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We dedicate this paper to the occasion of Harald Niederreiter’s 70-th birthday.
His work on permutation polynomials over finite fields, and more generally, his work in so many
areas of finite fields and their applications, has been a huge and lasting inspiration to all of us.

Abstract. We provide an upper bound for the cardinality of the value set of a
univariate polynomial over a finite field in terms of the index of the polynomial.
Moreover, we study when a polynomial vector map in n variables is a permutation
polynomial map, again using the index tuple of the map. This also provides an
upper bound for the value set of a polynomial map in n variables.

1. introduction

Let Fq be the finite field of q elements with characteristic p. The value set of a
polynomial g over Fq is the set Vg of images when we view g as a mapping from
Fq to itself. Clearly g is a permutation polynomial (PP) of Fq if and only if the
cardinality |Vg| of the value set Vg of g is q. Asymptotic formulas such as |Vg| =
λ(g)q + O(q1/2), where λ(g) is a constant depending only on certain Galois groups
associated to g, can be found in Birch and Swinnerton-Dyer [7] and Cohen [16].
Later, Williams [39] proved that almost all polynomials f are polynomials satisfying
λ(g) = 1− 1

2!
+ 1

3!
+ · · ·+(−1)d−1 1

d!
, where d is the degree of the polynomial g. There

are also several results on explicit bounds for the cardinality of value sets if g is not
a PP over Fq; see for example [33, 34]. Perhaps the most well-known result is due
to Wan [34] who proved that if g is not a PP then

(1) |Vg| ≤ q − q − 1

d
.

Using results from group theory, Guralnick and Wan [20] further proved that if
(d, q) = 1 then |Vg| ≤ (47/63)q+Od(

√
q). Some progress on lower bounds of |Vg| can

be found in [17, 36]. The classification of minimal value set polynomials (polynomials
satisfying |Vg| = dq/de) can be found in [11, 19, 27], and in [8] for all the minimal
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value set polynomials in Fq[x] whose set of values is a subfield of Fq. More recently,
algorithms and complexity in computing |Vg| have been studied in [13]. All of these
results relate |Vg| to the degree d of g.

In this paper, we take a different approach to study value sets. We note that any
non-constant polynomial g ∈ Fq[x] of degree ≤ q − 1 can be written uniquely as
g(x) = a(xrf(x(q−1)/`)) + b with index ` defined below. Namely, write

g(x) = a(xn + an−i1x
n−i1 + · · ·+ an−ikx

n−ik) + b,

where a, an−ij 6= 0, j = 1, . . . , k. The case that k = 0 is trivial. Thus, we shall
assume that k ≥ 1. Write n − ik = r, the vanishing order of x at 0 (i.e., the
lowest degree of x in g(x) − b is r). Then g(x) = a

(
xrf(x(q−1)/`)

)
+ b, where

f(x) = xe0 + an−i1x
e1 + · · ·+ an−ik−1

xek−1 + ar,

` =
q − 1

gcd(n− r, n− r − i1, . . . , n− r − ik−1, q − 1)
:=

q − 1

s
,

and gcd(e0, e1, . . . , ek−1, `) = 1. The integer ` = q−1
s

is called the index of h(x).
The concept of the index of any polynomial was first introduced in [2] and is closely
related to the concept of the least index of a cyclotomic mapping polynomial [14, 32].
Clearly, the study of the value set of g(x) = a(xrf(x(q−1)/`))+b over Fq is equivalent
to studying the value set of g(x) = xrf(x(q−1)/`) = xrf(xs) over Fq. If (r, (q−1)/`) =
1, we say g is in reduced form. Otherwise, if (r, (q − 1)/`) = t, then g(x) = g′(xt)
where g′(x) = xr/tf(xs/t) is in reduced form. In fact a permutation polynomial g
must be in reduced form. We note that permutation polynomials of the form xrf(xs)
were studied by Wan and Lidl [35] in 1991 and more recently by many others in
[1, 2, 4, 5, 6, 15, 37, 43, 44, 45]. For more background material on permutation
polynomials we refer to Chap. 7 of [24]. For a detailed survey see [22, 23, 28, 31]
and recent results see [3, 9, 10, 12, 18, 21, 38, 40, 41, 42]. We refer to Section 8.1 of
[29] for a detailed discussion of PPs and Section 8.3 of [29] for a discussion of value
sets of polynomials over finite fields.

In Section 2, we study the value set problem in terms of the index of the polynomial
g. In Theorem 2.1 we prove that if g is not a PP then

(2) |Vg| ≤ q − q − 1

`
.

Our result improves Wan’s result when the index ` of a polynomial is strictly smaller
than the degree d. We note that the index ` of a polynomial is always smaller than
the degree d as long as ` ≤ √

q − 1. For example, the index of any permutation
binomial is always less than or equal to the degree. In fact, the index of polynomi-
als is closely related to the concept of the least index of cyclotomic permutations.
These permutations in terms of cyclotomic cosets were studied by Niederreiter and
Winterhof in [32] and Wang [37, 38]. Also in Section 2 a generic formula for |Vg| in
terms of the number of certain distinct cyclotomic cosets is given in Proposition 2.3.
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Let g : Fn
q → Fn

q be a polynomial map in n variables defined over Fq, where n is a
positive integer. Denote by |Vg| the number of distinct values taken by g(x1, . . . , xn)
as (x1, . . . , xn) runs over Fn

q . It is clear that |Vf | ≤ qn. If |Vf | = qn, then f is a
permutation polynomial vector, see [24, Chapter 7]. Motivated by an open problem
raised by Lipton [25] in his computer science blog, we extended Wan’s result on
upper bounds of value sets for univariate polynomials to polynomial maps in n
variables in [30]. More specifically, we write g as a polynomial vector:

(3) g(x1, . . . , xn) = (g1(x1, . . . , xn), . . . , gn(x1, . . . , xn)),

where each gi (1 ≤ i ≤ n) is a polynomial in n variables over Fq. The polynomial
vector g induces a map from Fn

q to Fn
q . By reducing the polynomial vector g modulo

the ideal (xq
1−x1, . . . , x

q
n−xn), we may assume that the degree of gi in each variable

is at most q − 1 and we may further assume that g is a non-constant map to avoid
the trivial case. Let di denote the total degree of fi in the n variables x1, . . . , xn and
let d = max{d1, . . . , dn}. Then d satisfies 1 ≤ d ≤ n(q−1). In particular, we proved

Theorem 1.1. [30] If |Vg| < qn, then |Vg| ≤ qn −min
{

n(q−1)
d

, q
}
.

In Section 3, we extend the concept of index of an univariate polynomial to index
tuples for multivariate polynomials gi(x1, . . . , xn) for 1 ≤ i ≤ n and the polynomial
vector map g(x1, . . . , xn) respectively. We remark that any multivariate polyno-
mial gi(x1, . . . , xn) behaves as a monomial in each subset of Fq × · · · × Fq that is

partitioned by the cyclotomic cosets determined by the index tuple (`
(i)
1 , . . . , `

(i)
n ).

Similarly, each coordinate gi(x1, . . . , xn) of any polynomial vector map g(x1, . . . , xn)
behaves as a monomial when we view the vector map as a cyclotomic mapping. It
turns out the index tuple (`1, . . . , `n) of g(x1, . . . , xn) can be obtained from index tu-

ples (`
(i)
1 , . . . , `

(i)
n ) of gi(x1, . . . , xn)’s. Namely, `i = lcm(`

(1)
i , . . . , `

(n)
i ) for 1 ≤ i ≤ n.

Then we study the extreme cases for the value set problem for polynomial maps
of n variables. Namely, we describe when a polynomial map g in n variables is
a permutation polynomial map. Essentially, each coordinate polynomial of a per-
mutation vector map behaves as a monomial in terms of only one variable in each
subset of Fq × · · · × Fq that is partitioned by the cyclotomic cosets determined by
the index tuple (`1, . . . , `n), along with other explicit conditions as described in The-
orem 3.5. In other words, each permutation vector map in n variables consists of
n univariate cyclotomic monomial permutations together with another permutation
on coordinate variables. As a corollary, we obtain

Theorem 1.2. Let g be a polynomial vector map from Fn
q to Fn

q with the index tuple

(`1, . . . , `n) and ` = max{`1, . . . , `n} > 1. If |Vg| < qn then |Vg| ≤ qn − q−1
`

.

This also provides another answer to Lipton’s problem on the existence of a Picard
jump for polynomial maps (roughly, if g misses one value in Fn

q then g misses quite
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a few). An example meeting this upper bound is also provided. We also note that
our new bound improves the bound in Theorem 1.1 when d

n
> `.

2. Value sets of univariate polynomials

As explained in the introductory section, the value set problem for a univariate
polynomial is equivalent to that for the polynomial g(x) = xrf(xs). Here we want
to emphasize the parameter index ` instead of the degree d. We note from [37] that
g(x) = xrf(xs) is a PP if and only if gcd(r, s) = 1, and f(ζ i) 6= 0 for 0 ≤ i ≤ `− 1
where ζ is a primitive `-th root of unity, and g(x) induces a permutation among all
the ` cyclotomic cosets

{C0, C1, · · · , C`−1} = F∗q/(F∗q)`.

In fact, we can always write g(x) in terms of cyclotomic mappings g(x) = cix
r if

x ∈ Ci, where ci = f(ζ i); more details can be found in [14, 32, 37, 38]. In particular,
a polynomial g(x) ∈ Fq[x] is called an orthomorphism if both g(x) and g(x) − x
are permutation polynomials. Given a finite, nonempty set of positive integers R,
a polynomial g(x) is called an R-orthomorphism if g(r)(x) is an orthomorphism of
Fq for all r ∈ R. (Here g(r) denotes the function g composed with itself r times.)
We note that in [32] Niederreiter and Winterhof proved several existence results for
cyclotomic orthomorphisms and cyclotomic R-orthomorphisms of finite fields. Here
we only concentrate on the permutation behavior of g(x).

Theorem 2.1. Let g(x) = axrf(xs) + b (a 6= 0) be a polynomial in reduced form
(i.e., gcd(r, s) = 1) over Fq with index `. Then |Vg| > q − q−1

`
if and only if g is a

PP of Fq.

Proof. Without loss of generality, we can assume a = 1 and b = 0. Hence g(0) = 0.
The conditions gcd(r, s) = 1 and f(ζ i) 6= 0 guarantee that all the images of elements
in each Ci are distinct nonzero elements. Because |Ci| = s = q−1

`
, we conclude that

|Vg| > q− q−1
`

if and only if there are more than `− 1 nonzero distinct image sets of
cyclotomic cosets. Since there are exactly ` nonzero distinct image sets of cyclotomic
cosets, we deduce that |Vg| > q − q−1

`
if and only if g is a PP of Fq. �

This result improves Wan’s result (i.e., Equation (1)) for arbitrary polynomials
with index ` ≤ √

q − 1. Indeed, if the index ` ≤ √
q − 1, then s ≥ √

q + 1 and thus
the degree d ≥ s + 1 > `. Our result also works at least as good as Wan’s result
[34] if we want to verify an arbitrary binomial over a prime field is a permutation
using the contrapositive lower bound. Indeed, let g(x) = xd + axm with d > m > 0,
be an arbitrary permutation binomial over a prime field Fp. It is proved by Masuda

and Zieve in [26] that gcd(d − m, p − 1) ≥
√

p− 3/4 − 1/2 (>
√

p − 1). Here

gcd(d−m, p−1) turns out to be equal to s. So the index ` = p−1
s
≤

√
p− 3/4+1/2

(<
√

p + 1) and thus s >
√

p− 1. Then d = m + es ≥ 1 + s ≥
√

p− 3/4 + 1/2 ≥ `.
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Hence p− p−1
d
≥ p− p−1

`
. However, we note that d is strictly greater than ` for any

m > 1 or e > 1 as above.

Corollary 2.2. Let g(x) = axrf(x
q−1

` ) + b (a 6= 0) be any polynomial over Fq with
index ` > 1 and s = q−1

`
. Assume |Vg| < q. Then

(a) If gcd(r, s) = 1 then |Vg| ≤ q − q−1
`

.

(b) If gcd(r, s) = t > 1 then |Vg| ≤ q−1
t

+ 1.

Therefore we always have |Vg| ≤ q − q−1
`

.

Proof. Without loss of generality, we can assume a = 1 and b = 0. Hence g(0) = 0.
The case of gcd(r, s) = 1 follows from Theorem 2.1. If gcd(r, s) = t > 1, then
g(x) = g1(x

t) for some polynomial g1 ∈ Fq[x]. Thus, |Vg| ≤ |Vxt| = q−1
t

+1. We note

that q−1
t

+ 1 = q − (t−1)(q−1)
t

= q − (q − 1− q−1
t

). Because t > 1 and ` > 1, we must

have q − 1− q−1
t
≥ q − 1− q−1

2
= q−1

2
≥ q−1

`
. Thus we have |Vg| ≤ q − q−1

`
in both

cases. �

In fact, we can obtain the following formula for the cardinality of the value set.

Proposition 2.3. Let g(x) = axrf(xs) + b (a 6= 0) be any polynomial over Fq with
index ` = q−1

s
and let gcd(r, s) = t. Let ξ be a fixed primitive element of Fq. Then

|Vg| = c
s

t
+ 1, or |Vg| = c

s

t
,

where c = |{(ξirf(ξsi))`t | i = 0, . . . , `− 1}|.

Proof. Without loss of generality, we can assume a = 1 and b = 0. Hence g(0) = 0.
Let C0 be the subgroup of F∗q consisting of all the `-th powers of F∗q and D0 be the

subgroup of F∗q consisting of all the `t-th powers. Let Ci = ξiC0 for i = 0, . . . , `− 1
be cyclotomic cosets of F∗q induced by C0. Note that g(x) = cix

r when x ∈ Ci,

where ci = f(ξsi) for i = 0, . . . , `− 1. We also note that xr maps C0 onto D0 which
contains s

t
distinct elements. So xr maps each coset Ci = ξiC0 onto ξirD0. Therefore

g maps Ci onto ξirf(ξsi)D0, which could be either the set {0} or one of the nonzero
cyclotomic cosets of index `t. We observe that c is the number of distinct cyclotomic
cosets of the form ξirf(ξsi)D0. Hence we have |Vg| = c s

t
+1 or c s

t
, the latter happens

when some of ci’s in g(x) = cix
r equal g(0) = 0. �

From here it is straightforward to obtain a generic lower bound s
(r,s)

for any nonzero

polynomial. However, this lower bound can be improved depending on how much
information we know about the coefficients of g in order to say more about ξirf(ξsi).
We also refer to [17] for a matrix method which can be used to obtain a lower bound
for the cardinality |Vg| of the value set of a univariate polynomial g over Fq.
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3. Permutation polynomial vectors

Let us first consider a multivariate polynomial g(x1, . . . , xn) over Fq. As in the
univariate case, we can write g(x1, . . . , xn) = xr1

1 · · ·xrn
n f(xs1

1 , . . . , xsn
n ) + b where

g(0, . . . , 0) = b, and r1, . . . , rn are vanishing orders of x1, . . . , xn in g(x1, . . . , xn)− b
at 0 respectively (i.e., the lowest degree of xi in g(x1, . . . , xn)− b is ri), and each si

is the greatest common divisor of all the exponents of xi from all monomial terms
after factoring xri

i , together with q− 1 for 1 ≤ i ≤ n (i.e., si is the greatest common
divisor of all the exponents of xi in f(xs1

1 , . . . , xsn
n ) together with q−1). We note that

ri ≥ 0 in this case instead of r ≥ 1 for univariate polynomials. Let `i = q−1
si

with

1 ≤ i ≤ n. Then (`1, . . . , `n) is called the index tuple of the multivariate polynomial
g(x1, . . . , xn).

Example 3.1. Let g(x1, x2) = x4
1x

5
2 − x2

1x
5
2 + 3x5

2 over F7. So (r1, r2) = (0, 5) is the
pair of vanishing orders of x1 and x2 at 0 respectively. We can write g(x1, x2) =
x5

2(x
4
1+x2

1+3) = x0
1x

5
2f(x2

1, x
6
2) with f(x1, x2) = x2

1+x1+3 because s1 = gcd(4, 2, 0, 6) =
2 and s2 = gcd(0, 0, 0, 6) = 6. Namely, (`1, `2) = (3, 1) is the index tuple of g.

Similarly, h(x1, x2) = 3x1x
3
2 − 2x1 over F7 can be written as h(x1, x2) = x1(3x

3
2 −

2) = x1
1x

0
2f(x6

1, x
3
2) where f(x1, x2) = 3x2 − 2. Namely, r1 = 1, r2 = 0, s1 = 6,

s2 = 3, `1 = 1, and `2 = 2.
Finally, t(x1, x2) = 3x2

1x
3
2 − 2x3

1x2 + 5 over F7 can be written as t(x1, x2) =
x2

1x2(3x
2
2 − 2x1) + 5 = x1x2f(x1, x

2
2) + 5 where f(x1, x2) = 3x2 − 2x1. Namely,

r1 = 1, r2 = 1, s1 = 1, s2 = 2, `1 = 6, and `2 = 3.

Definition 3.2. The multivariate polynomial

g(x1, . . . , xn) = xr1
1 · · ·xrn

n f(x
(q−1)/`1
1 , . . . , x(q−1)/`n

n ) + b

is said to be in index form if r1, . . . , rn are vanishing orders of x1, . . . , xn at 0 re-
spectively, g(0, . . . , 0) = b, and (`1, . . . , `n) is the index tuple of g.

Without loss of generality, we assume g(0, . . . , 0) = 0 and si = q−1
`i

for 1 ≤ i ≤ n.
Hence

g(x1, · · · , xn) = xr1
1 · · ·xrn

n f(xs1
1 , . . . , xsn

n ).

For each 1 ≤ i ≤ n, let Ci,0 be the multiplicative subgroup of F∗q containing all the `i-
th powers and let Ci,ji

be the ji-th coset of Ci,0 in F∗q where 1 ≤ ji ≤ `i−1. Let ξ be
a fixed primitive element in F∗q and ζi = ξsi be a primitive `i-th root of unity where

1 ≤ i ≤ n. Hence Ci,ji
= ξjiCi,0. Moreover, if x ∈ Ci,ji

then xsi = ζji

i . If ri > 0,
then g(x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0. Otherwise, g(x1, . . . , xi−1, 0, xi+1, . . . , xn)
may not be zero. Hence, for a given index tuple (`1, . . . , `n), we can partition
Fq × · · ·×Fq as a union of A1× · · ·×An where Ai is either the set {0} or one of the
cosets Ci,ji

determined by the index `i. We define constants a1, . . . , an over these
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sets A1, . . . , An as follows:

ai =

{
ζji

i if Ai = Ci,ji
,

0 if Ai = {0}.

Then g(x1, . . . , xn) = xr1
1 · · ·xrn

n f(xs1
1 , . . . , xsn

n ) can be written as a cyclotomic map-
ping as follows:

(4) g(x1, . . . , xn) =
{

0 if (x1, . . . , xn) = (0, . . . , 0),
f(a1, . . . , an)xr1

1 · · ·xrn
n if (x1, . . . , xn) ∈ A1 × · · · ×An.

Because a1, . . . , an are constants over A1 × · · · × An, we remark that any multivariate
polynomial g behaves as a monomial f(a1, . . . , an)xr1

1 · · ·xrn
n in the subset A1 × · · · ×An,

determined by the partition of Fq × · · · × Fq according to the index tuple of g. We note
that the similar concept for univariate polynomials can be found in [32, 37, 38].

Example 3.3. Consider g(x1, x2) = x2
1x2(4x3

1x
2
2−2x4

2) over F7. We can write g(x1, x2) =
x2

1x2f(x3
1, x

2
2) with the index tuple (2, 3), where f(x1, x2) = 4x1x2 − 2x2

2. Let ξ = 3 be the
fixed primitive element in F7. So ζ1 = ξ6/2 = 6 and ζ2 = ξ6/3 = 2. We can partition F∗7
into either C1,0 = {1, 2, 4} and C1,1 = {3, 5, 6} corresponding to `1 = 2, or C2,0 = {1, 6},
C2,1 = {3, 4}, and C2,2 = {2, 5} corresponding to `2 = 3. Then F7 × F7 can be partitioned
into the union of all these A1×A2’s, where A1 denotes any one of the sets {0}, C1,0, and
C1,1, and A2 denotes any one of the sets {0}, C2,0, C2,1 and C2,2. Hence g(x1, x2) can be
represented by

(5) g(x1, x2) =



0 if (x1, x2) = (0, 0),
0 if (x1, x2) ∈ {0} × C2,0,
0 if (x1, x2) ∈ {0} × C2,1,
0 if (x1, x2) ∈ {0} × C2,2,
0 if (x1, x2) ∈ C1,0 × {0},
2x2

1x2 if (x1, x2) ∈ C1,0 × C2,0,
0 if (x1, x2) ∈ C1,0 × C2,1,
5x2

1x2 if (x1, x2) ∈ C1,0 × C2,2,
0 if (x1, x2) ∈ C1,1 × {0},
x2

1x2 if (x1, x2) ∈ C1,1 × C2,0,
5x2

1x2 if (x1, x2) ∈ C1,1 × C2,1,
x2

1x2 if (x1, x2) ∈ C1,1 × C2,2,

where the coefficients of x2
1x2 in all these branches are computed by using f(a1, a2) =

4a1a2 − 2a2
2 where a1 = 0, 1,−1 and a2 = 0, 1, 2, 4 respectively.

By an abuse of notation, let us now consider g as a polynomial vector map in n variables
from Fn

q to Fn
q :

(6) g(x1, . . . , xn) = (g1(x1, . . . , xn), . . . , gn(x1, . . . , xn)),

where each gi (1 ≤ i ≤ n) is a polynomial in n variables over Fq. Using the previous
definition of the index tuple and cyclotomic mappings, for each 1 ≤ i ≤ n, we can write
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each gi in the index form. Namely,

gi(x1, . . . , xn) = x
r
(i)
1

1 · · ·xr
(i)
n

n fi(x
s
(i)
1

1 , . . . , xs
(i)
n

n ) + bi,

with the index tuple (`(i)
1 , . . . , `

(i)
n ) and bi ∈ Fq. Without loss of generality, we assume

further that bi = 0 for all 1 ≤ i ≤ n.
Hence

g(x1, . . . , xn)

=
(

x
r
(1)
1

1 · · ·xr
(1)
n

n f1(x
s
(1)
1

1 , . . . , xs
(1)
n

n ), . . . , xr
(n)
1

1 · · ·xr
(n)
n

n fn(xs
(n)
1

1 , . . . , xs
(n)
n

n )
)

.

For each 1 ≤ i ≤ n, we let

si = gcd(s(1)
i , . . . , s

(n)
i ) and `i =

q − 1
si

.

Then we call (`1, . . . , `n) the index tuple of the polynomial vector map g in n variables.
Let ζi = ξsi be a primitive `i-th root of unity and Ci,ji be the ji-th coset of Ci,0 in F∗q

where 1 ≤ ji ≤ `i. We note again that Fq × · · · × Fq can be partitioned as a union of
A1 × · · · × An where Ai is either the set {0} or one of the cosets Ci,ji determined by the
index tuple (`1, . . . , `n). Again, as defined before, we let

ai =
{

ζji
i if Ai = Ci,ji ,

0 if Ai = {0}.
Hence, if (x1, . . . , xn) ∈ A1 × · · · ×An then

g(x1, . . . , xn)

=
(

x
r
(1)
1

1 · · ·xr
(1)
n

n f1(a
s
(1)
1 /s1

1 , . . . , as
(1)
n /sn

n ), . . . , xr
(n)
1

1 · · ·xr
(n)
n

n fn(as
(n)
1 /s1

1 , . . . , as
(n)
n /sn

n )
)

.

Let ci = fi(a
s
(i)
1 /s1

1 , . . . , a
s
(i)
n /sn

n ). Then g(x1, . . . , xn) maps (A1, . . . , An) to(
c1A

r
(1)
1

1 · · ·Ar
(1)
n

n , . . . , cnA
r
(n)
1

1 · · ·Ar
(n)
n

n

)
,

where we use the convention 00 = 1 and Ar = {xr | x ∈ A}.

Example 3.4. Let g(x1, x2) = (x2(x4
1 + 4x2

1 + 4), x1(3x3
2 + 1)) be a map from F7 × F7

to itself. Using the previous definitions, we obtain r
(1)
1 = 0, r

(1)
2 = 1, r

(2)
1 = 1, r

(2)
2 =

0, s
(1)
1 = 2, s

(1)
2 = 6, s

(2)
1 = 6, and s

(2)
2 = 3. Moreover, f1(x2

1, x
6
2) = x4

1 + 4x2
1 + 4,

f2(x6
1, x

3
2) = 3x3

2 + 1. Hence s1 = gcd(2, 6) = 2, s2 = gcd(6, 3) = 3, `1 = 3 and `2 = 2.
Therefore we use cyclotomic cosets of orders 3 and 2 respectively in the partition of F∗7.
Namely, C1,0 = {1, 6}, C1,1 = {3, 4} and C1,2 = {2, 5} are the cyclotomic cosets of order
3, C2,0 = {1, 2, 4}, and C2,1 = {3, 5, 6} are cyclotomic cosets of order 2. Then F7 × F7 is
partitioned into {0}×{0}, {0}×C2,0, {0}×C2,1, C1,0×{0}, C1,1×{0}, C1,2×{0}, C1,0×C2,0,
C1,0 × C2,1, C1,1 × C2,0, C1,1 × C2,1, C1,2 × C2,0, C1,2 × C2,1. Note that a1 ∈ {0, 1, 2, 4}
and a2 ∈ {0, 1, 6}. We can check that f1(a1, a

2
2) 6= 0 and f2(a3

1, a2) 6= 0. For example,
g(x1, x2) = (x2(x4

1 + 4x2
1 + 4), x1(3x3

2 + 1)) maps C1,1 × C2,1 into C2,1 × C1,0 because
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g(x1, x2) behaves as the map (2x2, 5x1) over C1,1 ×C2,1. Indeed, f1(2, 6) = 22 + 8 + 4 = 2
and f2(2, 6) = 18 + 1 = 5.

Theorem 3.5. Let g be a polynomial vector map from Fn
q to Fn

q defined by

g(x1, . . . , xn) = (g1(x1, . . . , xn) + b1, . . . , gn(x1, . . . , xn) + bn),

where b1, . . . , bn ∈ Fq and g has index tuple (`1, . . . , `n) such that for each 1 ≤ i ≤ n,

gi(x1, · · · , xn) = x
r
(i)
1

1 · · ·xr
(i)
n

n fi(x
s
(i)
1

1 , . . . , xs
(i)
n

n )

is a polynomial in n variables over Fq in the index form with index tuple (`(i)
1 , . . . , `

(i)
n )

satisfying gi(0, . . . , 0) = 0 and s
(i)
j = q−1

`
(i)
j

for 1 ≤ j ≤ n. Let si = gcd(s(1)
i , . . . , s

(n)
i ) and

`i = q−1
si

for 1 ≤ i ≤ n. Then g is a permutation of Fn
q if and only if the following holds:

(1) For all 1 ≤ i ≤ n, we must have fi(a
s
(i)
1 /s1

1 , . . . , a
s
(i)
n /sn

n ) 6= 0 as long as not all ai’s
are zero, where ai = 0 or ai = ξsiji

i with 0 ≤ ji ≤ `i − 1 and ξ is a fixed primitive element
of Fq.

(2) The matrix R :=


r
(1)
1 r

(1)
2 · · · r

(1)
n

r
(2)
1 r

(2)
2 · · · r

(2)
n

...
... · · ·

...
r
(n)
1 r

(n)
2 · · · r

(n)
n

 contains exactly one nonzero entry for

each row and each column; Moreover, for each nonzero r
(k)
i we must have gcd(r(k)

i , s
(k)
i ) =

1.
(3) g induces a bijection between the set of all the parts A1 × · · · × An of the partition

of Fq × · · · × Fq corresponding to the index tuple (`1, . . . , `n), and the set of all the parts
A′

i1
×· · ·×A′

in
of the partition of Fq×· · ·×Fq corresponding to the index tuple (`i1 , . . . , `in),

where (i1, . . . , in)T = P (1, . . . , n)T and the permutation matrix P is associated with R

defined by pij = 1 if r
(i)
j 6= 0.

Proof. Without loss of generality, we can assume that b1 = b2 = · · · = bn = 0. Assume
that g is a permutation polynomial vector from Fn

q to Fn
q . It is easy to see that condition

(1) holds. Otherwise, at least two elements in Fn
q are mapped into the tuple consisting of

all 0’s.
We now prove condition (2). First, each row of R must contain at least one nonzero

entry. Otherwise, suppose the i-th row is the zero row, all the tuples (x1, . . . , xn) satisfying
that the i-th entry xi ∈ Ai must be mapped into tuples with the same i-th entry, contra-
dicting that g is a permutation. Moreover, each row contains exactly one nonzero entry.
Indeed, without loss of generality, suppose the first row contains two nonzero entries r

(1)
1

and r
(1)
2 . Then tuples of the form {0} × A2 × · · · × An and A1 × {0} × · · · × An are both

mapped into {0} ×A2 × · · · ×An, which is a contradiction.
Similarly, each column of R should also contain exactly one nonzero entry. Indeed,

if one column is a zero column, for example the first column, then g(x1, x2, . . . , xn) =
g(x′1, x2, . . . , xn) for any x1, x

′
1 ∈ C1,j1 , contradicting that g is a permutation map of Fn

q .

If one column contains at least two nonzero entries, for example r
(1)
1 , r

(2)
1 , then tuples of
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the form {0} × A2 × · · · × An are mapped to tuples of the form {0} × {0} × · · · × An,
contradicting that g is a permutation map. Moreover, if r

(k)
i > 0 then we consider two

distinct tuples which differ only in the coordinate xi but both values in coordinate xi are
in the same coset Ci,ji . These tuples must be mapped to different images, this forces that
gcd(r(k)

i , s
(k)
i ) = 1.

Using condition (2), we write

g(x1, . . . , xn) =
(

x
r
(1)
i1

i1
f1(x

s
(1)
1

1 , . . . , xs
(1)
n

n ), . . . , x
r
(n)
in

in
fn(xs

(n)
1

1 , . . . , xs
(n)
n

n )
)

so that i1, . . . , in is a permutation of 1, . . . , n induced by the permutation matrix P .
Let A1 × · · · × An be a part in the partition of Fq × · · · × Fq determined by the in-

dex tuple (`1, . . . , `n). Recall that ci = fi(a
s
(i)
1 /s1

1 , . . . , a
s
(i)
n /sn

n ). Then g(x1, . . . , xn) maps

(A1, . . . , An) to
(

c1A
r
(1)
i1

i1
, . . . , cnA

r
(n)
in

in

)
. Because gcd(r(i)

i , s
(i)
i ) = 1 for each i, the image

becomes (A′
i1

, . . . , A′
in

), which gives one part A′
i1
× · · · ×A′

in
of the partition of Fn

q corre-
sponding to the index tuple (`i1 , . . . , `in). Hence condition (3) holds. The converse also
holds using the same arguments as above. �

We now consider the following examples to illustrate Theorem 3.5.

Example 3.6. Let g(x1, x2) = (x2(x4
1 + 4x2

1 + 4), x1(3x3
2 + 1)) be a map from F7 × F7 to

itself as shown in Example 3.4. Obviously f1(a1, a
2
2) = a2

1 + 4a1 + 4 6= 0 and f2(a3
1, a2) =

3a2 + 1 6= 0 where a1 ∈ {0, 1, 2, 4} and a2 ∈ {0, 1, 6}. Here, P = R =
[

0 1
1 0

]
is a

permutation matrix. Moreover, gcd(r(1)
2 , s

(1)
2 ) = 1 and gcd(r(2)

1 , s
(2)
1 ) = 1. Furthermore, g

maps a part A1 × A2 of the partition F7 × F7 corresponding to the index tuple (3, 2) into
a part A′

2 ×A′
1 of the same size corresponding to the index tuple (2, 3). Indeed, g maps

{0} × {0} 7−→ {0} × {0}
{0} × C2,0

(4x2,0)
7−→ C2,0 × {0}

{0} × C2,1
(4x2,0)
7−→ C2,1 × {0}

C1,0 × {0} (0,x1)
7−→ {0} × C1,0

C1,1 × {0} (0,x1)
7−→ {0} × C1,1

C1,2 × {0} (0,x1)
7−→ {0} × C1,2

C1,0 × C2,0
(2x2,4x1)

7−→ C2,0 × C1,1

C1,0 × C2,1
(2x2,5x1)

7−→ C2,1 × C1,2

C1,1 × C2,0
(2x2,4x1)

7−→ C2,0 × C1,2

C1,1 × C2,1
(2x2,5x1)

7−→ C2,1 × C1,0

C1,2 × C2,0
(x2,4x1)
7−→ C2,0 × C1,0

C1,2 × C2,1
(x2,5x1)
7−→ C2,1 × C1,1

By Theorem 3.5, g is a permutation of F2
7.

Example 3.7. Let g(x1, x2) = (x2, x1(2+x3
2(x

4
1−2x3

2))) be a map from F7×F7 to itself. So
s
(1)
1 = 6, s

(1)
2 = 6, s

(2)
1 = 2, and s

(2)
2 = 3. Hence s1 = gcd(6, 2) = 2 and s2 = gcd(6, 3) = 3.



INDEX BOUNDS FOR VALUE SETS OF POLYNOMIALS OVER FINITE FIELDS 11

Thus `1 = 3 and `2 = 2. So C1,0 = {1, 6}, C1,1 = {3, 4}, and C1,2 = {2, 5} are the
cyclotomic cosets of order 3, C2,0 = {1, 2, 4}, and C2,1 = {3, 5, 6} are cyclotomic cosets of
order 2. Then F7 × F7 is partitioned into {0} × {0}, {0} × C2,0, {0} × C2,1, C1,0 × {0},
C1,1×{0}, C1,2×{0}, C1,0×C2,0, C1,0×C2,1, C1,1×C2,0, C1,1×C2,1, C1,2×C2,0, C1,2×C2,1.
Moreover, f1(x6

1, x
6
2) = 1 and f2(x2

1, x
3
2) = 2+x3

2(x
4
1− 2x3

2). Note that a1 ∈ {0, 1, 2, 4} and
a2 ∈ {0, 1, 2}. We can easily check that f1(a3

1, a
2
2) 6= 0 and f2(a1, a2) 6= 0 as long as one

of a1 and a2 is nonzero. Furthermore, R =
[

0 1
1 0

]
. In fact, g maps

{0} × {0} 7−→ {0} × {0}
{0} × C2,0

(x2,0)
7−→ C2,0 × {0}

{0} × C2,1
(x2,0)
7−→ C2,1 × {0}

C1,0 × {0} (0,2x1)
7−→ {0} × C1,2

C1,1 × {0} (0,2x1)
7−→ {0} × C1,0

C1,2 × {0} (0,2x1)
7−→ {0} × C1,1

C1,0 × C2,0
(x2,x1)
7−→ C2,0 × C1,0

C1,0 × C2,1
(x2,6x1)
7−→ C2,1 × C1,0

C1,1 × C2,0
(x2,4x1)
7−→ C2,0 × C1,2

C1,1 × C2,1
(x2,3x1)
7−→ C2,1 × C1,2

C1,2 × C2,0
(x2,2x1)
7−→ C2,0 × C1,1

C1,2 × C2,1
(x2,5x1)
7−→ C2,1 × C1,1

By Theorem 3.5, g is a permutation of F2
7.

We remark that from the proof of Theorem 3.5, each coordinate polynomial of the
permutation vector map is a multivariate cyclotomic mapping, which in turn behaves as
a monomial (in one variable) on every individual coset. In other words, each permuta-
tion vector map in n variables consists of n univariate cyclotomic permutations together
with another permutation on coordinate variables. This fact may help us to construct
permutation maps in n variables from these simpler coordinate polynomials.

Also from the proof of Theorem 3.5, it is easy to see that if one element in a part of
the partition of Fn

q belongs to the value set then the whole part of the partition belongs
to the value set. Hence we also obtain

Corollary 3.8. Let g be a polynomial vector map from Fn
q to Fn

q with the index tuple
(`1, . . . , `n) and ` = max{`1, . . . , `n} > 1. If |Vg| < qn then |Vg| ≤ qn − q−1

` .

Proof. Under the assumptions (1) and (2) in Theorem 3.5, the cardinality of the value set
of g satisfies |Vg| > qn − q−1

` if and only if g induces a permutation of Fn
q .

Also from the proof of Theorem 3.5, if assumption (1) fails, then at least two cosets
corresponding to one coordinate, say i, are collapsed into the same image set, therefore
|Vg| ≤ qn − q−1

`i
≤ qn − q−1

` . When assumption (2) fails, the matrix R contains a zero
row or a zero column, or at least two entries in one row or column. Hence the same
discussion shows that at least two cosets are collapsed into one image set. This implies
again that |Vg| ≤ qn − q−1

`j
for some j and thus |Vg| ≤ qn − q−1

` . Finally, if the matrix R
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contains exactly one entry in each row and column, but (r(k)
i , s

(k)
i ) = ti > 1 for some i,

we miss at least (ti−1)(q−1)
ti

= (q − 1) − q−1
ti

≥ q−1
2 ≥ q−1

` values in the value set. Hence
|Vg| ≤ qn − q−1

` . �

As the next simple example shows, the upper bound for non permutations can be
achieved.

Example 3.9. Let g(x1, x2) = (x1, x2(−x3
2(x

3
1 + 2)2 + 4)2) be a map from F7 × F7 to

itself. So s
(1)
1 = 6, s

(1)
2 = 6, s

(2)
1 = 3, and s

(2)
2 = 3. Hence s1 = gcd(6, 3) = 3 and

s2 = gcd(6, 3) = 3. Thus `1 = 2 and `2 = 2. Here we use cyclotomic cosets of order 2:
C1,0 = C2,0 = {1, 2, 4}, and C1,1 = C2,1 = {3, 5, 6} to partition F7 × F7 into {0} × {0},
{0} × C2,0, {0} × C2,1, C1,0 × {0}, C1,1 × {0}, C1,0 × C2,0, C1,0 × C2,1, C1,1 × C2,0,
C1,1 × C2,1. Moreover, f1(x6

1, x
6
2) = 1 and f2(x3

1, x
3
2) = (−x3

2(x
3
1 + 2)2 + 4)2. Note that

f2(a1, a2) = (−a2(a1 + 2)2 + 4)2 ∈ {0, 2, 4} where a1 ∈ {0, 1, 6} and a2 ∈ {0, 1, 6}. In fact,
g maps

{0} × {0} 7−→ {0} × {0}
{0} × C2,0

(0,0)
7−→ {0} × {0}

{0} × C2,1
(0,x2)
7−→ {0} × C2,1

C1,0 × {0} (x1,2x2)
7−→ C1,0 × {0}

C1,1 × {0} (x1,2x2)
7−→ C1,1 × {0}

C1,0 × C2,0
(x1,4x2)
7−→ C1,0 × C2,0

C1,0 × C2,1
(x1,x2)
7−→ C1,0 × C2,1

C1,1 × C2,0
(x1,2x2)
7−→ C1,1 × C2,0

C1,1 × C2,1
(x1,4x2)
7−→ C1,1 × C2,1

Here g maps the {0}×C2,1 into {0}×{0}, and all other parts of the partition corresponding
to the index tuple (2, 2) to distinct parts of the partition corresponding to the index tuple
(2, 2). Therefore |Vg| = 46 = q2 − q−1

2 .
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