Furthermore, it is easy to check that every p-S ring over an elementary abelian p-group of rank 1 or 2 is in fact Schurian.

Schur rings are a really powerful tool for solving some fairly hard isomorphism problems on Cayley graphs, see [HiMu] and $[\mathrm{Mu}]$. In particular, in these applications of Schur rings it is important to have a good understanding of Schur rings over elementary abelian p-groups and hopefully to have a complete classification of these algebras. In this context, in [HiMu] the authors point out that it is not even known whether every p-S ring over an elementary abelian p-group of rank 3 is actually Schurian. In this paper we answer this question with the following theorem.

Theorem 1 Every p-S ring over an elementary abelian p-group of rank 3 is Schurian.

2 Proof of Theorem 1

Let \mathcal{A} be a Schur ring over H, we say that the subgroup K of H is an \mathcal{A} subgroup of H if $\underline{K} \in \mathcal{A}$. We assume that the reader is familiar with the basic results on Schur rings and we refer the rusty reader to [Wi]. We present the results that we are going to extensively use, see [Zi] and [Wi].

Proposition 1 Let \mathcal{A} be a p-S ring over H. Then
(a) $\mathcal{O}_{*}(\mathcal{A})=\{h \in H \mid\{h\} \in \operatorname{Bsets}(\mathcal{A})\}$ is a nontrivial \mathcal{A}-subgroup of H.
(b) $\mathcal{O}^{*}(\mathcal{A})=\left\langle\left\{T^{-1} T \mid T \in \operatorname{Bsets}(\mathcal{A})\right\}\right\rangle$ is a proper \mathcal{A}-subgroup of H.

Proposition 2 Let \mathcal{A} be a Schur ring over an abelian group H (additive notation), if $T \in \operatorname{Bsets}(\mathcal{A})$ and i is coprime to $|H|$ then $(i) T=\{i t \mid t \in T\}$ lies in $\operatorname{Bsets}(\mathcal{A})$.

Proposition 3 Let \mathcal{A} be a Schur ring. If $T,\{m\} \in \operatorname{Bsets}(\mathcal{A})$ then $T+m=$ $\{t+m \mid t \in T\}$ lies in $\operatorname{Bsets}(\mathcal{A})$.

Proposition 4 Let \mathcal{A} be a Schur ring over H. If $T \in \operatorname{Bsets}(\mathcal{A})$ then $\operatorname{St}(T)=$ $\{h \in H \mid T h=T$ and $h T=T\}$ is an \mathcal{A}-subgroup of H.

From now on let H be an elementary abelian p-group of rank 3 and let \mathcal{A} be a p-S ring over H. We use an additive notation for H.

The following is a well-known result, see for example [HiMu] page 351.
Lemma 1 If $T \in \operatorname{Bsets}(\mathcal{A})$ and $|T|=p^{2}$ then \mathcal{A} is Schurian.
Proof. It is easy to see that if \mathcal{B} is a p-S ring over an elementary abelian group M of rank 2 then either $\operatorname{Bsets}(\mathcal{B})=\{\{m\} \mid m \in M\}$ or there exists a subgroup L of order p in M such that $\operatorname{Bsets}(\mathcal{B})=\{L+m \mid m \in M \backslash L\} \cup\{\{l\} \mid l \in L\}$.

Let $T \in \operatorname{Bsets}(\mathcal{A})$ such that $|T|=p^{2}$. Denote $\mathcal{O}^{*}(\mathcal{A})$ by R. Proposition $1(b)$ yields $p^{2}=|T| \leq|T-T| \leq|R| \leq p^{2}$. Therefore, since $T-T \subseteq R$, we have $T-T=R$. This proves that T is a coset $R+t$ of R. Now, Proposition 2 yields that $R+t, \ldots, R+(p-1) t$ are $p-1$ elements of $\operatorname{Bsets}(\mathcal{A})$. These elements are distinct because otherwise $|T|$ would be divisible by a proper divisor of $p-1$. Further $\cup_{i=1}^{p-1}(R+i t)=H \backslash R$.

This says that for every U in $\operatorname{Bsets}(\mathcal{A})$ either $U \subseteq R$ or U is a coset of R. In particular, $\{U \in \operatorname{Bsets}(\mathcal{A}) \mid U \subseteq R\}$ determines a p-S ring over R. Therefore, by the comment made in the first paragraph of this proof we have that either $\operatorname{Bsets}(\mathcal{A})=\{\{r\} \mid r \in R\} \cup\{R+i t \mid i=1, \ldots, p-1\}$ or there exists a subgroup L of R of order p and $y \in R \backslash L$ such that $\operatorname{Bsets}(\mathcal{A})=\{\{l\} \mid l \in$ $L\} \cup\{L+i y \mid i=1, \ldots, p-1\} \cup\{R+i t \mid i=1, \ldots, p-1\}$. We leave to the reader to check that in the latter case \mathcal{A} is the transitivity module of a Sylow p subgroup of $\operatorname{Sym}(H)$. In the former case, consider the affine permutation group $G=H \rtimes C_{\mathrm{GL}(H)}(R)$, where $C_{\mathrm{GL}(H)}(R)$ denotes the set of linear isomorphisms of H fixing pointwise R. The stabilizer of 0_{H} in G is $C_{\mathrm{GL}(H)}(R)$. The set of orbits of $C_{\mathrm{GL}(H)}(R)$ is exactly $\operatorname{Bsets}(\mathcal{A})$, therefore $\mathcal{A}=V\left(H, C_{\mathrm{GL}(H)}(R)\right)$.

We note that if $\mathcal{O}_{*}(\mathcal{A})=H$ then \mathcal{A} is Schurian, indeed $\mathcal{A}=V\left(H, 1_{\mathrm{Sym}(H)}\right)$. So, from now on we may assume that $|T| \leq p$ for any $T \in \operatorname{Bsets}(\mathcal{A})$ and $\mathcal{O}_{*}(\mathcal{A}) \neq H$. We let K denote $\mathcal{O}_{*}(\mathcal{A})$.

Lemma 2 If $|K|=p^{2}$ then \mathcal{A} is Schurian.
Proof. Let T be an element of $\operatorname{Bsets}(\mathcal{A})$ of size p. We have $|\operatorname{St}(T)| \leq|T|=p$. If $\operatorname{St}(T)=0_{H}$ then, by Proposition $3,\{T+x \mid x \in K\}$ would be a set of p^{2} disjoint elements in $\operatorname{Bsets}(\mathcal{A})$ covering the whole of H, a contradiction. This and Proposition 4 prove that $\operatorname{St}(T)=L$ is a subgroup of K of order p and
$T=L+t$ for some $t \in H \backslash K$.
Let x_{1}, \ldots, x_{p} be a transversal of L in K. By Proposition 2 and Proposition 3, we have that $L+j t+x_{i}$ lies in $\operatorname{Bsets}(\mathcal{A})$, for $i=1, \ldots, p$ and $j=1, \ldots, p-1$. This yields that $\operatorname{Bsets}(\mathcal{A})=\left\{L+j t+x_{i} \mid i=1, \ldots, p, j=1, \ldots, p-1\right\} \cup\{\{k\} \mid$ $k \in K\}$.

Let l be a generator of L and $\varphi \in \mathrm{GL}(H)$ be the isomorphism of H mapping t into $t+l$ and fixing pointwise K. Let G be the affine permutation group $H \rtimes\langle\varphi\rangle$. The set of orbits of $G_{0_{H}}=\langle\varphi\rangle$ is exactly $\operatorname{Bsets}(\mathcal{A})$. Therefore $\mathcal{A}=V(H,\langle\varphi\rangle)$. .

From now on we may assume that K has order p.
Lemma 3 If $|\operatorname{St}(T)|=p$ for any $T \in \operatorname{Bsets}(\mathcal{A})$ of size p then \mathcal{A} is Schurian.
Proof. Let T be in $\operatorname{Bsets}(\mathcal{A})$ and $|T|=p$. Since $\operatorname{St}(T)$ is an \mathcal{A}-subgroup of H we have that $\operatorname{St}(T)=K$. This proves that every element in $\operatorname{Bsets}(\mathcal{A})$ of size p is a coset of K. Therefore $\operatorname{Bsets}(\mathcal{A})=\{\{k\} \mid k \in K\} \cup\{K+x \mid x \in H \backslash K\}$.

Let x, y, k be a basis of H such that $k \in K$. Let $\varphi_{1}, \varphi_{2} \in \mathrm{GL}(H)$ such that φ_{1} : $x \mapsto x+k, y \mapsto y, k \mapsto k$ and $\varphi_{2}: x \mapsto x, y \mapsto y+k, k \mapsto k$. The orbits of the $\operatorname{group}\left\langle\varphi_{1}, \varphi_{2}\right\rangle$ are the elements of $\operatorname{Bsets}(\mathcal{A})$. Therefore $\mathcal{A}=V\left(H,\left\langle\varphi_{1}, \varphi_{2}\right\rangle\right)$. .

To prove Theorem 1 it remains to consider the case where there exists $T \in$ $\operatorname{Bsets}(\mathcal{A})$ of size p such that $\operatorname{St}(T)=0_{H}$.

Lemma 4 If $\operatorname{St}(T)=0_{H}$ for some $T \in \operatorname{Bsets}(\mathcal{A})$ of size p then \mathcal{A} is Schurian.
Proof. Let T be in $\operatorname{Bsets}(\mathcal{A})$ such that $\operatorname{St}(T)=0_{H}$ and $|T|=p$. By Proposition 2 and 3 , we have that $(i) T+k$ is an element of $\operatorname{Bsets}(\mathcal{A})$ of size p, for $1 \leq i \leq p-1$ and $k \in K$.

We now prove 7 claims from which the lemma (and so Theorem 1) follows.
Claim 4.1 If $\left(i_{1}\right) T+k_{1}=\left(i_{2}\right) T+k_{2}$ then $i_{1}=i_{2}$ and $k_{1}=k_{2}$.
Assume $k_{1} \neq k_{2}$. Since $\operatorname{St}\left(\left(i_{1}\right) T\right)=0_{H}$, we have $i_{1} \neq i_{2}$. Set $i=i_{2}^{-1} i_{1}$, $k=k_{1}-k_{2}$ and l the order of i in \mathbb{F}_{p}^{*}. We have $(i) T+i_{2}^{-1} k=T$. Consider the permutation $\varphi \in \operatorname{Sym}(T)$ defined by $t^{\varphi}=i t+i_{2}^{-1} k$. If t lies in T then the $\langle\varphi\rangle$-orbit containing t, i.e. $\left\{t^{\varphi^{i}} \mid i \in \mathbb{Z}\right\}$, has exactly l elements, namely $t, i t+i_{2}^{-1} k, i^{2} t+i_{2}^{-1}(i+1) k, \ldots, i^{l-1} t+i_{2}^{-1}\left(i^{l-2}+\cdots+i+1\right) k$. This proves that every $\langle\varphi\rangle$-orbit has size divisible by l, therefore l divides $|T|=p$, a contradiction. Thus $i_{1}=i_{2}$ and $k_{1}=k_{2}$.

Claim 4.2 Bsets $(\mathcal{A})=\{\{k\} \mid k \in K\} \cup\{K+i x \mid i=1, \ldots, p-1\} \cup\{(i) T+k \mid$ $i=1, \ldots, p-1, k \in K\}$, for some $x \in H$.

Claim 4.1 says that the elements in $\{(i) T+k \mid i=1, \ldots, p-1, k \in K\}$ cover $p^{3}-p^{2}$ elements of H. Therefore, in $\operatorname{Bsets}(\mathcal{A})$ there is room only for other $p-1$ sets of size p, having necessarily stabilizer K. So, there exists $x \in H$ such that $K+x \in \operatorname{Bsets}(\mathcal{A})$. Thus, by Proposition $2, K+i x \in \operatorname{Bsets}(\mathcal{A})$ for any $1 \leq i \leq p-1$. The claim is proved.

Note that $\cup_{i=0}^{p-1}(K+i x)=L$ is an \mathcal{A}-subgroup of H of order p^{2}.
Claim 4.3 There exist t_{1}, t_{2} in T and l in $L \backslash K$ such that $t_{1}=t_{2}+l$.
The set $T+L$ cannot be the whole of H as $0 \notin T+L$. Therefore, $t_{1}+l_{1}=t_{2}+l_{2}$ for some $t_{1}, t_{2} \in T, l_{1}, l_{2} \in L$ with $l_{1} \neq l_{2}$. Hence $t_{1}=t_{2}+\left(l_{2}-l_{1}\right)$. The element $l_{2}-l_{1}$ cannot be in K otherwise we would have that $\operatorname{St}(T)=K$, a contradiction. So, $l_{2}-l_{1} \in L \backslash K$.

Claim 4.4 For any $t \in T$ there exists a unique $f_{t} \in K$ such that $t+l+f_{t} \in T$.
Since \underline{T} and $\underline{K+l}$ lie in \mathcal{A} and since \mathcal{A}, as vector space, is spanned by $\{\underline{U} \mid$ $U \in \operatorname{Bsets}(\mathcal{A})\}$, we have $\underline{T} \cdot \underline{K+l}=\sum_{U} c_{U} \underline{U}$, where \cdot denotes the product in the p-S ring \mathcal{A}.

By Claim 4.3, we have $c_{T} \geq 1$. Now, if $x_{1}+\left(k_{1}+l\right)=x_{2}+\left(k_{2}+l\right)$ for some $x_{1}, x_{2} \in T$ and $k_{1}, k_{2} \in K$ then $k_{1}-k_{2}$ stabilizes T. Hence $k_{1}=k_{2}$ and $x_{1}=x_{2}$. This proves that $c_{T}=1$. In particular, for any $t \in T$ there exists a unique $f_{t} \in K$ such that $t+f_{t}+l$ lies in T.

Fix a basis $\left(e_{1}, e_{2}, e_{3}\right)$ of H such that $e_{1} \in T, e_{2}=l+f_{e_{1}}$ and $K=\left\langle e_{3}\right\rangle$.
Claim 4.5 $T=\left\{e_{1}+i e_{2}+f(i) e_{3} \mid 0 \leq i \leq p-1\right\}$ for some function $f: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ such that $f(0)=0$ and $f(1)=0$.

We prove that if $e_{1}+i e_{2}+f(i) e_{3}$ lies in T, for some $f(i) \in \mathbb{F}_{p}$, then there exists $f(i+1) \in \mathbb{F}_{p}$ such that $e_{1}+(i+1) e_{2}+f(i+1) e_{3} \in T$. If $i=0$ then, since $e_{1} \in T$, we may take $f(0)=0$. If $e_{1}+i e_{2}+f(i) e_{3} \in T$ then, by Claim 4.4, there exists $c e_{3} \in K$ such that $e_{1}+i e_{2}+f(i) e_{3}+e_{2}+c e_{3} \in T$. In particular, define $f(i+1)$ as $f(i)+c$.

The set $\left\{e_{1}+i e_{2}+f(i) e_{3} \mid i \in \mathbb{F}_{p}\right\}$ has size p and is contained in T, therefore it is T. Finally, by Claim 4.4, $e_{1}+l+f_{e_{1}}=e_{1}+e_{2} \in T$, so $f(1)=0$.

Claim 4.6 For any $k \in \mathbb{F}_{p} \backslash\{0\}$ we have $\left\{f(i)-f(i-k) \mid i \in \mathbb{F}_{p}\right\}=\mathbb{F}_{p}$. In particular, we may assume $f(2)=1$.

Using the description of T given in Claim 4.5, it is easy to check that

$$
\underline{T} \cdot \underline{(-1) T}=p \underline{0_{H}}+\sum_{k=1}^{p-1} \underline{K+k e_{2}} .
$$

In particular, $\left\{\left(e_{1}+i e_{2}+f(i) e_{3}\right)-\left(e_{1}+(i-k) e_{2}+f(i-k) e_{3}\right) \mid i \in \mathbb{F}_{p}\right\}=K+k e_{2}$, for any $k \neq 0$. So, $\left\{f(i)-f(i-k) \mid i \in \mathbb{F}_{p}\right\}=\mathbb{F}_{p}$ for any $k \neq 0$.

Note that $f(2)$ cannot be 0 , otherwise, since $f(0)=f(1)=0$, we would have $\left\{f(i)-f(i-1) \mid i \in \mathbb{F}_{p}\right\} \subset \mathbb{F}_{p}$. Hence, without loss of generality, we may assume that $f(2)=1$, indeed change the basis $\left(e_{1}, e_{2}, e_{3}\right)$ in $\left(e_{1}, e_{2}, f(2)^{-1} e_{3}\right)$.

Claim 4.7 $f(x)=\left(x^{2}-x\right) / 2$.
Obviously, p must be odd if Claim 4.6 holds. A function g such that $g(x+d)-$ $g(x)$ is bijective for each $d \in \mathbb{F}_{p}^{*}$ is called a planar function. Gluck, Hiramine, Rónyai and Szönyi independently proved that any planar function over a finite field \mathbb{F}_{p} with odd prime p is a quadratic polynomial (see [Gl], or Proposition 2 in [Hi], or Theorem 1 in [RoSz]).

Hence $f(x)=a x^{2}+b x+c$, for some $a, b, c \in \mathbb{F}_{p}$. Using $f(0)=0, f(1)=0$ and $f(2)=1$, we have $f(x)=\left(x^{2}-x\right) / 2$.

Let $\varphi \in \operatorname{GL}(H)$ such that $\varphi: e_{1} \mapsto e_{1}+e_{2}, e_{2} \mapsto e_{2}+e_{3}, e_{3} \mapsto e_{3}$. Using Claims 4.2, 4.5, 4.7, the reader can verify that the orbits of the group $\langle\varphi\rangle$ are the elements of $\operatorname{Bsets}(\mathcal{A})$. Therefore $\mathcal{A}=V(H,\langle\varphi\rangle)$. The proof of Lemma 4 and Theorem 1 is now complete.

References

[Gl] D. Gluck, A note on permutation polynomials and finite geometry, Discrete Mathematics 80 (1990), 97-100.
[Hi] Y. Hiramine, A Conjecture on Affine Planes of Prime Order, Journal of Combinatorial Theory, Series A 52 (1989), 44-50.
[HiMu] M. Hirasaka, M. Muzychuk, An Elementary Abelian Group of rank 4 Is a CI-Group, Journal of Combinatorial Theory, Series A 94, (2001), no. 2, 339362.
[Mu] M. Muzychuk, An elementary abelian group of large rank is not a CI-Group, Discrete Mathematics 264 (2003), no. 1-3, 167-185.
[RoSz] L. Rónyai and T. Szönyi, Planar Functions over Finite Fields, Combinatorica 9 (1989), no. 3, 315-320.
[Wi] H. Wielandt, Finite Permutation Groups, Academic Press, Berlin, 1964.
[Zi] P. H. Zieschang, An Algebraic Approach to Association Schemes, Lecture Notes in Math., Vol. 1628, Springer-Verlag, New York/Berlin, 1996.

[^0]: Email address: spiga@cs.uleth.ca, wang@math.carleton.ca.
 ${ }^{1}$ The research is supported by NSERC of Canada

