13. Let A and B be ideals of an integral domain D. Prove that $A B \subseteq A \cap B$.

Solution. Let $\alpha \in A B$. Then there exist $a_{1}, \ldots, a_{m} \in A$ and $b_{1}, \ldots, b_{m} \in B$ such that

$$
\alpha=a_{1} b_{1}+\cdots+a_{m} b_{m} .
$$

For $i=1,2, \ldots, m$ we have

$$
a_{i} b_{i} \in A, \text { as } b_{i} \in D, a_{i} \in A \text { and } A \text { is an ideal, }
$$

and

$$
a_{i} b_{i} \in B, \text { as } a_{i} \in D, b_{i} \in B \text { and } B \text { is an ideal. }
$$

Thus

$$
a_{i} b_{i} \in A \cap B, i=1,2, \ldots, m .
$$

Since $A \cap B$ is an ideal by Question 10 , we have $a_{1} b_{1}+\cdots+a_{m} b_{m} \in A \cap B$, so that $\alpha \in A \cap B$. We have shown that

$$
A B \subseteq A \cap B
$$

