CHAPTER 1, QUESTION 1

1. Prove that $U(\mathbb{Z}+\mathbb{Z} i)=\{ \pm 1, \pm i\}$.

Solution. Let $\alpha \in U(\mathbb{Z}+\mathbb{Z} i)$. Then there exists $\beta \in \mathbb{Z}+\mathbb{Z} i$ such that

$$
\alpha \beta=1 .
$$

As $\alpha, \beta \in \mathbb{Z}+\mathbb{Z} i$ there exist $a, b, c, d \in \mathbb{Z}$ such that $\alpha=a+b i, \beta=c+d i$. Thus

$$
(a+b i)(c+d i)=1
$$

Equating real and imaginary parts, we obtain

$$
a c-b d=1, a d+b c=0
$$

Thus

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d+b c)^{2}=1 .
$$

As $a, b \in \mathbb{Z}, a^{2}+b^{2}$ is a positive integer dividing 1 . Thus $a^{2}+b^{2}=1$ so that

$$
(a, b)=(\pm 1,0) \text { or }(0, \pm 1)
$$

Hence

$$
\alpha= \pm 1 \text { or } \pm i \text {. }
$$

This proves that

$$
U(\mathbb{Z}+\mathbb{Z} i) \subseteq\{1,-1, i,-i\} .
$$

As

$$
1 \cdot 1=(-1)(-1)=i(-i)=-i(i)=1,
$$

we see that $1,-1, i,-i \in U(\mathbb{Z}+\mathbb{Z} i)$ so that

$$
\{1,-1, i,-i\} \subseteq U(\mathbb{Z}+\mathbb{Z} i)
$$

This completes the proof of

$$
U(\mathbb{Z}+\mathbb{Z} i)=\{1,-1, i,-i\} .
$$

June 19, 2004

