CHAPTER 1, QUESTION 14

14. Let A and B be ideals of an integral domain D. Show that $(A \cap B)(A+B)=A B$.

Solution. Let $K=A \cap B$ and $L=A+B . K$ and L are ideals of D. We wish to prove that

$$
K L \subseteq A B
$$

Let $\alpha \in K L$. Then

$$
\alpha=k_{1} l_{1}+\cdots+k_{m} l_{m}
$$

for some $k_{1}, \ldots, k_{m} \in K$ and $l_{1}, \ldots, l_{m} \in L$. As $L=A+B$ we have

$$
l_{i}=a_{i}+b_{i}, \quad i=1, \ldots, m
$$

where $a_{i} \in A, b_{i} \in B$. Hence

$$
\begin{aligned}
\alpha & =k_{1}\left(a_{1}+b_{1}\right)+\cdots+k_{m}\left(a_{m}+b_{m}\right) \\
& =a_{1} k_{1}+\cdots+a_{m} k_{m}+k_{1} b_{1}+\cdots k_{m} b_{m} .
\end{aligned}
$$

As $K \subseteq B$ we see that

$$
k_{1}, \ldots, k_{m} \in B
$$

so that

$$
a_{1} k_{1}+\cdots+a_{m} k_{m} \in A B
$$

As $K \subseteq A$, we see that

$$
k_{1}, \ldots, k_{m} \in A
$$

so that

$$
k_{1} b_{1}+\cdots+k_{m} b_{m} \in A B .
$$

As $A B$ is an ideal

$$
a_{1} k_{1}+\cdots+a_{m} k_{m}+k_{1} b_{1}+\cdots+k_{m} b_{m} \in A B
$$

that is

$$
\alpha \in A B
$$

so that

$$
K L \subseteq A B
$$

as required.
We have shown above that

$$
\begin{equation*}
(A \cap B)(A+B) \subseteq A B \tag{1}
\end{equation*}
$$

We now show that equality does not always hold in (1).
Let $D=\mathbb{Z}[x], A=<2>$ and $B=<x>$ so that

$$
A B=<2 x>, A \cap B=<2 x>, A+B=<2, x>
$$

Then

$$
(A \cap B)(A+B)=<2 x><2, x>=<4 x, 2 x^{2}>
$$

Clearly $2 x \notin<4 x, 2 x^{2}>$ so that $<4 x, 2 x^{2}>\neq<2 x>$. Hence $(A \cap B)(A+$ $B) \neq A B$.

Remark. From Question 13 we have

$$
A B \subseteq A \cap B
$$

and from Question 14 that

$$
\begin{equation*}
(A \cap B)(A+B) \subseteq A B \tag{2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
(A \cap B)(A+B) \subseteq A B \subseteq A \cap B \tag{3}
\end{equation*}
$$

Thus if $A+B=<1>$ we deduce that

$$
A \cap B=A B
$$

June 19, 2004

