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Abstract Consider a maximum-length shift-register sequence generated by a primi-

tive polynomial f over a finite field. The set of its subintervals is a linear code whose

dual code is formed by all polynomials divisible by f . Since the minimum weight of

dual codes is directly related to the strength of the corresponding orthogonal arrays,

we can produce orthogonal arrays by studying divisibility of polynomials. Munemasa

(Finite Fields Appl., 4(3):252-260, 1998) uses trinomials over F2 to construct orthogo-

nal arrays of guaranteed strength 2 (and almost strength 3). That result was extended

by Dewar et al. (Des. Codes Cryptogr., 45:1-17, 2007) to construct orthogonal arrays of

guaranteed strength 3 by considering divisibility of trinomials by pentanomials over F2.

Here we first simplify the requirement in Munemasa’s approach that the characteristic

polynomial of the sequence must be primitive: we show that the method applies even

to the much broader class of polynomials with no repeated roots. Then we give char-

acterizations of divisibility for binomials and trinomials over F3. Some of our results

apply to any finite field Fq with q elements.

Keywords Polynomials over finite fields · divisibility of polynomials · orthogonal

arrays.
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1 Introduction

Maximum-length shift-register sequences are widely used in pseudo-random number

generation and several engineering applications [9,10]. The fewer nonzero terms in the

characteristic polynomial of the shift-register sequence, the faster is the generation of

the sequence. However, the number of nonzero terms in multiples of the characteristic

polynomial determines the statistical bias in the sequence, fewer terms implying more

bias [12,16].
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A classical result [7] relates the minimum weight of dual codes to the strength

of the corresponding orthogonal arrays. In this paper we follow a method introduced

by Munemasa [23] that constructs orthogonal arrays. The procedure first constructs a

code with subintervals of a shift-register sequence generated by a polynomial f . Its dual

code is characterized by all polynomials that are divisible by f . Hence, by studying the

divisibility of polynomials we can produce dual codes, thus determining the strength

of coverage in the arrays. This suggests studying the divisibility of polynomials over

finite fields, and this is the focus of this paper.

This procedure was used by Munemasa [23] for the case trinomials (polynomials

with three nonzero terms) dividing trinomials over F2 to produce orthogonal arrays

with guaranteed strength 2 (and almost strength 3). Then, Dewar et al. [8] extended

this to pentanomials (polynomials with five nonzero terms) dividing trinomials over F2

to give orthogonal arrays with guaranteed strength 3.

Dewar et al. [8] suggests extending the results to finite fields other than F2. Once

we are not in F2 we can consider binomials (there are no irreducible binomials over F2).

We focus on low weight polynomials since we can produce precise results in these cases.

However, the general problem of when polynomials over a finite field of given weight

divide polynomials of another given weight is interesting and not well understood.

As concrete applications of this divisibility problem for ranges on the weight of the

polynomials that exceed the results in this paper, see the cryptosystem TCHo [1,13]

and the turbo codes applications [24]. Also of interest are some general results on the

weights of multiples of polynomials over F2 which do not depend on the low weight of

f [11,14,17,21].

This paper contains results similar to [8] and [23] but for binomials and trinomials

over non-binary fields. In Section 2, we define notation and give previous results as

well as we outline the general methodology. The most important result in this section

is a simplification of Munemasa’s conditions: we only require irreducible polynomials

(or even reducible ones under the condition of no repeated roots) for the minimal

polynomial of the LFSR instead of the primitive polynomial condition in previous

results [8,23]. We also give some combinatorial applications for our results. The results

in this section are valid for any finite field Fq. Our main results are obtained for finite

field F3. That is why throughout this paper, unless otherwise stated, we use the finite

field F3. Moving from F2 to F3 has complicated the proofs considerably. Although in

principle one could perhaps extend some of our results to other finite fields, the level

of added complications would be even greater with our methodology. We believe that

other techniques are needed to obtain similar results over larger finite fields, ideally

techniques independent of the base fields. Section 3 focuses on divisibility of binomials

by trinomials over F3. Section 4 deals with the case of trinomials dividing trinomials

over F3. In Section 5, we conclude with some questions for further studies and research.

2 Background and preliminaries

2.1 Definitions and previous results

We give next some required definitions. A polynomial f of degree m is called primitive

over Fq if k = qm − 1 is the smallest positive integer such that f divides xk − 1.
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A shift-register sequence with characteristic polynomial f(x) = xm −
Pm−1

i=0 cix
i is

the sequence a = (a0, a1, . . .) defined by

an+m =

m−1X
i=0

ciai+n for n ≥ 0.

If f is primitive over Fq the sequence has period qm − 1.

A subset C of Fn
q is called an orthogonal array of strength t if for any t-subset T =

{i1, i2, . . . , it} of {1, 2, . . . , n} and any t-tuple (b1, b2, . . . , bt) ∈ Ft
q there exists exactly

|C|/qt elements c = (c1, c2, . . . , cn) of C such that cij
= bj for all 1 ≤ j ≤ t. From the

definition, if C is an orthogonal array of strength t, then it is also an orthogonal array

of strength s for all 1 ≤ s ≤ t.

Orthogonal arrays and codes are related by the next theorem.

Theorem 1 ([2]) Let C be a linear code over Fq. Then, C is an orthogonal array of

maximal strength t if and only if C⊥, its dual code, has minimum weight t + 1.

Delsarte was able to generalize this result to non-linear codes [7]. The following

theorem describes the dual code of the code generated by shift-register sequences in

terms of multiples of its characteristic polynomial.

Theorem 2 ([23]) Let f be a primitive polynomial of degree m over Fq and let 2 ≤
n ≤ qm − 1. Let Cf

n be the set of all subintervals of the shift-register sequence with

length n generated by f , together with the zero vector of length n. The dual code of Cf
n

is given by

(Cf
n)⊥ = {(b1, . . . , bn) :

n−1X
i=0

bi+1xi is divisible by f}.

Previous studies on divisibility of polynomials and combinatorial applications were

done for polynomials over the binary field F2 [8,23]. Let f be a primitive polynomial of

degree m over F2 and let a = (a0, a1, . . .) be a shift-register sequence with characteristic

polynomial f . As in [8], we denote by Cf
n the set of all subintervals of this sequence

with length n, where m < n ≤ 2m, together with the zero vector of length n.

Munemasa [23] investigates the shift-register sequences when f is a trinomial, that

is, a polynomial with three terms over F2.

Theorem 3 ([23]) Let f(x) = xm+xl+1 be a trinomial over F2 such that gcd(m, l) =

1. If g is a trinomial over F2 of degree at most 2m that is divisible by f , then g(x) =

xdeg g−mf(x), g(x) = f(x)2, or g(x) = x5 + x4 + 1 = (x2 + x + 1)(x3 + x + 1) or, its

reciprocal, g(x) = x5 + x + 1 = (x2 + x + 1)(x3 + x2 + 1).

The main result in [23] implies that, in the case of a primitive trinomial f satisfying

certain properties, Cf
n is an orthogonal array of strength 2 having the property of being

very close to an orthogonal array of strength 3. Munemasa [23] shows that for most

3-tuples of {1, 2, . . . , n}, the orthogonal property is satisfied, exception to this are the

triples of coordinates corresponding to the exponents of trinomials of the form xif and

f2.

Munemasa [23] suggested the extension of his results to polynomials f with more

than three terms. Dewar et al. [8] extended Munemasa’s result to shift-register se-

quences generated by primitive pentanomials, polynomials with five terms, over F2.
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No. f(x) h(x) type
1 x5 + x4 + x3 + x2 + 1 x3 + x2 + 1 p
2 x5 + x3 + x2 + x + 1 x3 + x + 1 p
3 x5 + x3 + x2 + x + 1 x4 + x + 1 p
4 x5 + x4 + x3 + x + 1 x2 + x + 1 p
5 x6 + x5 + x4 + x3 + 1 x4 + x3 + 1 r
6 x6 + x4 + x2 + x + 1 x3 + x + 1 i
7 x6 + x4 + x3 + x + 1 x2 + x + 1 p
8 x6 + x5 + x2 + x + 1 x5 + x4 + x3 + x + 1 p
9 x6 + x5 + x3 + x + 1 x2 + x + 1 r
10 x7 + x4 + x2 + x + 1 x3 + x + 1 r
11 x7 + x4 + x3 + x2 + 1 x3 + x2 + 1 p
12 x7 + x5 + x2 + x + 1 x7 + x6 + x5 + x4 + x3 + x + 1 p
13 x7 + x5 + x3 + x2 + 1 x5 + x4 + x3 + x2 + 1 r
14 x8 + x5 + x3 + x + 1 x5 + x4 + x2 + x + 1 p
15 x8 + x5 + x3 + x2 + 1 x8 + x7 + x5 + x4 + x3 + x2 + 1 p
16 x8 + x6 + x3 + x + 1 x6 + x4 + x2 + x + 1 r
17 x8 + x7 + x5 + x2 + 1 x6 + x5 + x4 + x2 + 1 r
18 x9 + x6 + x5 + x2 + 1 x8 + x5 + x4 + x2 + 1 i
19 x9 + x7 + x4 + x3 + 1 x8 + x6 + x4 + x3 + 1 i
20 x9 + x8 + x5 + x2 + 1 x6 + x5 + x4 + x2 + 1 r
21 x10 + x4 + x3 + x2 + 1 x8 + x7 + x4 + x2 + 1 i
22 x10 + x7 + x2 + x + 1 x6 + x4 + x3 + x + 1 r
23 x11 + x7 + x6 + x2 + 1 x8 + x7 + x4 + x2 + 1 r
24 x13 + x10 + x2 + x + 1 x9 + x7 + x6 + x4 + x3 + x + 1 r
25 x13 + x10 + x9 + x2 + 1 x12 + x9 + x8 + x6 + x4 + x2 + 1 p

Table 1 Table of binary polynomial exceptions in the main theorem of [8]: ‘p’ in type indicates
that the given polynomial f(x) is primitive, ‘i’ indicates that f(x) is irreducible and ‘r’ indicates
that f(x) is reducible.

Theorem 4 ([8]) Let f(x) = xm + xl + xk + xj + 1 be a pentanomial over F2 such

that gcd(m, l, k, j) = 1. If g is a trinomial of degree at most 2m divisible by f , with

g = fh, then

1. f is one of the polynomial exceptions given in Table 1;

2. m ≡ 1 mod 3 and f, g, h are as follows

f(x) = 1 + x + x2 + xm−3 + xm

= (1 + x + x2)(1 + xm−3 + xm−2),

h(x) = (1 + x) + (x3 + x4) + · · ·+ (xm−7 + xm−6) + xm−4,

f(x)h(x) = g(x) = 1 + x2m−6 + x2m−4; or

3. f is the reciprocal of one of the polynomials listed in the previous items.

The result in [8] constructs orthogonal arrays of guaranteed strength at least 3.

2.2 Removing the primitivity condition

In this subsection, we generalize Theorem 2 by removing the primitivity condition for

the characteristic polynomial f .

Theorem 5 Let a = (a0, a1, a2, . . .) be a shift-register sequence over Fq with minimal

polynomial f ∈ Fq[x], and suppose that f has degree m with m distinct roots. Let ρ be
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the period of f and 2 ≤ n ≤ ρ. Let Cf
n be the set of all subintervals of the shift-register

sequence a with length n. Then the dual code of Cf
n is given by

(Cf
n)⊥ = {(b1, . . . , bn) :

n−1X
i=0

bi+1xi is divisible by f}.

Proof. Since a = (a0, a1, a2, . . .) is the sequence with minimal polynomial f , the least

period per(a) of sequence a equals per(f) which is denoted by t. Let α1, . . . , αm be

all distinct roots of f . Then by Theorem 8.21 in [15], we have an =
Pm

j=1 βjα
n
j for

n = 0, 1, . . ..

First we assume that all βj are nonzero. Hence an element w = (b1, . . . , bn) ∈ Fn
q

belongs to (Cf
n)⊥ if and only if

n−1X
i=0

bi+1

0
@ mX

j=1

βjα
i+k
j

1
A = 0, (1)

for k = 0, 1, . . . , t− 1. Equation (1) can be rewritten as

mX
j=1

 
n−1X
i=0

bi+1αi
j

!
βjα

k
j = 0, k = 0, . . . , t− 1. (2)

Consider the above system of equations with unknown variables
Pn−1

i=0 bi+1αi
j and

coefficients βjα
k
j . There is at least 1 solution (the zero solution). Moreover, we have

t > m. However, because all βj 6= 0 and all αj are distinct, the first m equations in (2)

give a unique solution as the coefficient matrix is an invertible Vandermonde matrix.

Therefore, there is only one solution in Equation (2). Hence
Pn−1

i=0 bi+1αi
j = 0, for all

j = 1, . . . , m. This implies that the polynomial w(x) =
Pn−1

i=0 bi+1xi is divisible by f .

If not all βj are nonzero, then, without loss of generality, we assume that an =Pm′

j=1 βjα
n
j for n = 0, 1, . . . and m′ < m. Namely, we assume βj = 0 for j = m′ +

1, . . . , m. We show that each αj where j = m′+1, . . . , m must be a conjugate of one of

αj where j = 1, . . . , m′. Otherwise, if there exists one αj0 such that m′ + 1 ≤ j0 ≤ m

and αj0 is not a conjugate of any αj where j = 1, . . . , m′, then all conjugates of αj0

must be in the set {αm′+1, . . . , αm}. Let g be the minimal polynomial with roots αj0

and its conjugates. Then g | f . Because an =
Pm′

j=1 βjα
n
j for n = 0, 1, . . ., we have that

sequence a is derived by the polynomial f/g, which has degree < m, contradicting that

f is the minimal polynomial of sequence a. Hence each αj where j = m′ + 1, . . . , m is

a conjugate of one of αj where j = 1, . . . , m′.

Now an element w = (b1, . . . , bn) ∈ Fn
q belongs to (Cf

n)⊥ if and only if

n−1X
i=0

bi+1

0
@m′X

j=1

βjα
i+k
j

1
A = 0, (3)

for k = 0, 1, . . . , t− 1. Equation (3) can be rewritten as

m′X
j=1

 
n−1X
i=0

bi+1αi
j

!
βjα

k
j = 0, k = 0, . . . , t− 1. (4)
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Consider the above system of equations with unknown variables
Pn−1

i=0 bi+1αi
j and

coefficients βjα
k
j . There is at least 1 solution (the zero solution). Moreover, we have

t > m > m′. However, because all βj 6= 0 for all 1 ≤ j ≤ m′ and all αj are distinct, the

first m′ equations in (4) give a unique solution as the coefficient matrix is an invertible

Vandermonde matrix. Therefore, there is only one solution in Equation (4). HencePn−1
i=0 bi+1αi

j = 0, for all j = 1, . . . , m′. Furthermore, we obtain
Pn−1

i=0 bi+1(α
q
j )

i =

(
Pn−1

i=0 bi+1αi
j)

q = 0 because bi+1 ∈ Fq. This implies that a conjugate of αj where

j = 1, . . . , m′ is still a root of w. Because each αj satisfies that m′ + 1 ≤ j ≤ m is a

conjugate of one of αj such that 1 ≤ j ≤ m′, we therefore obtain f | w. 2

Suppose f = f1 · · · fk such that f1, . . . , fk are irreducible polynomials and f sat-

isfies the conditions in Theorem 5. Let (Cf
n) be the code generated by f and Cfi

n be

the code generated by each fi as in Theorem 5. Let C be the union of Cf
n and Cfi

n ,

together with the zero vector of length n. The dual code C⊥ of C is contained in the

dual code (Cf
n)⊥ of Cf

n . Therefore, if (Cf
n)⊥ has minimum weight t + 1, then C⊥ has

minimum weight at least t+1 as well. If C can be generated by a primitive polynomial

of degree m as in Theorem 2, then C is an orthogonal array of strength at least t.

Remarks about combinatorial applications. One of the primary applications

suggested by Munemasa [23] was the construction of orthogonal arrays when f is

primitive. Theorem 5 shows that orthogonal arrays can be constructed from a far

larger class of polynomials. However, the characterization of the dual code in terms of

the multiples of the polynomial f demonstrates that other interesting combinatorial

objects can be built from these methods. Arrays which have orthogonal or covering

properties for a selected collection of subsets of columns, rather than all subsets of

columns of a fixed size t, have recently been studied. Indeed, the investigation of partial

orthogonal arrays [22] was motivated directly by Munemasa’s original paper. Another

well-known example of arrays which are orthogonal for selected subsets of columns

are the (t, m, s)-nets [18]. A covering array is a generalization of orthogonal arrays

which in its simplest definition requires that for any given set of t columns, every

t-tuple appears at least λ times [5]. These are used extensively in reliability testing

where each column corresponds to an input or parameter of the system under test

and each row corresponds to the settings for one test. This is typically used in a

black-box manner assuming nothing about the internal structure of the system. But

when internal knowledge of the system is known we can relax the requirement that all

t-subsets of columns should be covered and only require coverage for those known to

interact. This setting can even be generalized to collections of column subsets of various

sizes. There has been a substantial amount of recent work in this area, for examples

and more references see [3,4,19,20]. Arrays constructed from shift-register sequences

offer a means to construct such objects with coverage over algebraically determined

collections of column subsets.

2.3 Notation

In this section, we introduce some notations that are widely used in the remainder

of the paper. Also, in the next sections we use the same terminology as in [8]. In

particular, when the sum of coefficients in the same column of our figures is 0 we write

that corresponding terms xi cancel. Any use of the terminology up, down, left, above,

lower, etc., is with respect to the layout in the figure.



7

Notation 1 Let F be a field, f, g, h ∈ F[x]. Let f(x) = a + bxk + xm divide g(x) =

c+ dxl +xn such that n ≤ 3m, a 6= 0, c 6= 0 and fh = g, where h(x) =
Pd−1

i=0 hix
i. We

say that l is the “left-over” of g. Moreover, in the expansion of fh = g we get:

d = hl−m + bhl−k + ahl,

hi = 0 i 6∈ [0, 2m],

c 6= 0.

If only ahl 6= 0, then the left-over is of Type 0.

If only bhl−k 6= 0, then the left-over is of Type K.

If only hl−m 6= 0, then the left-over is of Type M .

If only hl−m = 0 and bhl−k + ahl 6= 0, then the left-over is of Type 0K.

If only bhl−k = 0 and hl−m + ahl 6= 0, then the left-over is of Type 0M .

If only ahl = 0 and hl−m + bhl−k 6= 0, then the left-over is of Type KM .

If ahl 6= 0, bhl−k 6= 0, hl−m 6= 0 and hl−m + bhl−k + ahl 6= 0, then the left-over is of

Type 0KM .

The above notation is given for the case when f is trinomial. If f is binomial we do

not have bhl−k term when calculating dxl. Thus, we do not have left-overs of Type K,

0K, KM and 0KM .

In order to better understand all the definitions and notations let us consider the

following example in F3: f(x) = 2+x2, h(x) = 2+2x2+x4, g(x) = 1+x4+x6. The

example illustrates the case when f is binomial and the term bhl−k is omitted. The

product fh corresponds to the left box diagram from Fig. 1, where a column indicates

the degree of the monomial in the expansion fh. The boxes in row i correspond to the

nonzero coefficients in f(x) · (hix
i), 0 ≤ i < d, and the entries in the boxes come from

the exponents of the monomials from f yielding this term in the expanded product.

The box diagram on the right of Fig. 1 gives the explanation of the figure on the

left but using the variable x. Throughout this paper the notation Ab is used to refer

to a box in column b containing the label A. For example, in Fig. 1 we say that 02

is canceled up with 22, since the sum of coefficients is 0. We can see it on the right

diagram, 2x2 +x2 = 0. On the diagram, 24 is not canceled down with 04 since the sum

of coefficients in this column is not 0. In this case we have left-over l = 4 of Type 0M .

0 2

0 2

0 2

1 x4 x6

x62x4

x2

2x2

0 2 4 6 0 2 4 6

2x4

1

Fig. 1 An illustration of the notation in equation g(x) = h(x)f(x) = (
P

aix
i)f(x) with

f(x) = 2 + x2, h(x) = 2 + 2x2 + x4 and g(x) = 1 + x4 + x6 over F3.
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2.4 Reductions of the problem

In this section, we introduce a result that is used to reduce the problems in the next

sections. Let w(f) denote the weight of f , that is, the number of nonzero terms of f .

Theorem 6 Let f, g, h ∈ F[x], fh = g, w(f) = n > 1 and w(g) = m. If there exists

an f0 ∈ F[x] such that f(x) = f0(x
k) for k > 1 then there exist gi ∈ F[x], w(gi) = mi

for 0 ≤ i < k such that

g(x) =

k−1X
i=0

gi(x
k)xi, m =

k−1X
i=0

mi, and mi 6= 1. (5)

Proof. Suppose that h(x) =
Pd

i=0 aix
i and define hi(x) =

Pdd/ke
j=0 ajk+ix

j , for 0 ≤
i < k. Thus we have that

h(x) =

k−1X
i=0

hi(x
k)xi. (6)

Let gi = f0hi and define mi to be the weight of gi. Equation (5) now follows from

g = fh and Equation (6). Since the powers of x in each gi(x
k)xi are disjoint sets, m

is partitioned into mi and since every gi is a multiple of f0 whose weight is more than

1, we have that mi 6= 1. 2

When f is a binomial divisibility by x − a is equivalent to a being a root. We can

use this to derive an instance of Theorem 6 for the case when f has weight 2.

Corollary 1 Let f(x) = xk + a ∈ F[x]. Then f divides g with w(g) = m if and only if

there exist gi ∈ F[x] with weights w(gi) = mi 6= 1 such that gi(a) = 0 and

g(x) =

k−1X
i=0

gi(x
k)xi, m =

k−1X
i=0

mi.

Corollary 2 Let f, g, h ∈ F[x], fh = g, w(f) = n and w(g) ≤ 3. If there exists

f0 ∈ F[x] such that f(x) = f0(x
k) for k > 1 then there exists g0 ∈ F[x] such that

g(x) = g0(x
k).

Proof. There are no integer partitions of 2 or 3 that contain more than one nonzero

part and that do not contain any part of size 1. 2

Thus, considering w(g) ≤ 3, we may assume that gcd of the exponents of f is 1.

This will be used frequently in our proofs.

For example in the case that w(f) = 2 and w(g) ≤ 3, Corollaries 1 and 2 give for

binomials dividing binomials:

f(x) = xm + a, g(x) = xdm − (−a)d;

and for binomials dividing trinomials

f(x) = xm + a, g(x) = xdm +
�
−(−a)d−k − c(−a)−k

�
xmk + c, 1 ≤ k ≤ d− 1.
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3 Trinomials dividing binomials

3.1 Polynomials dividing binomials

There are some general comments which can be given about polynomials dividing

binomials. Let f, g, h ∈ F[x], where F is a field, fh = g, w(f) = n > 1, ρ is the period

of f , and w(g) = 2. If the degree of g is greater than ρ then Sadjadpour et al. [24]

describe all possible binomial g in terms of binomial multiples of f whose degree is

less than ρ. We start with a couple simple facts. First, if f divides a polynomial of

degree d and weight w then f must divide a monic polynomial of the same degree and

weight. If f divides two monic polynomials of the same degree then it must divide

their difference. These combined with the fact that a non-monomial cannot divide a

monomial gives the following fact.

Fact 1 Let f ∈ F[x] and w(f) > 1. The polynomial f can divide at most one monic

binomial with nonzero constant of any fixed degree.

A simple induction gives the next fact.

Fact 2 In F[x] the following divisibility always holds for any i ≥ 1:

xk − a | xik − ai.

Proposition 1 Let f ∈ F[x], w(f) > 1 and the period of f be ρ. If f divides a binomial

of degree k < ρ with a nonzero constant term, then it must divide a binomial of degree

gcd(ρ, k).

Proof. If k is not a divisor of ρ then we have ρ = sk + r where 0 < r < k. Fact 2 now

gives that f divides a monic binomial h of degree sk with a nonzero constant term.

Now xρ − 1− xrh results in a binomial of degree r with a nonzero constant term. An

induction and the Euclidean algorithm complete the proof. 2

We can now conclude that to know everything about f dividing binomials it is

sufficient to restrict the attention to monic binomials with nonzero constant terms and

degrees that are divisors of the period ρ of f . Fact 2 also gives constraints as to what

the constant terms can be as a function of roots of unity in the field F. On this topic

there is much known [15]. Sadjadpour et al. [24] and Fact 2 construct all others with

nonzero constant terms and multiplication by non-trivial monomials yields the rest.

Of course these are quite general statements. In this paper we give more precise

statements about binomials as multiples of a polynomial f , of degree m, for a small

range of degrees, namely those not more than char(F) ·m.

3.2 Trinomials dividing binomials over F3

This section focuses on the divisibility of binomials by trinomials over F3. The main

result is given in Theorem 7. As in previous sections, results are derived for monic

polynomials f and g such that f divides g. Since we work with F3, results in Theorem 7

can be extended to that f divides 2g, 2f divides g and 2f divides 2g.

If a polynomial f ∈ F3[x] with f(0) = 1 divides polynomial g(x) = xn − 1 then the

smallest such n is the period of f and periods of polynomials are well studied [15]. All
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other binomials g with f |g and deg(g) greater than the period of f are characterized

by Sadjadpour et al. [24].

Next we give results for trinomials dividing binomials over F3. To enhance read-

ability of the paper we use K’s and M ’s although they are k’s and m’s.

Theorem 7 Let f(x) = a + bxk + xm (a, b 6= 0) be a monic trinomial over F3. If

g(x) = c + xn (c 6= 0) is a monic binomial over F3 with degree at most 3m divisible by

f , with g = fh, then f and g are as given in Table 2.

Case f(x) g(x)

1.1 1 + bxm/2 + xm −b + x3m/2

1.2 −1 + bxm/2 + xm 1 + x2m

1.3 1 + bxm/2 + xm −1 + x3m

1.4 a + xm/3 + xm −1 + x8m/3

1.5 b + bx2m/3 + xm −1 + x8m/3

Table 2 Polynomials over F3 such that g = fh for monic trinomial f and monic binomial g.

Proof. The idea is similar to the previous section. If there exists f0 and f(x) = f0(x
k)

for some integer value k, the problem is reduced to finding binomials g0 divisible by

trinomials f0.

Thus, we assume that f0(x) = a + bxk + xm and gcd(k, m) = 1. First we consider

the case that m ≥ 4 and 2k > m. Consider the box diagram in Fig. 2. In order to get

the binomial g0 the left-most and the right-most terms must remain and the rest of the

terms must be canceled. So we must have row [1] and row [2] to cancel Kk down with

0k. Since (k, m) = 1, Mm can only be canceled down with 0m and we must have row

[3]. Also row [4] must occur because K2k cancels down with 02k. Since we have row

[4] we have to cancel M2m and K3k. After we cancel them, we get deg(g) ≥ m + 2k.

Therefore, we need row [5] to cancel Mm+2k down with Km+2k. Cancelation with

0m+2k gives deg(g) ≥ 3m. Also row [6] must exist to cancel M2m and M2m+k as in

Fig. 2.

If 2m 6= 3k, there are more rows on Fig. 2 to complete all cancelations to get the

binomial. If we cancel K3k up, we get a left-over term of Type 0 to the left of Mm. If

we cancel K3k down, we get Mm+3k term that is not canceled. If we cancel Mm+3k

down with 0m+3k, we get deg(g) > 3m. If we cancel Mm+3k down with Km+3k, we

get 0m+2k to the right of M2m and deg(g) > 3m. Therefore, there is no solution in

this case.

If 2m = 3k, and (k, m) = 1, we have m = 3 and k = 2. This contradicts to m ≥ 4.

Therefore, there is no solution in this case.

We have thus proved that for m ≥ 4, and 2k > m there are no trinomials f0

dividing binomials g0. Using reciprocity we can state that there are no trinomials f0

dividing binomials g0 when m ≥ 4.

The problem is now reduced to finding those trinomials f0 of degree at most 3

dividing binomials of degree at most 9. This is a finite problem and can be exhaustively

computed. The results are shown in Table 3. The generalization of Table 3 to arbitrary

m such that gcd(k, m) is not necessarily 1 is given in Table 2. 2
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Fig. 2 An illustration of equation g0(x) = (
P

aix
i)f0(x) with trinomial f0 and binomial g0

when deg(g) ∈ [m + 1, 3m] and 2k > m over F3.

f0(x) g0(x) Case in Table 2
1 + bx + x2 −b + x3 1.1
−1 + bx + x2 1 + x4 1.2
1 + bx + x2 −1 + x6 1.3
a + x + x3 −1 + x8 1.4
b + bx2 + x3 −1 + x8 1.5

Table 3 Polynomials over F3 with g0 = f0h0 for monic trinomial f0(x) = a + bxk + xm, such
that gcd(k, m) = 1, and monic binomial g0.

4 Trinomials dividing trinomials over F3

This section focuses on the divisibility of trinomials by trinomials over F3. The main

results are shown in Theorem 8. Results are derived for monic polynomials f and g

such that f divides g. As before, since we work with F3, results in Theorem 8 can be

extended to f divides 2g, 2f divides g and 2f divides 2g. Again, to enhance readability

of the paper we use K’s and M ’s as though they are k’s and m’s.

Definition 1 Let f(x) = a + bxk + xm divide g(x) = c + dxl + xn such that fh = g

in F3[x], and n ≤ 3m. Let Nk denote the number of K’s to the right of 2m and Nm

denote the number of M ’s to the right of 2m.

For example, Fig. 2 shows the case when Nk = 2 and Nm = 3.

Lemma 1 Let f , g, h be as above. If deg(g) > 2m, Nk and Nm as defined, then:

– Nm = Nk + 1, if l ∈ (0, 2m] of any Type or l ∈ (2m, 3m) and of Type MK;

– Nm = Nk, if l ∈ (2m, 3m) and of Type K;

– Nm = Nk + 2, if l ∈ (2m, 3m) and of Type M .

Proof. All the M ’s to the right of 2m can only be canceled with K’s, since canceling

with a 0 implies deg(g) > 3m.

If l ∈ (0, 2m] of any type or l ∈ (2m, 3m) of Type MK, all but one M to the

right of 2m can only be canceled (or paired) with K’s. The other one corresponds
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to the leading term of g. Therefore, for the given condition on the left-over l, we get

Nm = Nk + 1.

If l ∈ (2m, 3m) of Type K, all the M ’s to the right of 2m can only be canceled

with K’s. We have one K for the left-over and one M for the leading term of trinomial

g. Therefore, in this case we get Nm = Nk.

If l ∈ (2m, 3m) of Type M , all but two M ’s to the right of 2m can only be canceled

with K’s: two remain for left-over and for the leading term of trinomial g. Therefore,

in this case we get Nm = Nk + 2. 2

Lemma 2 Let f , g, h be as above and Nk and Nm as defined. If deg(g) > 2m then:

– Nk ≤ 1, if k = 1;

– Nk ≤ 1, if l ∈ (0, 2m] of any Type or l ∈ (2m, 3m) of Type MK;

– Nk ≤ 2, if l ∈ (2m, 3m) of Type M ;

– Nk = 1, if l ∈ (2m, 3m) of Type K.

2m

[2]

[3]

[4]

[5]

[1]

2m + i 2m + j 2m + x 2m + y

m

m

m

m

k

m

k

Fig. 3 An illustration of relationship of Nk and left-over in g.

Proof. Let m > 2k, otherwise we use the reciprocal of f . Consider the portion of the

box diagram for g = fh in Fig. 3. Since we only work with Nk and Nm as defined

before, we need to check only what happens to the right of 2m.

– l ∈ (0, 2m] of any type or l ∈ (2m, 3m) of Type MK or k = 1

We assume that Nk ≥ 1, and therefore row [5] exists and it is the last row in Fig. 3.

If l ∈ (0, 2m] of any type or l ∈ (2m, 3m) of Type MK we must have row [3] to

cancel K2m+j up with M2m+j . If Nk > 1 (l ∈ (2m, 3m) of Type MK) and [4] is

the second to last row, we have more M ’s that are not canceled. If k = 1 and l is

of any type then the existence of row [5] and the fact that deg(g) ≤ 3m imply that

j = 1 and row [4] cannot exist. Therefore, Nk ≤ 1.

– l ∈ (2m, 3m) of Type M

Assume [5] is the last row on Fig. 3. Then we have row [3] to cancel K2m+j up

with M2m+j . If we have row [4] then we have [2] to cancel K and M in column
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2m + i. If we have more rows with K’s to the right of 2m it gives more M ’s to the

right of 2m + j that are not canceled. Therefore, Nk ≤ 2.

– l ∈ (2m, 3m) of Type K

Assume [5] is the last row on Fig. 3. If Nk > 1 then we have more rows above [5]

and it gives M ’s that are not canceled, given that left-over is of Type K. Therefore,

Nk = 1.

2

Theorem 8 Let f(x) = a + bxk + xm (a 6= 0, b 6= 0) be a monic trinomial over F3. If

g(x) = c + dxl + xn (c 6= 0, d 6= 0) is a monic trinomial over F3 with degree at most

3m divisible by f , with g = fh, then

1. g = f3;

2. f and g are as in Table 4; or

3. f and g are reciprocals of polynomials listed in Table 4.

Case f(x) g(x)

1.1 −1 + bxm/2 + xm 1− bxm/2 + x3m

1.2 1 + bxm/2 + xm b + xm/2 + x5m/2

1.3 −1 + bxm/2 + xm b− bxm + x5m/2

1.4 −1 + bxm/2 + xm −b− x3m/2 + x5m/2

1.5 1 + bxm/2 + xm b + bx4m/2 + x5m/2

1.6 1 + bxm/2 + xm 1 + xm + x2m

1.7 −1 + bxm/2 + xm b + xm + x3m/2

1.8 −1 + bxm/2 + xm −b− bxm + x3m/2

1.9 a− xm/3 + xm −a− xm/3 + x3m

1.10 a− xm/3 + xm 1 + x2m/3 + x8m/3

1.11 a + xm/3 + xm a + ax2m/3 + x7m/3

1.12 a− xm/3 + xm a− ax4m/3 + x7m/3

1.13 a− xm/3 + xm −a + x5m/3 + x7m/3

1.14 a + xm/3 + xm 1 + ax5m/3 + x2m

1.15 a− xm/3 + xm a + ax4m/3 + x5m/3

1.16 −1 + bxm/4 + xm −b + bx6m/4 + x11m/4

1.17 1 + bxm/4 + xm 1 + bx9m/4 + x10m/4

Table 4 Table of polynomials such that g = fh with f and g monic trinomials over F3.

Proof. Let f be a trinomial dividing a trinomial g, where f and g are as given in the

statement of the theorem. Let h(x) = a0 +a1x+a2x2 + · · · (a0 6= 0) such that g = fh.

The proof is split into parts. The idea is similar to the proof in the previous section.

If there exists f0(x) and f(x) = f0(x
k) for some integer value k, the problem is reduced

to finding trinomials g0 divisible by trinomials f0. Thus, we assume that gcd(m, k) = 1.

We get two cases:

1. (k, m) = 1, k 6= 1;

2. k = 1.

1. (k, m) = 1, k 6= 1

In this part we only consider the case when m > 2k; using reciprocity we can extend

the results to m < 2k. The proof in this part is divided into subcases according to the
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type and position of the left-over, l. We assume for the whole case 1 that m = jk + i

and i < k.

(a) l ∈ (0, m) of Type K

Consider the box diagram for g = fh from Fig. 4. In order to get the trinomial

g, the left-most, the right-most and one of the middle terms must remain and the

rest of the terms must cancel. On the diagram we always have row [1]. Since left-

[2]

[3]

[4]

[5]

[1]

[6]

[7]

00 2k 3k m m + k m + 2k 2m− k 2m 2m + k 3m3m− k

0 k

0 k

m

m

m

k0

0 k

0

m

m

k

0 k

m

m

0 k

k

Fig. 4 An illustration of g(x) = (
P

aix
i)f(x) with f , g trinomials over F3 for case 1(a).

over is of Type K and gcd(k, m) = 1 and k 6= 1, we need row [4] to cancel Mm

(corresponds to M in column m) with 0m.

Assume that Km+k is canceled up only by Mm+k, thus we have row [2]. We get

the following system of equations:

bam + ak = 0, column m+k,

aam + a0 = 0, column m,

aak + ba0 = 0, column k.

Rearranging the above equations we get

abam = 0,

contradicting that a 6= 0, b 6= 0 and am 6= 0, since we always have row [4].

We have shown that Km+k cannot be canceled up only, and we have row [5].

According to Lemmas 1 and 2, Nk ≤ 1 and Nm ≤ 2. Therefore, we can only have

at most 1 more row after [5]. We must have row [7] to cancel M2m down by 02m

and cancel M2m+k down by K2m+k. There are no more rows between [5] and [7].

Thus, Km+2k cancels up with Mm+2k in row [3]. Next, row [2] must be present to

cancel 02k up with K2k and 0k up with Kk. There are no rows between [3] and [4]

because otherwise we get extra M ’s between m and 2m. They cannot be canceled

since no more rows are possible between [5] and [7]. The solution in this case is

f(x) = a + bxk + xm, g(x) = a + bx3k + x3m,
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corresponding to the trivial case g(x) = f3(x).

(b) l ∈ (0, m) of Type K0 or 0

Consider the box diagram for g = fh from Fig. 5. In order to get the trinomial g,

the left-most, the right-most and one of the middle terms must remain and the rest

of the terms must cancel.

[1] 0 k

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

0 k m

0 k m

0 k m

0 k m

m

0 k m

0 k m

0 k m

0 k m

jk

m

k

m

k

k

m

m

m

m

3m− k 3m(j + 1)k

m + k

(j + 2)k

m + 2k

m + jk m + (j + 1)k

2m 2m + k 3m− im = jk + i

00 2kk

Fig. 5 An illustration of g(x) = (
P

aix
i)f(x) with f , g trinomials over F3 for cases 1(b)-1(g).

On the diagram we always have rows [1]-[3], since m > 2k and left-over is of Type

K0 or 0, all the K’s must be canceled with 0’s or matched with 0’s (in case left-over

is of Type K0). There are some rows possible between [1]-[2] and [2]-[3]. For now

the type of l does not matter, since we have to cancel or match all K’s to the left

of m. According to Lemma 2, Nk ≤ 1. According to Lemma 1, Nm = Nk + 1, i.e.

at most 2 rows are possible below [4].

Assume Nk = 0. If we have row [4] then Mm+jk cancels down with Km+jk (observe

that if Mm+jk cancels down with a 0, then there is a k to the right of 2m) and M2m

cancels down with row [7]. We have at least one M between 2m and 3m − k that

is not canceled. If we do not have row [4] then row [6] must exist to cancel Mm+k

down. Also Mm cancels down with Km and it gives one more M between m + k

and m + jk. We still have to cancel at least two M ’s between m + k and m + jk

and cancel M2m+k. However, only one more row is allowed below [4]. Therefore,

there is no solution for this case when Nk = 0.

Assume Nk = 1. If we have row [8] then row [5] must exist and there is no row

[4]. Therefore, Mm is not canceled. If we have row [9] then rows [4] and [6] must

exist. No more rows are allowed below [4] and therefore K(j+1)k must be canceled
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up. Therefore, there will be more rows between [2] and [3] to cancel all extra K’s

which will give more M ’s between m + k and 2m that are not canceled. Therefore,

there is no solution in this case when l ∈ (0, m) of Type K0 or 0.

(c) l = m

Consider the box diagram for g = fh from Fig. 5. On the diagram we always have

row [1]-[3], since m > 2k. There are some possible rows between [2] and [3]. Then

we have row [5] to cancel K(j+1)k down and row [8] to cancel Mm+(j+1)k down.

Thus, we have Nm ≥ 2 and Lemmas 1 and 2 give Nm = 2, Nk = 1 and no other

rows below [4] other than [5] and [8]. Therefore, K(j+2)k is not canceled (it cannot

be canceled up since (k, m) = 1) and there is no solution in this case.

(d) l ∈ (m, 2m]

Consider the box diagram for g = fh from Fig. 5. On the diagram, as before, we

always have row [1]-[3], since m > 2k. There are some possible rows between [2] and

[3]. Since (k, m) = 1 and k 6= 1 we have row [4]. Let m = jk + i, j ≥ 2, 1 ≤ i < k.

This holds for remaining cases when k 6= 1.

According to Lemmas 1 and 2, Nk ≤ 1, Nm = Nk + 1 and at most 2 rows are

possible below [4]. If l 6= (j + 1)k then we have [5] to cancel K(j+1)k down and

row [8] to cancel Mm+(j+1)k down, since only one row is possible between [4] and

[8] and we have [5]. Therefore K(j+2)k and M2m are not canceled and there is no

solution in this case.

Let l = (j + 1)k. If l is of Type K0 then again we have [5] and [8] and therefore

K(j+2)k and M2m are not canceled and there is no solution in this case. If l is of

Type K then we do not have [5] and [8]. Now we need to cancel Mm+jk and we

get deg(g) > 2m. Therefore, we also need to cancel M2m. Since we do not have

[8], we can only cancel Mm+jk down with Km+jk. This implies the existence of a

row beneath row [4] which, because of the gcd condition, cannot be row [7]. If we

also have row [7] to cancel M2m down with K2m, we get two M ’s to the right of

M2m that are not canceled. Therefore, [7] does not exist and we have [9] to cancel

M2m down with 02m. The row [6] must exist to cancel K2m+k up with M2m+k

and Mm+jk down with Km+2k. We have m + 2k = m + jk and j ≥ 2 gives j = 2.

Therefore, the solution in this case is

f(x) = a + bxk + xm, g(x) = a + bx3k + x3m,

corresponding to the trivial case g(x) = f3(x).

(e) l ∈ (2m, 3m] of Type K

According to Lemmas 1 and 2, Nm = Nk = 1. Therefore, no rows are possible

between [4] and [8]. Therefore, K(j+1)k is not canceled and there is no solution in

this case.

(f) l ∈ (2m, 3m] of Type M

According to Lemma 1, Nm = Nk + 2. Therefore, we have at most two rows

between [4] and [8]. If we have [9], then we must have [6] to cancel K2m+k up. We

have [5] to cancel K(j+1)k down. We already have two rows between [4] and [8]

and K(j+2)k is not canceled down. Also K(j+2)k cannot cancel up with M(j+2)k

because gcd(k, m) = 1. Therefore, there is no solution in this case.

If we do not have [9], then we have [7] to cancel M2m down. We have [5] to cancel

K(j+1)k down. We already have two rows between [4] and [8] and K(j+2)k has to

be canceled. We can cancel it only with 02m−k and get

(j + 2)k = 2m− k,
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Solving for (k, m) = 1, m = jk + i and j ≥ 2 we get m = 5, k = j = 2 and i = 1.
We should have row [8] to cancel Mm+jk and Mm+(j+1)k down. We can write the
following system of equations:

a9 = 1, column 3m-i,
a8 6= 0, column 3m-k,

ba9 + a6 = 0, column m+(j+1)k,
aa9 + a4 = 0, column m+jk,

ba8 + a5 = 0, column 2m,
aa8 + ba6 = 0, column (j+2)k,

aa6 + ba4 = 0, column (j+1)k,
ba5 + a2 = 0, column m+k,
aa5 + a0 = 0, column m=jk+i,

aa4 + ba2 = 0, column 2k=jk,
aa2 + ba0 = 0, column k.

Rearranging the above equations we get

ab = 0,

contradicting that a 6= 0, b 6= 0. Therefore, there is no solution in this case.

(g) l ∈ (2m, 3m] of Type MK

According to Lemma 1, Nm = Nk + 1. Therefore, we have at most two rows below

[4]. Again we cannot have [8] and [9] at the same time.

Assume we have [9]. Then we have [6] and this is the only row between [4] and [9].

Therefore, K(j+1)k is not canceled and there is no solution in this case.

Assume we have [8]. Then we have [5] and this is the only row between [4] and [8].

Therefore, M2m is not canceled and there is no solution in this case.

2. k = 1. First suppose m ≥ 6. According to Lemma 1 and Lemma 2 we have

- if l ≤ 2m, then Nk ≤ 1 and Nm ≤ 2;

- if l > 2m, then

. l is Type M: Nk ≤ 1 and Nm ≤ 3;

. l is Type K: Nk = 1 and Nm = 1;

. l is Type MK: Nk ≤ 1 and Nm ≤ 2.

This means that, for k = 1, Nm ≤ 3. Therefore, we can consider the following

cases according to Nm (the number of nonzero coefficients ai of polynomial h(x),

i ∈ [m + 1, 2m], where fh = g):

(a) Nm = 3

According to the above statement, this case is possible only if l > 2m and l is of

Type M . Consider the box diagram for g = fh from Fig. 6. We always have rows

[1]-[4] to cancel all 0’s and 1’s to the left of Mm. In general, the total of m rows

must exist between [1] and [4] inclusive. Since Nm = 3, one of the M ’s to the right

of 2m has to be canceled down with 1. Since Nk ≤ 1, we have row [7] and row [6]

to cancel 12m+1 up with M2m+1 and only one more row must exist between [6]

and [7] inclusive to give left-over of Type M . Since m ≥ 6, there are at least three

M ’s between m + 3 and 2m − 1 inclusive that are not canceled. All three of them

cannot be canceled with a single row. Therefore, there is no solution in this case.

(b) Nm = 2

This case is possible if either l ≤ 2m of any type, or l > 2m and l of Type MK or

M .
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Fig. 6 An illustration of g(x) = (
P

aix
i)f(x) with f , g trinomials over F3 and k = 1.

i. l ≤ 2m

If l ≥ m or l < m and of Type 0K = 01 then consider the box diagram for

g = fh from Fig. 6. Here we have a similar situation as in 2(a). There are at

least two M ’s between m+3 and 2m− 2 (inclusive) that are not canceled. One

of them can be part of left-over, but others are not canceled. Therefore, there

is no solution in this case.

Consider l < m of Type K = 1. Here we have a similar situation as in 1(a). The

flow of the proof is exactly the same and we get trivial solution g(x) = f3(x).

The case when l < m of Type K = 0 cannot happen because k = 1 and either

all 1’s canceled with 0’s or there are 2 left-overs 0 and 1.

ii. l > 2m and l of Type MK

We have a similar situation as in 2(b)i. and the same box diagram for g = fh

from Fig. 6 that contains rows as discussed earlier. The difference is that there

are no more rows allowed between [6] and [7]. This means that for given m ≥ 6,

there are at least two M ’s between m + 3 and 2m − 2 (inclusive) that are not

canceled. Therefore, there is no solution in this case.

iii. l > 2m and l of Type M

Here we have a similar situation as in previous part. Again there are at least

five M ’s between m + 2 and 2m that need to be canceled by at most two rows

below [5]. Therefore, there is no solution in this case.

(c) Nm = 1

This case is possible if l > 2m and l is of Type K or l ≤ 2m.

i. l > 2m and l is of Type K

Here we have a similar situation as in 2(a). We have the same box diagram for

g = fh from Fig. 6 that contains rows as discussed earlier. The difference is

that there are no more rows allowed between [5] and [7] (row [7] is required in

order to get left-over of Type K). This means that for given m ≥ 6, there are

at least four M ’s between m + 2 and 2m− 1 (inclusive) that are not canceled.

Therefore, there is no solution in this case.
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ii. l ≤ 2m

If l ≥ m or l < m of Type 01 then consider the box diagram for g = fh from

Fig. 6. We always have rows [1]-[4] to cancel or match all 0’s to the left of Mm.

All m rows between [1] and [4] inclusive are present. Even if there is row [5]

to cancel Mm+1 down with 1m+1, for given m ≥ 6 there are at least five M ’s

between m+2 and 2m or m+1 and 2m−1 (inclusive). Only one row is allowed

below row [5] that can cancel two M ’s, one M is left-over and there are still

m−1−3 ≥ 2 M ’s that are not canceled. Thus, there is no solution in this case.

Consider l < m of Type K = 1 and the box diagram for g = fh from Fig. 6.

Since l < m, we have row [1] and [5] to cancel Mm down with 0m. If row [6] is

present then Nm = 1 shows this is the last row. Also M2m must cancel down

and this cannot be done. Therefore, row [6] is absent and we must have row

[2] to cancel 1m+1 up with Mm+1 and 11 down with 01. Having one more row

below [5] leads to cancelation of M2m and existence of row [4] and therefore we

have to cancel all 0’s to the left of Mm. This contradicts that the left-over is of

Type 1. Therefore, there is no solution in this case.

The case l < m of Type 0 is not possible since it gives K to the left of Mm that

is not canceled.

(d) Nm = 0

In this case we get that no rows exist below [5]. In 1(a) we proved that the case

with only rows [1], [2] and [5] is not possible. If we have other rows between [2] and

[5] we get M ’s between Mm+1 and M2m and K’s to the left of Mm that are not

canceled. Therefore, there are no solutions in this case.

According to the above results, given m ≥ 6, there is only one case possible for trinomial

f diving trinomial g, when g = f3. This means the problem is reduced to m ≤ 5 which

is a finite problem and can be computed with our program. Running the program, the

results in Table 5 are obtained. 2

f0(x) g0(x) Case in Table 4
−1 + bx + x2 1− bx + x6 1.1
1 + bx + x2 b + x + x5 1.2
−1 + bx + x2 b− bx2 + x5 1.3
−1 + bx + x2 −b− x3 + x5 1.4
1 + bx + x2 b + bx4 + x5 1.5
1 + bx + x2 1 + x2 + x4 1.6
−1 + bx + x2 b + x2 + x3 1.7
−1 + bx + x2 −b− bx2 + x3 1.8
a− x + x3 −a− x + x9 1.9
a− x + x3 1 + x2 + x8 1.10
a + x + x3 a + ax2 + x7 1.11
a− x + x3 a− ax4 + x7 1.12
a− x + x3 −a + x5 + x7 1.13
a + x + x3 1 + ax5 + x6 1.14
a− x + x3 a + ax4 + x5 1.15
−1 + bx + x4 −b + bx6 + x11 1.16
1 + bx + x4 1 + bx9 + x10 1.17

Table 5 Polynomials over F3 such that g0 = f0h0 with monic trinomial f0 and monic trino-
mial g0.
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5 Conclusion

Divisibility of polynomials over finite fields with control of their weights is not well

understood, even though it has many concrete practical applications. In this paper

we study the divisibility of binomials and trinomials by binomials and trinomials over

finite fields. We mostly focus in F3. Natural extensions are to consider polynomials

with more monomials and larger finite fields.

The overall goal of the area is to completely characterize when polynomials of

certain weight divide polynomials of another weight. Unfortunately, this seems to be

out of reach with the known methods. We cannot use our methods for an arbitrary field

as the field grows, the number of ways of cancelling explodes; this causes the system of

equations to have many solutions. New techniques are required to go beyond fewnomials

(polynomials with few monomials) dividing fewnomials as the ones presented in this

paper. We feel it is important that the next steps in the research should be to find a

method which works over an arbitrary field and not just a method to solve the next

largest field or the next highest weight.
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