ON SOME PERMUTATION POLYNOMIALS OVER FINITE FIELDS

AMIR AKBARY AND QIANG WANG

Abstract

Let p be prime, $q=p^{m}$ and $q-1=7 s$. We completely describe the permutation behavior of the binomial $P(x)=x^{r}\left(1+x^{e s}\right)(1 \leq e \leq 6)$ over a finite field \mathbb{F}_{q} in terms of the sequence $\left\{a_{n}\right\}$ defined by the recurrence relation $a_{n}=a_{n-1}+2 a_{n-2}-a_{n-3}(n \geq 3)$ with initial values $a_{0}=3, a_{1}=1$, and $a_{2}=5$.

1. Introduction

Let \mathbb{F}_{q} be a finite field of $q=p^{m}$ elements with characteristic p. A polynomial $P(x) \in \mathbb{F}_{q}[x]$ is called a permutation polynomial of \mathbb{F}_{q} if $P(x)$ induces a bijective map from \mathbb{F}_{q} to itself. In general, finding classes of permutation polynomials of \mathbb{F}_{q} is a difficult problem (see Chapter 7 of [2] for a survey of some known classes). An important class of permutation polynomials consists of permutation polynomials of the form $P(x)=x^{r} f\left(x^{\frac{q-1}{l}}\right)$, where l is a positive divisor of $q-1$ and $f(x) \in \mathbb{F}_{q}[x]$. These polynomials were first studied by Rogers and Dickson for the case $f(x)=$ $g(x)^{l}$ where $g(x) \in \mathbb{F}_{q}[x]$ ([2], Theorem 7.10). A very general result regarding these polynomials is given in [8]. In recent years, several authors have considered the case that $f(x)$ is a binomial (for example, [3], [9] and [1]).

Here we consider the binomial $P(x)=x^{r}+x^{u}$ with $r<u$. Let $s=(u-r, q-1)$ and $l=\frac{q-1}{s}$. Then we can rewrite $P(x)$ as $P(x)=x^{r}\left(1+x^{e s}\right)$ where $s=\frac{q-1}{l}$ and $(e, l)=1$. If $P(x)=x^{r}\left(1+x^{e s}\right)$ is a permutation binomial of \mathbb{F}_{q}, then $P(x)$ has exactly one root in \mathbb{F}_{q} and thus l is odd. When $l=3,5$, the permutation behavior of $P(x)$ was studied by L. Wang [9]. In the case $l=5$, the permutation binomial $P(x)$ is determined in terms of the Lucas sequence $\left\{L_{n}\right\}$ where

$$
L_{n}=\left(2 \cos \frac{\pi}{5}\right)^{n}+\left(-2 \cos \frac{2 \pi}{5}\right)^{n}
$$

More precisely, it is proved that under certain conditions on $r, s=\frac{q-1}{5}$ and e, the binomial $P(x)=x^{r}\left(1+x^{e s}\right)$ is a permutation binomial if and only if $L_{s}=2$ in \mathbb{F}_{p} ([9], Theorem 2).

In this paper, we consider the case $l=7$ (see [1] for some results related to general l). Here we introduce a Lucas-type sequence $\left\{a_{n}\right\}$ by

$$
\begin{equation*}
a_{n}=\left(2 \cos \frac{\pi}{7}\right)^{n}+\left(-2 \cos \frac{2 \pi}{7}\right)^{n}+\left(2 \cos \frac{3 \pi}{7}\right)^{n} \tag{1}
\end{equation*}
$$

[^0]for integer $n \geq 0$. It turns out that $\left\{a_{n}\right\}_{n=0}^{\infty}$ is an integer sequence satisfying the recurrence relation
\[

$$
\begin{equation*}
a_{n}=a_{n-1}+2 a_{n-2}-a_{n-3} \tag{2}
\end{equation*}
$$

\]

with initial values $a_{0}=3, a_{1}=1, a_{2}=5$ (see Lemma 2.1). This is the sequence A094648 in Sloane's Encyclopedia [6]. Next we extend the domain of $\left\{a_{n}\right\}_{n=0}^{\infty}$ to include negative integers. For negative integer $-n$ we have

$$
a_{-n}=\left(4 \cos \frac{\pi}{7} \cos \frac{2 \pi}{7}\right)^{n}+\left(-4 \cos \frac{\pi}{7} \cos \frac{3 \pi}{7}\right)^{n}+\left(4 \cos \frac{2 \pi}{7} \cos \frac{3 \pi}{7}\right)^{n}
$$

Note that $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ is an integer sequence, so we can consider this sequence as a sequence in \mathbb{F}_{p}. Here we investigate the relation between this sequence in \mathbb{F}_{p} and permutation properties of binomial $P(x)=x^{r}\left(1+x^{e s}\right)$ over a finite field $\mathbb{F}_{q}=\mathbb{F}_{p^{m}}$. We have the following Theorem.
Theorem 1.1. Let $q-1=7 s$ and $1 \leq e \leq 6$. Then $P(x)=x^{r}\left(1+x^{e s}\right)$ is a permutation binomial of \mathbb{F}_{q} if and only if $(r, s)=1,2^{s} \equiv 1(\bmod p), 2 r+e s \not \equiv$ $0(\bmod 7)$ and $\left\{a_{n}\right\}$ satisfies one of the following:
(a) $a_{s}=a_{-s}=3$ in \mathbb{F}_{p};
(b) $a_{-c s-1}=-1+\alpha, a_{-c s}=-1-\alpha$ and $a_{-c s+1}=1$ in \mathbb{F}_{p}, where c is the inverse of $s+2 e^{5} r$ modulo 7 and $\alpha^{2}+\alpha+2=0$ in \mathbb{F}_{p}.

The sequence $\left\{a_{n}\right\}$ is called s-periodic over \mathbb{F}_{p} if $a_{n}=a_{n+k s}$ in \mathbb{F}_{p} for integers k and n. Condition (a) in the above theorem is equivalent to s-periodicity of a_{n} over \mathbb{F}_{p} (see Lemma 2.4). Equivalently we can say $\left\{a_{n}\right\}$ is s-periodic over \mathbb{F}_{p} whenever $\left\{a_{n}\right\}=\left\{a_{n}^{0}\right\}$ in \mathbb{F}_{p}, where $\left\{a_{n}^{0}\right\}_{n=-\infty}^{\infty}$ is the unique sequence in \mathbb{F}_{p} defined by the recursion (2) and initial values $a_{s-1}^{0}=2, a_{s}^{0}=3$ and $a_{s+1}^{0}=1$. Similarly condition (b) can be written as $\left\{a_{n}\right\}=\left\{a_{n}^{c, \alpha}\right\}$ in \mathbb{F}_{p}, where $\left\{a_{n}^{c, \alpha}\right\}_{n=-\infty}^{\infty}$ is the unique sequence in \mathbb{F}_{p} defined by the recursion (2) and initial values $a_{-c s-1}=-1+\alpha, a_{-c s}=-1-\alpha$ and $a_{-c s+1}=1$. So Theorem 1.1 states that under certain conditions on $r, s=\frac{q-1}{7}$ and e the binomial $P(x)=x^{r}\left(1+x^{e s}\right)$ is a permutation binomial of \mathbb{F}_{p} if and only if the Lucas-type sequence $\left\{a_{n}\right\}$ is equal to $\left\{a_{n}^{0}\right\}$ or $\left\{a_{n}^{c, \alpha}\right\}$ in \mathbb{F}_{p} (For more explanation see Examples in Section 3).

It is clear that if Legendre symbol $\left(\frac{p}{7}\right)=-1$ then condition (b) in the above theorem is never satisfied (the equation $x^{2}+x+2=0$ does not have any solution in \mathbb{F}_{p}). Moreover in this case we can show that condition (a) is always satisfied, and so we have the following.
Corollary 1.2. Let $q-1=7 s, 1 \leq e \leq 6$, and p be a prime with $\left(\frac{p}{7}\right)=-1$. Then $P(x)=x^{r}\left(1+x^{e s}\right)$ is a permutation binomial of \mathbb{F}_{q} if and only if $(r, s)=1$, $2^{s} \equiv 1(\bmod p)$ and $2 r+e s \not \equiv 0(\bmod 7)$.

Theorem 1.1 gives a complete characterization of permutation binomials of the form $P(x)=x^{r}\left(1+x^{\frac{e(q-1)}{7}}\right)$. Moreover our theorem together with the above corollary can lead to an efficient algorithm for constructing such permutation binomials. Note that $\left\{a_{n}\right\}$ is a recursive sequence and therefore conditions (a) and (b) can be quickly verified and so by employing the above theorem it is easy to find new permutation binomials over certain \mathbb{F}_{q}. Also by an argument similar to the proof of Corollary 1.3 in [1], we can show that under the conditions of Theorem 1.1 on q, there are exactly $3 \phi(q-1)$ permutation binomials $P(x)=x^{r}\left(1+x^{\frac{e(q-1)}{7}}\right)$ of \mathbb{F}_{q}. Here, ϕ is the Euler totient function.

In the next section we study certain properties of the sequence $\left\{a_{n}\right\}$ that will be used in the proof of our theorem. Theorem 1.1 and Corollary 1.2 are proved in Section 3.

2. The Sequence $\left\{a_{n}\right\}$

We first show that $\left\{a_{n}\right\}$ appears in the closed expression for the lacunary sum of binomial coefficients $S(2 n, 7, a):=\sum_{\substack{k=0 \\ k \equiv a(\bmod 7)}}^{2 n}\binom{2 n}{k}$.
Lemma 2.1. The sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ satisfies the recursion $a_{n}=a_{n-1}+2 a_{n-2}-$ $a_{n-3}(n \geq 3), a_{0}=3, a_{1}=1, a_{2}=5$ and we have

$$
S(2 n, 7, a)= \begin{cases}\frac{2^{2 n}+2 a_{2 n}}{7} & \text { if } 2 n-2 a \equiv 0(\bmod 7) ; \\ \frac{2^{2 n}-a_{2 n+1}}{7} & \text { if } 2 n-2 a \equiv 1,6(\bmod 7) ; \\ \frac{2^{2 n}+a_{2 n+1}-a_{2 n-1}}{7} & \text { if } 2 n-2 a \equiv 2,5(\bmod 7) ; \\ \frac{2^{2 n}-a_{2 n}+a_{2 n-1}}{7} & \text { if } 2 n-2 a \equiv 3,4(\bmod 7) .\end{cases}
$$

Proof. Note that $2 \cos \frac{\pi}{7},-2 \cos \frac{2 \pi}{7}$ and $2 \cos \frac{3 \pi}{7}$ are the roots of the polynomial $g(x)=x^{3}-x^{2}-2 x+1$, so a_{n} satisfies the given recursion.

We know that

$$
S(2 n, 7, a)=\frac{2^{2 n}}{7}+\frac{2}{7}\left[\sum_{t=1}^{3}\left(2 \cos \frac{\pi t}{7}\right)^{2 n} \cos \frac{\pi t}{7}(2 n-2 a)\right],
$$

(see [7], page 232, Lemma 1.3). This together with (1) and (2) imply the result.
Next we have a general formula for the product $a_{n} a_{m}$.
Lemma 2.2. Let m and n be integers and $m \leq n$. Then

$$
a_{n} a_{m}=a_{m+n}+(-1)^{m}\left(a_{-m} a_{n-m}-a_{n-2 m}\right)
$$

In particular,

$$
a_{n}^{2}=a_{2 n}+(-1)^{n} 2 a_{-n} .
$$

Proof. Let $\delta=2 \cos \frac{\pi}{7}, \eta=-2 \cos \frac{2 \pi}{7}$, and $\epsilon=2 \cos \frac{3 \pi}{7}$. We have $a_{n}=\delta^{n}+\eta^{n}+\epsilon^{n}$ and $a_{-n}=(-\delta \eta)^{n}+(-\delta \epsilon)^{n}+(-\eta \epsilon)^{n}$. Considering these, a routine calculation implies the result.

In the next two lemmas, we study the periodicity of $\left\{a_{n}\right\}$ over \mathbb{F}_{p}.
Lemma 2.3. Let $p \neq 2,7$ be a prime. Then the sequence $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ is 7 s-periodic over \mathbb{F}_{p}.
Proof. We know that $g(x)=x^{3}-x^{2}-2 x+1$ is the characteristic polynomial of the recursion associated to a_{n}. Let δ, η and ϵ be the roots of $g(x)$ in a splitting field F of $g(x)$ over \mathbb{F}_{p}. Since $p \neq 2,7$, we know that a_{n} is $7 s$-periodic in \mathbb{F}_{p} if and only if $\delta^{7 s}=\eta^{7 s}=\epsilon^{7 s}=1$ in F.

We can show that $g(x)$ is either irreducible in $\mathbb{F}_{p}[x]$ or it splits in $\mathbb{F}_{p}[x]$. Now if $g(x)$ splits over \mathbb{F}_{p}, then $\delta^{p-1}=\eta^{p-1}=\epsilon^{p-1}=1$ in \mathbb{F}_{p} and therefore a_{n} has period $7 s=q-1$. If $p=7 k+1$ or 6 , by Theorem 7 of $[5], g(x)$ splits over \mathbb{F}_{p}. If $p=7 k+2,3,4$ or 5 and $g(x)$ is irreducible over \mathbb{F}_{p} then, by Theorems 8.27 and 8.29 of $[2], a_{n}$ is periodic in \mathbb{F}_{p} with the least period dividing $p^{3}-1$. Also since
$q-1=p^{m}-1 \equiv 0(\bmod 7)$, in these cases $3 \mid m$. Hence a_{n} is periodic in \mathbb{F}_{p} with the least period dividing $7 s=q-1$.

We continue by describing a necessary and sufficient condition under which the sequence $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ will be a periodic sequence in \mathbb{F}_{p} with the even period s.

Lemma 2.4. Let $p \neq 2,7$ be a prime and s be a fixed even positive integer. Then $\left\{a_{n}\right\}$ is s-periodic over $\mathbb{F}_{p} \Longleftrightarrow a_{s}=a_{-s}=3$ in \mathbb{F}_{p}.
Proof. With the notation in the proof of Lemma 2.3, we know that $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ is s-periodic if and only if $\operatorname{diag}(\delta, \eta, \epsilon)^{s}=I$ in F. Here $\operatorname{diag}(\delta, \eta, \epsilon)$ is a diagonal matrix with entries δ, η and ϵ and I is the identity matrix. We know that a diagonal matrix is equal to the identity matrix if and only if $(x-1)^{3}$ is the characteristic polynomial of the diagonal matrix. By employing this fact, together with the identities $a_{n}=\delta^{n}+\eta^{n}+\epsilon^{n}$ and $a_{-n}=(-\delta \eta)^{n}+(-\delta \epsilon)^{n}+(-\eta \epsilon)^{n}$ in F, we have

$$
\operatorname{diag}(\delta, \eta, \epsilon)^{s}=I \text { in } F \Longleftrightarrow a_{s}=a_{-s}=3 \text { in } \mathbb{F}_{p}
$$

The following two lemmas play important roles in the proof of Theorem 1.1.
Lemma 2.5. Let $p \neq 2,7$ be a prime, $s=\frac{q-1}{7}$, and $c(1 \leq c \leq 6)$ be a fixed integer. If the sequence $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ satisfies $a_{c s+1}=a_{2 c s-1}-a_{2 c s+1}=a_{3 c s}-a_{3 c s-1}=$ $a_{4 c s}-a_{4 c s-1}=a_{5 c s-1}-a_{5 c s+1}=a_{6 c s+1}=1$ in \mathbb{F}_{p}, then

$$
a_{c s}=a_{2 c s}=a_{4 c s}, \text { and } a_{3 c s}=a_{5 c s}=a_{6 c s}
$$

in \mathbb{F}_{p}.
Proof. From the recurrence relation of a_{n} we get $a_{2 c s-1}-a_{2 c s+1}=2 a_{2 c s}-a_{2 c s+2}$. So by the conditions of the lemma we have
(A) $a_{c s+1}^{2}=1$;
(B) $\left(2 a_{2 c s}-a_{2 c s+2}\right)^{2}=1$;
(C) $\left(a_{4 c s}-a_{4 c s-1}\right)^{2}=1$.

We employ Lemmas 2.2 and 2.3 to deduce new identities from (A), (B) and (C). For simplicity of our exposition we let $a_{-(c s+1)}=\gamma$.

First of all (A) together with Lemma 2.2 imply

$$
\begin{equation*}
a_{2 c s+2}=1+2 \gamma \tag{3}
\end{equation*}
$$

From (3) and $2 a_{2 c s}-a_{2 c s+2}=1$, we have

$$
\begin{equation*}
a_{2 c s}=1+\gamma . \tag{4}
\end{equation*}
$$

Next from (B), (3), (4), Lemma 2.2 and $a_{c s+1}=1$, we get

$$
\begin{aligned}
1 & =\left(2 a_{2 c s}-a_{2 c s+2}\right)^{2} \\
& =4 a_{2 c s}^{2}-4 a_{2 c s} a_{2 c s+2}+a_{2 c s+2}^{2} \\
& =-4(1+\gamma) \gamma+a_{2 c s+2}^{2} \\
& =-4(1+\gamma) \gamma+a_{4 c s+4}+2 a_{-(2 c s+2)} \\
& =-4(1+\gamma) \gamma+a_{4 c s+4}+2\left(\gamma^{2}+2\right) .
\end{aligned}
$$

This implies

$$
\begin{equation*}
a_{4 c s+4}=2(1+\gamma)^{2}-5=2 a_{2 c s}^{2}-5 . \tag{5}
\end{equation*}
$$

Note that $a_{4 c s}-a_{4 c s-1}=1$ and the recurrence relation (2) imply

$$
\begin{equation*}
a_{4 c s+2}=a_{4 c s+1}+a_{4 c s}+1 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{4 c s+3}=3 a_{4 c s+1}+1 \tag{7}
\end{equation*}
$$

Now applying the recurrence relation $a_{4 c s+4}=a_{4 c s+3}+2 a_{4 c s+2}-a_{4 c s+1}$ together with (6) and (7) to the left-hand side of (5) and applying Lemmas 2.2 and 2.3 to the right-hand side of (5) yield

$$
\begin{equation*}
a_{4 c s+1}=a_{5 c s}-2 \tag{8}
\end{equation*}
$$

Finally from (C) we have

$$
a_{4 c s}^{2}-2 a_{4 c s} a_{4 c s-1}+a_{4 c s-1}^{2}=1
$$

Applying Lemma 2.2 and Lemma 2.3 on this equality yields

$$
a_{c s}+2 a_{3 c s}-2 a_{c s-1}-2 a_{3 c s+2}+a_{c s-2}=1 .
$$

Now by employing the recurrence relation $a_{c s+1}=a_{c s}+2 a_{c s-1}-a_{c s-2}$ in the previous identity and $a_{c s+1}=1$, we obtain

$$
\begin{equation*}
a_{c s}=a_{3 c s+2}-a_{3 c s}+1 \tag{9}
\end{equation*}
$$

Since $a_{3 c s}-a_{3 c s-1}=1$, from the recurrence relation (2) we have

$$
a_{3 c s+2}=a_{3 c s+1}+a_{3 c s}+1
$$

Applying this identity in (9) yields

$$
\begin{equation*}
a_{c s}=a_{3 c s+1}+2 . \tag{10}
\end{equation*}
$$

Now we are ready to finish the proof. Note that by changing s to $-s$ all the above equations remain true, so by changing s to $-s$ in (8) and applying Lemma 2.3 we have

$$
a_{3 c s+1}=a_{2 c s}-2
$$

This together with (10) imply $a_{c s}=a_{2 c s}$. Changing s to $-s$ in this equality yields $a_{6 c s}=a_{5 c s}$. These identities together with Lemma 2.2 and Lemma 2.3 imply that

$$
a_{c s}=a_{2 c s}=a_{4 c s}, a_{3 c s}=a_{5 c s}=a_{6 c s} .
$$

Lemma 2.6. Let $p \neq 2,7$ be a prime, $s=\frac{q-1}{7}$ and $c(1 \leq c \leq 6)$ be a fixed integer. If the sequence $\left\{a_{n}\right\}_{n=-\infty}^{\infty}$ satisfies

$$
a_{6 c s-1}=-1+\alpha, a_{6 c s}=-1-\alpha, \text { and } a_{6 c s+1}=1
$$

where α is a root of equation $x^{2}+x+2=0$ in \mathbb{F}_{p} then we have $a_{c s}=a_{2 c s}=$ $a_{4 c s}=\alpha, a_{3 c s}=a_{5 c s}=a_{6 c s}=-1-\alpha, a_{c s-1}=-2-\alpha, a_{c s+1}=1, a_{5 c s-1}=$ $1-2 \alpha$, and $a_{5 c s+1}=-2 \alpha$ in \mathbb{F}_{p}.

Proof. From Lemmas 2.2 and 2.3 we have the following six identities.

$$
\left\{\begin{array}{ll}
a_{6 c s-1}^{2} & =a_{5 c s-2}-2 a_{c s+1} \\
a_{6 c s-1} a_{6 c s} & =a_{5 c s-1}-a_{1} a_{c s+1}+a_{c s+2} \\
a_{6 c s-1} a_{6 c s+1} & =a_{5 c s}-a_{2} a_{c s+1}+a_{c s+3} \\
a_{6 c s}^{2} & =a_{5 c s}+2 a_{c s} \\
a_{6 c s} a_{6 c s+1} & =a_{5 c s+1}+a_{c s}-a_{c s+1} \\
a_{6 c s+1}^{2} & =a_{5 c s+2}-2 a_{c s-1}
\end{array} .\right.
$$

Replacing the known values of the variables in the above identities, writing $a_{5 c s-2}$ and $a_{5 c s+2}$ in terms of $a_{5 c s-1}, a_{5 c s}$ and $a_{5 c s+1}$, and writing $a_{c s+2}$ and $a_{c s+3}$ in terms of $a_{c s-1}, a_{c s}$ and $a_{c s+1}$ yield

$$
\left\{\begin{array}{cl}
(-1+\alpha)^{2} & =2 a_{5 c s-1}+a_{5 c s}-a_{5 c s+1}-2 a_{c s+1} \\
1-\alpha^{2} & =a_{5 c s-1}-a_{c s-1}+2 a_{c s} \\
-1+\alpha & =a_{5 c s}-a_{c s-1}+a_{c s}-2 a_{c s+1} \\
(1+\alpha)^{2} & =a_{5 c s}+2 a_{c s} \\
-1-\alpha & =a_{5 c s+1}+a_{c s}-a_{c s+1} \\
1 & =-a_{5 c s-1}+2 a_{5 c s}+a_{5 c s+1}-2 a_{c s-1}
\end{array} .\right.
$$

Solving this system of linear equations and noting that $\alpha^{2}+\alpha+2=0$ imply the desired values for $a_{c s-1}, a_{c s}, a_{c s+1}, a_{5 c s-1}, a_{5 c s}$ and $a_{5 c s+1}$. By setting up two similar systems of linear equations one can derive the desired values for $a_{2 c s}, a_{3 c s}$ and $a_{4 c s}$.

3. Permutation Binomials and the Sequence $\left\{a_{n}\right\}$

The main tool in the proof of Theorem 1.1 is the following well known theorem of Hermite ([2], Theorem 7.4).
Hermite's Criterion $P(x)$ is a permutation polynomial of \mathbb{F}_{q} if and only if
(i) $P(x)$ has exactly one root in \mathbb{F}_{q}.
(ii) For each integer t with $1 \leq t \leq q-2$ and $t \not \equiv 0(\bmod p)$, the reduction of $[P(x)]^{t}$ $\bmod \left(x^{q}-x\right)$ has degree less than or equal to $q-2$.

Finally we are ready to prove the main result of this paper.
Proof of Theorem 1.1. First we assume that $P(x)$ is a permutation binomial. Then $p \neq 2$, since otherwise $P(0)=P(1)=0$. Also, in this case, it is known that $(r, s)=1([8]$, Theorem 1.2$)$ and $2^{s} \equiv 1(\bmod p)([4]$, Theorem 4.7). Next we note that the coefficient of x^{q-1} in the expansion of $[P(x)]^{k s}$ is $S\left(k s, 7,-k e^{5} r\right)$, so if $P(x)$ is a permutation binomial then by Hermite's Criterion $S\left(k s, 7,-k e^{5} r\right)=0$ in \mathbb{F}_{p} for $k=1, \cdots, 6$.

We next show that $2 r+e s \not \equiv 0(\bmod 7)$. Otherwise, $2 r+e s \equiv 0(\bmod 7)$ and Lemma 2.1 follows that

$$
S\left(k s, 7,-k e^{5} r\right)=\frac{2^{k s}+2 a_{k s}}{7}, \text { in } \mathbb{F}_{p}
$$

for $k=1, \cdots, 6$. From here if $P(x)$ is a permutation binomial, we have

$$
a_{s}=a_{2 s}=\cdots=a_{6 s}=-\frac{1}{2} \text { in } \mathbb{F}_{p}
$$

Using Lemma 2.3 and Lemma 2.2, we have $\frac{1}{4}=a_{s}^{2}=a_{2 s}+2 a_{6 s}=3 a_{s}=-\frac{3}{2}$. Hence $\frac{1}{2}\left(\frac{1}{2}+3\right)=0$ in \mathbb{F}_{p} which is a contradiction since $7 \mid(q-1)$. Hence $2 r+e s \not \equiv$ $0(\bmod 7)$.

It remains to show that if $P(x)$ is a permutation binomial then either (a) or (b) holds. Let c be the inverse of $s+2 e^{5} r$ modulo 7 . Hermite's criterion together with Lemma 2.1 imply that

$$
\begin{gathered}
a_{c s+1}=1, a_{2 c s-1}-a_{2 c s+1}=1, a_{3 c s}-a_{3 c s-1}=1 \\
a_{4 c s}-a_{4 c s-1}=1, a_{5 c s-1}-a_{5 c s+1}=1, a_{6 c s+1}=1
\end{gathered}
$$

in \mathbb{F}_{p}. So by Lemma 2.5, we have

$$
\begin{equation*}
a_{c s}=a_{2 c s}=a_{4 c s}=\alpha, a_{3 c s}=a_{5 c s}=a_{6 c s}=\beta, \tag{11}
\end{equation*}
$$

in \mathbb{F}_{p}. From Lemma 2.2 and Lemma 2.3, we have

$$
\begin{equation*}
a_{c s}^{2}=a_{2 c s}+2 a_{6 c s} \text { and } a_{6 c s}^{2}=a_{5 c s}+2 a_{c s} \tag{12}
\end{equation*}
$$

By subtracting these two equations and employing (11), we get

$$
\begin{equation*}
\left(a_{c s}-a_{6 c s}\right)\left(a_{c s}+a_{6 c s}+1\right)=0 \text { in } \mathbb{F}_{p} \tag{13}
\end{equation*}
$$

If $\alpha=\beta$ in \mathbb{F}_{p}, then by Lemma 2.2 and (11) we have $a_{7 c s}=a_{c s} a_{6 c s}-a_{6 c s} a_{5 c s}+a_{4 c s}=$ $a_{4 c s}$. Since by Lemma $2.3 a_{7 c s}=a_{0}=3$ in \mathbb{F}_{p}, we have $a_{4 c s}=3$ in \mathbb{F}_{p}. This together with (11) and $a_{c s}=a_{6 c s}$ implies condition (a).

If $\alpha \neq \beta$, then from (13) we have $a_{c s}+a_{6 c s}+1=0$. This together with (12) imply that α and β are roots of the equation $x^{2}+x+2=0$ in \mathbb{F}_{p} and therefore $\beta=-1-\alpha$.

From Lemma 2.2 we have

$$
a_{c s} a_{c s+1}=a_{2 c s+1}+a_{6 c s} a_{1}-a_{6 c s+1}
$$

This together with $a_{c s}=\alpha, a_{6 c s}=-1-\alpha$, and $a_{c s+1}=a_{6 c s+1}=1$ imply that $a_{2 c s+1}=2 \alpha+2$. Note that $a_{2 c s-1}=1+a_{2 c s+1}$, and so $a_{2 c s-1}=2 \alpha+3$ and thus $a_{2 c s+2}=a_{2 c s+1}+2 a_{2 c s}-a_{2 c s-1}=2 \alpha-1$. Finally by Lemma 2.2 we have $a_{c s+1}^{2}=a_{2 c s+2}-2 a_{6 c s-1}$ which implies $a_{6 c s-1}=\alpha-1$. Hence, in this case, a_{n} satisfies condition (b).

Conversely we assume that the conditions in Theorem 1.1 are satisfied and we show that $P(x)$ is a permutation binomial. First note that $2^{s} \equiv 1(\bmod p)$ follows that p is odd. Hence it is obvious that $P(x)$ has only one root in \mathbb{F}_{q}. Since $(r, s)=1$, the possible coefficient of x^{q-1} in the expansion of $[P(x)]^{t}$ can only happen if $t=k s$ for some $k=1, \cdots, 6$. So by Hermite's criterion, it is sufficient to show that $S\left(k s, 7,-k e^{5} r\right)=0$ in \mathbb{F}_{p} for $k=1, \cdots, 6$.

Now if a_{n} satisfies condition (a), then by Lemma $2.4 a_{n}$ is s-periodic over \mathbb{F}_{p}. Using the initial values of $a_{n}, 2 r+e s \not \equiv 0(\bmod 7)$ and Lemma 2.1, we have $S\left(k s, 7,-k e^{5} r\right)=0$ in \mathbb{F}_{p} and thus $P(x)$ is a permutation binomial over \mathbb{F}_{q}.

Next we assume that a_{n} satisfies condition (b). Then by Lemma 2.6, we also have

$$
\begin{gathered}
a_{c s}=a_{2 c s}=a_{4 c s}=\alpha, a_{3 c s}=a_{5 c s}=a_{6 c s}=-1-\alpha \\
a_{c s-1}=-2-\alpha, a_{c s+1}=1, a_{5 c s-1}=1-2 \alpha, \text { and } a_{5 c s+1}=-2 \alpha
\end{gathered}
$$

By using $2^{s}=1, a_{c s+1}=a_{6 c s+1}=1$, and Lemma 2.1, we have

$$
S\left(k c s, 7,-k c e^{5} r\right)=0 \text { for } k=1, \text { and } 6
$$

To demonstrate $S\left(k c s, 7,-k c e^{5} r\right)=0$ for other k 's, it is sufficient to show that

$$
\begin{aligned}
& a_{2 c s-1}-a_{2 c s+1}=1, a_{3 c s}-a_{3 c s-1}=1 \\
& a_{4 c s}-a_{4 c s-1}=1, a_{5 c s-1}-a_{5 c s+1}=1
\end{aligned}
$$

From the values for $a_{5 c s-1}$ and $a_{5 c s+1}$ it is clear that $a_{5 c s-1}-a_{5 c s+1}=1$. Next note that by considering appropriate systems of linear equations as described in the proof of Lemma 2.6 we can deduce that

$$
a_{2 c s-1}=2 \alpha+3, a_{2 c s+1}=2 \alpha+2, a_{3 c s-1}=-\alpha-2, \text { and } a_{4 c s-1}=\alpha-1
$$

So $a_{2 c s-1}-a_{2 c s+1}=a_{3 c s}-a_{3 c s-1}=a_{4 c s}-a_{4 c s-1}=1$. These relations show that $S\left(k s, 7,-k e^{5} r\right)=0$ in \mathbb{F}_{p} for $k=1, \cdots, 6$. Hence $P(x)$ is a permutation binomial of \mathbb{F}_{q}.

Next we prove that if $\left(\frac{p}{7}\right)=-1$ then the sequence a_{n} is always s-periodic. That is, $a_{s}=a_{-s}=3$.

Proof of Corollary 1.2. Following the notation in the proof of Lemma 2.3, let ϵ be a root of $g(x)=x^{3}-x^{2}-2 x+1$ in an extension of \mathbb{F}_{p}. We need to prove that $\epsilon^{s}=1$. If $p \equiv 6(\bmod 7)$ then by Theorem 7 of $[5]$ we have $\epsilon \in \mathbb{F}_{p}$. Since $(p-1,7)=1$, in this case ϵ is a 7 -th power in \mathbb{F}_{p} and therefore $\epsilon^{s}=1$ in \mathbb{F}_{p}. To prove the result for $p \equiv 3$ or $5(\bmod 7)$, first of all note that $g(x)$ is either irreducible in $\mathbb{F}_{p}[x]$ or it splits in $\mathbb{F}_{p}[x]$. If it splits over \mathbb{F}_{p}, then ϵ is a 7 -th power in \mathbb{F}_{p} and so $\epsilon^{s}=1$ in \mathbb{F}_{p}. Otherwise $g(x)$ splits over $\mathbb{F}_{p^{3}}$. Now since $p \not \equiv 1,2$ or $4(\bmod 7)$ we have $\left(p^{3}-1,7\right)=1$, so ϵ is a 7 -th power in $\mathbb{F}_{p^{3}}$ and therefore $\epsilon^{\frac{p^{3}-1}{7}}=1$ in $\mathbb{F}_{p^{3}}$. Also since $7 \mid(q-1)$ we have $6 \mid m$. This and $\epsilon^{\frac{p^{3}-1}{7}}=1$ in $\mathbb{F}_{p^{3}}$ imply that $\epsilon^{s}=1$ in \mathbb{F}_{q}. Hence $\left\{a_{n}\right\}$ is s-periodic and so by Lemma 2.4, $a_{s}=a_{-s}=3$. Now Theorem 1.1 implies the result.

Examples An algorithm for finding permutation binomials $P(x)=x^{r}\left(1+x^{\frac{e(q-1)}{7}}\right)$ of a given field \mathbb{F}_{q} can be easily implemented by using Theorem 1.1 and Corollary 1.2. Moreover our theorem together with Lemma 2.4 and Lemma 2.6 imply that under certain conditions on r, s and e the binomial $x^{r}\left(1+x^{e s}\right)$ is a permutation polynomial over \mathbb{F}_{q} if and only if the Lucas-type sequence $\left\{a_{n}\right\}$ becomes one of the following four sequences over \mathbb{F}_{p}.
(I) $a_{-s-1}=2, a_{-s}=3, a_{-s+1}=1, a_{s-1}=2, a_{s}=3, a_{s+1}=1$.
(II) $a_{-s-1}=-1+\alpha, a_{-s}=-1-\alpha, a_{-s+1}=1, a_{s-1}=-2-\alpha, a_{s}=\alpha, a_{s+1}=1$.
(III) $a_{-2 s-1}=-1+\alpha, a_{-2 s}=-1-\alpha, a_{-2 s+1}=1, a_{2 s-1}=-2-\alpha, a_{2 s}=\alpha$, $a_{2 s+1}=1$.
(IV) $a_{-3 s-1}=-1+\alpha, a_{-3 s}=-1-\alpha, a_{-3 s+1}=1, a_{3 s-1}=-2-\alpha, a_{3 s}=\alpha$, $a_{3 s+1}=1$.

Note that the sequence (I) is s-periodic and in (II), (III) and (IV), α is a root of equation $x^{2}+x+2=0$ in \mathbb{F}_{p}.

The following table gives some prime numbers p with $p \equiv 1(\bmod 7)$ and $2^{\frac{p-1}{7}} \equiv$ $1(\bmod p)$ whose corresponding sequence $\left\{a_{n}\right\}$ over \mathbb{F}_{p} is in the form (I) ((II), (III), (IV), respectively).

Type IV	Type III	Type II	Type I
2731	4999	7309	874651
3389	18439	20063	941879
15583	20441	33587	1018879
62791	33503	37199	1036267
65899	55609	37339	1074277
\vdots	\vdots	\vdots	\vdots

Here $p=2731$ (4999, 7309, 874651 respectively) is the smallest prime $p \equiv 1(\bmod$ 7) with $2^{\frac{p-1}{7}} \equiv 1(\bmod p)$ whose corresponding sequence $\left\{a_{n}\right\}$ over \mathbb{F}_{p} is in the form (IV) ((III), (II), (I), respectively). The following table gives examples of such permutation binomials over these four fields.

	$p=2731$	$p=4999$	$p=7309$	$p=874651$
a_{n}	$a_{-3 s-1}=1001$	$a_{-2 s-1}=760$	$a_{-s-1}=3858$	$a_{-s-1}=2$
	$a_{-3 s}=1728$	$a_{-2 s}=4237$	$a_{-s}=3449$	$a_{-s}=3$
	$a_{-3 s+1}=1$	$a_{-2 s+1}=1$	$a_{-s+1}=1$	$a_{-s+1}=1$
	$a_{3 s-1}=1727$	$a_{2 s-1}=4236$	$a_{s-1}=3448$	$a_{s-1}=2$
	$a_{3 s}=1002$	$a_{2 s}=761$	$a_{s}=3859$	$a_{s}=3$
	$a_{3 s+1}=1$	$a_{2 s+1}=1$	$a_{s+1}=1$	$a_{s+1}=1$
(r, e, s)	$(7,1,390)$	$(5,1,714)$	$(7,1,1044)$	$(1,1,124950)$
	$(23,1,390)$	$(19,1,714)$	$(13,1,1044)$	$(11,1,124950)$
	$(37,1,390)$	$(23,1,714)$	$(35,1,1044)$	$(13,1,124950)$
	$(49,1,390)$	$(37,1,714)$	$(41,1,1044)$	$(19,1,124950)$
	$(77,1,390)$	$(47,1,714)$	$(49,1,1044)$	$(23,1,124950)$
	\vdots	\vdots	\vdots	\vdots

References

[1] A. Akbary and Q. Wang, A generalized Lucas sequence and permutation binomials, Proc. Amer. Math. Soc., to appear.
[2] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1997.
[3] J. B. Lee and Y. H. Park, Some permuting trinomials over finite fields, Acta Math. Sci. (English Ed.), 17 (1997), 250-254.
[4] Y. H. Park and J. B. Lee, Permutation polynomials with exponents in an arithmetic progression, Bull. Austral. Math. Soc. 57 (1998), 243-252.
[5] M. O. Rayes, V. Trevisan and P. Wang, Factorization of Chebyshev polynomials, http://icm.mcs.kent.edu/reports/index1998.html.
[6] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published electronically at http://www.research.att.com/njas/sequences/.
[7] Z. H. Sun, The combinatorial sum $\sum_{k=0, k \equiv r(\bmod m)}^{n}\binom{n}{k}$ and its applications in number theory I (Chinese), Nanjing Daxue Xuebao Shuxue Bannian Kan 9 (1992), no. 2, 227-240.
[8] D. Wan, R. Lidl, Permutation polynomials of the form $x^{r} f\left(x^{(q-1) / d}\right)$ and their group structure, Monatsh. Math. 112 (1991), 149-163.
[9] L. Wang, On permutation polynomials, Finite Fields and Their Applications 8 (2002), 311322.

Department of Mathematics and Computer Science, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, CANADA

E-mail address: akbary@cs.uleth.ca
School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, K1S 5B6, CANADA

E-mail address: wang@math.carleton.ca

[^0]: 2000 Mathematics Subject Classification. 11B39, 11T06.
 Research of both authors partially supported by NSERC.

