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Abstract

In [HiMu]| the authors, in their analysis on Schur rings, pointed out that it is not
known whether there exists a non-Schurian p-Schur ring over an elementary abelian
p-group of rank 3. In this paper we prove that every p-Schur ring over an elementary
abelian p-group of rank 3 is in fact Schurian.

1 Introduction

Let H be a finite group with identity 15. We denote the group algebra of H
over the field QQ of rational numbers by QH. For B C H we define B to be the
sum Y ,cp b, elements of this form will be called simple quantities, see [Wi].
A subalgebra A of the group algebra QH is called a Schur ring over H if the
following conditions are satisfied:

(1) there exists a basis of A consisting of simple quantities T, ..., T
(2) To={1p},U_Ti=Hand T,NT; =0 if i # j;
(3) for each i there exists i’ such that Ty = {t~! | t € T}}.

T

We denote by Bsets(.A) the set {Ty, ..., T}, by Sym(H) the symmetric group
on the set H, and by GL(V') the general linear group on the vector space V.
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A Schur ring A over a p-group H is said to be a p-Schur ring, p-S ring for
short, if every set in Bsets(.4) has size a power of p.

Consider a permutation group GG in Sym(H) containing the right regular rep-
resentation of H. Denote by Ty = {1},11,...,T,, the orbits of the stabilizer
G, = {g € G| 19 = 1}. The transitivity module V(H, Gy) of the group G is
the vector space spanned by T, for i = 0,...,r. It was proved by Schur, see
[Wi], that V(H,G,) is a Schur ring over H.

It is customary to say that a Schur ring A is Schurian if A is the transitivity

module V(H, Gy) of some group G containing the right regular representation
of H.

It is well-known that not every Schur ring is the transitivity module of an
appropriate group. Furthermore, it is easy to check that every p-S ring over
an elementary abelian p-group of rank 1 or 2 is in fact Schurian.

Schur rings are a really powerful tool for solving some fairly hard isomorphism
problems on Cayley graphs, see [HiMu]| and [Mu]. In particular, in these appli-
cations of Schur rings it is important to have a good understanding of Schur
rings over elementary abelian p-groups and hopefully to have a complete clas-
sification of these algebras. In this context, in [HiMu] the authors point out
that it is not even known whether every p-S ring over an elementary abelian
p-group of rank 3 is actually Schurian. In this paper we answer this question
with the following theorem.

Theorem 1 FEvery p-S ring over an elementary abelian p-group of rank 3 s
Schurian.

2 Proof of Theorem 1

Let A be a Schur ring over H, we say that the subgroup K of H is an A-
subgroup of H if K € A. We assume that the reader is familiar with the basic
results on Schur rings and we refer the rusty reader to [Wi]. We present the
results that we are going to extensively use, see [Zi] and [Wi].

Proposition 1 Let A be a p-S ring over H. Then

(a) O.(A)={h e H | {h} € Bsets(A)} is a nontrivial A-subgroup of H.
(b) O*(A) = {T7'T | T € Bsets(A)}) is a proper A-subgroup of H.

Proposition 2 Let A be a Schur ring over an abelian group H (additive
notation), if T € Bsets(A) and i is coprime to |H| then (i)T = {it |t € T}
lies in Bsets(.A).



Proposition 3 Let A be a Schur ring. If T,{m} € Bsets(A) then T + m =
{t+m|teT} lies in Bsets(.A).

Proposition 4 Let A be a Schur ring over H. If T € Bsets(A) then St(T') =
{he H|Th=T and KT =T} is an A-subgroup of H.

From now on let H be an elementary abelian p-group of rank 3 and let A be
a p-S ring over H. We use an additive notation for H.

The following is a well-known result, see for example [HiMu| page 351.
Lemma 1 If T € Bsets(A) and |T| = p? then A is Schurian.

PROOF. It is easy to see that if B is a p-S ring over an elementary abelian group
M of rank 2 then either Bsets(B) = {{m} | m € M} or there exists a subgroup
L of order p in M such that Bsets(B) = {L+m | m e M\L}U{{l} |l € L}.

Let T € Bsets(A) such that |T| = p?. Denote O*(A) by R. Proposition 1(b)
yields p*> = |T| < |T — T| < |R| < p*. Therefore, since T — T C R, we have
T —T = R. This proves that T is a coset R+t of R. Now, Proposition 2 yields
that R+t¢,..., R+ (p—1)t are p—1 elements of Bsets(.4). These elements are
distinct because otherwise |T'| would be divisible by a proper divisor of p — 1.
Further UYZ| (R +it) = H\R.

This says that for every U in Bsets(A) either U C R or U is a coset of R. In
particular, {U € Bsets(A) | U C R} determines a p-S ring over R. Therefore,
by the comment made in the first paragraph of this proof we have that either
Bsets(A) = {{r} | r € R}U{R+it | i = 1,...,p — 1} or there exists a
subgroup L of R of order p and y € R\L such that Bsets(A) = {{l} | | €
LYU{L+iy|i=1,....p—1}U{R+it|i=1,...,p— 1}. We leave to the
reader to check that in the latter case A is the transitivity module of a Sylow p-
subgroup of Sym(H ). In the former case, consider the affine permutation group
G = H x Carmy(R), where Cgray(R) denotes the set of linear isomorphisms
of H fixing pointwise R. The stabilizer of Oy in G is CGL(H)(R). The set of
orbits of Cqrm)(R) is exactly Bsets(A), therefore A = V(H, Carm)(R)). o

We note that if O,(A) = H then A is Schurian, indeed A = V(H, lgymm))-
So, from now on we may assume that |T'| < p for any T € Bsets(A) and
O.(A) # H. We let K denote O,(A).

Lemma 2 If |K| = p? then A is Schurian.

PROOF. Let T' be an element of Bsets(.A) of size p. We have | St(T)| < |T| = p.
If St(T)) = Oy then, by Proposition 3, {T' + z | # € K} would be a set of p?
disjoint elements in Bsets(.A) covering the whole of H, a contradiction. This
and Proposition 4 prove that St(7') = L is a subgroup of K of order p and



T =L+t forsomete H\K.

Let x1,...,x, be a transversal of L in K. By Proposition 2 and Proposition 3,
we have that L+ jt + x; lies in Bsets(A), fori =1,...,pand j=1,...,p— 1.
This yields that Bsets(A) = {L+jt+x; |i=1,...,p,5=1,...,p—1}U{{k} |
ke K}.

Let [ be a generator of L and ¢ € GL(H) be the isomorphism of H mapping ¢
into t4/ and fixing pointwise K. Let G be the affine permutation group H x ().
The set of orbits of Gy,, = (p) is exactly Bsets(A). Therefore A = V(H, (¢)). o

From now on we may assume that K has order p.
Lemma 3 If |St(T)| = p for any T € Bsets(A) of size p then A is Schurian.

PROOF. Let T be in Bsets(A) and |T'| = p. Since St(7T') is an A-subgroup of H
we have that St(7") = K. This proves that every element in Bsets(.A) of size
p is a coset of K. Therefore Bsets(A) = {{k} |k € K}U{K +=x |z e H\K}.

Let z,y, k be a basis of H such that k € K. Let 1, po € GL(H) such that ¢ :
r—xr+ky—yk—kand py:x— 2,y — y+ k, k— k. The orbits of the
group (1, p2) are the elements of Bsets(A). Therefore A = V(H, (¢1, ¢2)). o

To prove Theorem 1 it remains to consider the case where there exists T €
Bsets(.A) of size p such that St(7") = 0g.

Lemma 4 [fSt(T) = 0y for some T € Bsets(A) of size p then A is Schurian.

PROOF. Let T be in Bsets(.A) such that St(7) = 0y and |T'| = p. By Propo-
sition 2 and 3, we have that ()7 + k is an element of Bsets(.A) of size p, for
1<i<p—1landkeK.

We now prove 7 claims from which the lemma (and so Theorem 1) follows.
Claim 4.1 [f (Zl)T + k?l = (ZQ)T + k’g then il = ig and k’l = ]{?2.

Assume k; # ky. Since St((i))T) = 0y, we have iy # iy. Set i = iy iy,
k = ki — ks and [ the order of ¢ in F;. We have (i)T + i;'k = T. Consider
the permutation ¢ € Sym(7T) defined by t¥ = it + iy k. If ¢ lies in T then
the (p)-orbit containing ¢, i.e. {t*" | i € Z}, has exactly [ elements, namely
tit + iy kit 4+ iy (i + Dk, ... i iy (i2 4 - 4+ i 4+ 1)k. This proves
that every (g)-orbit has size divisible by [, therefore [ divides |T| = p, a
contradiction. Thus i1 =iy and k; = ko. m

Claim 4.2 Bsets(A) = {{k} | k€ K}U{K+iz |i=1,...,p—1}U{()T+k |
i=1,...,p—1,k € K}, for some x € H.



Claim 4.1 says that the elements in {(:)T'+k |i=1,...,p— 1,k € K} cover
p> — p? elements of H. Therefore, in Bsets(A) there is room only for other
p — 1 sets of size p, having necessarily stabilizer K. So, there exists x € H
such that K + x € Bsets(.A). Thus, by Proposition 2, K + iz € Bsets(.A) for
any 1 < ¢ < p— 1. The claim is proved. m

Note that U’y (K + iz) = L is an A-subgroup of H of order p2.
Claim 4.3 There exist t1,ts in T and l in L\K such that t; =ty + .

The set T+ L cannot be the whole of H as 0 ¢ T'+ L. Therefore, t;+1; = to+15
for some ty,ty € T, ly,ls € L with Iy # ly. Hence t; = t5 + (Io — l3). The
element [y — [; cannot be in K otherwise we would have that St(7') = K, a
contradiction. So, Iy — 1 € L\K. m

Claim 4.4 For anyt € T there exists a unique f; € K such thatt+I+ f; € T.

Since T and K + [ lie in A and since 4, as vector space, is spanned by {U |
U € Bsets(A)}, we have T - K + 1 = >ty cyU, where - denotes the product in
the p-S ring A.

By Claim 4.3, we have ¢y > 1. Now, if 21 + (k1 + 1) = 22 + (ko + 1) for some
r1,T9 € T and kq, ks € K then ki — ko stabilizes T'. Hence k1 = ks and 1 = 5.
This proves that ¢y = 1. In particular, for any ¢t € T there exists a unique
fr€ Ksuch that t + f; + [ liesin T. m

Fix a basis (eq, e, e3) of H such that e; € T, eo =1 + f., and K = (e3).

Claim 4.5 T" = {e; +ies + f(i)es | 0 < i < p — 1} for some function
f:F, =T, such that f(0) =0 and f(1) = 0.

We prove that if e; + ies + f(i)es lies in T, for some f(i) € F,, then there
exists f(i+1) € F,, such that e; +(i+1)ea+ f(i+1)es € T. If i = 0 then, since
ep € T, we may take f(0) = 0. If e; +ies + f(i)es € T then, by Claim 4.4,
there exists ces € K such that e; +ies + f(i)es + es + ces € T. In particular,
define f(i +1) as f(i) + c.

The set {e; +ies + f(i)es | i € F,} has size p and is contained in 7', therefore
it is 7. Finally, by Claim 4.4, e; + 1+ fo, = e1 +ea € T, s0 f(1) =0. m

Claim 4.6 For any k € F)\{0} we have {f(i) — f(i — k) |1 € F,} =F,. In
particular, we may assume f(2) = 1.

Using the description of 7" given in Claim 4.5, it is easy to check that

p—1
T-(—1)T =p0y + > K+ kes.
k=1



In particular, {(e;+iea+f(i)es) —(e1+(i—k)ea+ f(i—k)es) | i € F,} = K+kes,
for any k # 0. So, {f(i) — f(: — k) | i € F,} =T, for any k # 0.

Note that f(2) cannot be 0, otherwise, since f(0) = f(1) = 0, we would have
{f(i) = f(i—1) | i € F,} C F,. Hence, without loss of generality, we may
assume that f(2) = 1, indeed change the basis (ey, €2, €3) in (e1, €2, f(2) 'e3). m

Claim 4.7 f(z) = (2* — 2)/2.

Obviously, p must be odd if Claim 4.6 holds. A function g such that g(z+d)—
g(7) is bijective for each d € I} is called a planar function. Gluck, Hiramine,
Rényai and Szonyi independently proved that any planar function over a finite
field F, with odd prime p is a quadratic polynomial (see [Gl], or Proposition
2 in [Hi], or Theorem 1 in [RoSz)).

Hence f(z) = az?+ bz + ¢, for some a, b, c € F,. Using f(0) =0, f(1) = 0 and
f(2) =1, we have f(z) = (z*—1)/2. m

Let ¢ € GL(H) such that ¢ : e; +— e; + ey, 69 — €5 + e3,e3 — e3. Using
Claims 4.2, 4.5, 4.7, the reader can verify that the orbits of the group (p) are
the elements of Bsets(.A). Therefore A = V(H, (¢)). The proof of Lemma 4
and Theorem 1 is now complete. o
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