21. Prove that $\langle 2,1+\sqrt{-5}\rangle,\langle 3,1+\sqrt{-5}\rangle$ and $\langle 3,1-\sqrt{-5}\rangle$ are prime ideals of $\mathbb{Z}+\mathbb{Z} \sqrt{-5}$. Determine $<2,1+\sqrt{-5}>\cap \mathbb{Z},<3,1+\sqrt{-5}>\cap \mathbb{Z}$ and $<3,1-\sqrt{-5}>\cap \mathbb{Z}$.

Solution. Let $\alpha=a+b \sqrt{-5} \in \mathbb{Z}+\mathbb{Z} \sqrt{-5}$. We show first that

$$
\begin{equation*}
\alpha \in<2,1+\sqrt{-5}>\Longleftrightarrow a \equiv b(\bmod 2) . \tag{1}
\end{equation*}
$$

If $a \equiv b(\bmod 2)$ then there exists $c \in \mathbb{Z}$ such that $a=b+2 c$. Then $\alpha=a+b \sqrt{-5}=b+2 c+b \sqrt{-5}=c 2+b(1+\sqrt{-5}) \in\langle 2,1+\sqrt{-5}>$.

Conversely suppose that $\alpha \in<2,1+\sqrt{-5}>$. Then there exist $x, y, z, w \in$ \mathbb{Z} such that

$$
a+b \sqrt{-5}=(x+y \sqrt{-5}) 2+(z+w \sqrt{-5})(1+\sqrt{-5}) .
$$

Hence

$$
\begin{aligned}
& a=2 x+z-5 w, \\
& b=2 y+z+w
\end{aligned}
$$

Thus

$$
a \equiv z-5 w \equiv z+w \equiv b(\bmod 2)
$$

We now show that $<2,1+\sqrt{-5}>$ is a prime ideal of $\mathbb{Z}+\mathbb{Z} \sqrt{-5}$. Let $\alpha=a+b \sqrt{-5} \in \mathbb{Z}+\mathbb{Z} \sqrt{-5}$ and $\beta=c+d \sqrt{-5} \in \mathbb{Z}+\mathbb{Z} \sqrt{-5}$ be such that

$$
\alpha \beta \in<2,1+\sqrt{-5}>.
$$

Now

$$
\alpha \beta=(a c-5 b d)+(a d+b c) \sqrt{-5}
$$

so that by (1)

$$
a c-5 b d \equiv a d+b c(\bmod 2)
$$

Thus

$$
\begin{aligned}
(a-b)(c-d) & =a c-b c-a d+b d \\
& \equiv(5 b d+a d+b c)-b c-a d+b d \equiv 0(\bmod 2)
\end{aligned}
$$

so that either $a-b \equiv 0(\bmod 2)$ or $c-d \equiv 0(\bmod 2)$. In the former case $\alpha=a+b \sqrt{-5} \in<2,1+\sqrt{-5}>$ and in the latter case $\beta=c+d \sqrt{-5} \in<$ $2,1+\sqrt{-5}\rangle$. This proves that $\langle 2,1+\sqrt{-5}\rangle$ is a prime ideal.

Next we show that

$$
<2,1+\sqrt{-5}>\cap \mathbb{Z}=<2>
$$

We empasize that $<2,1+\sqrt{-5}>$ is an ideal of $\mathbb{Z}+\mathbb{Z} \sqrt{-5}$ and $<2>$ is a principal ideal of \mathbb{Z}.

Let $\alpha \in<2,1+\sqrt{-5}>\cap \mathbb{Z}$. Then $\alpha \in \mathbb{Z}$ and $\alpha \in<2,1+\sqrt{-5}>$. By (1) we have $\alpha \equiv 0(\bmod 2)$. Hence $\alpha \in<2>$. This proves that

$$
<2,1+\sqrt{-5}>\cap \mathbb{Z} \subseteq<2>
$$

Now let $\alpha \in<2>$. Then α is an even integer. Hence $\alpha \in \mathbb{Z}$ and by (1) we deduce that $\alpha \in<2,1+\sqrt{-5}>$. Thus

$$
\alpha \in<2,1+\sqrt{-5}>\cap \mathbb{Z}
$$

This proves that

$$
<2>\subseteq<2,1+\sqrt{-5}>\cap \mathbb{Z}
$$

We have now shown that

$$
<2,1+\sqrt{-5}>\cap \mathbb{Z}=<2>
$$

We now turn to the ideals $\langle 3,1+\sqrt{-5}\rangle$ and $\langle 3,1-\sqrt{-5}\rangle$. By an argument similar to that used to prove (1) we can show that

$$
\begin{align*}
& a+b \sqrt{-5} \in<3,1+\sqrt{-5}>\Leftrightarrow a \equiv b(\bmod 3), \tag{2}\\
& a+b \sqrt{-5} \in<3,1-\sqrt{-5}>\Leftrightarrow a \equiv-b(\bmod 3) . \tag{3}
\end{align*}
$$

Using (2) and (3) it is easy to show as above that $<3,1+\sqrt{-5}>$ and $<3,1-\sqrt{-5}>$ are prime ideals of $\mathbb{Z}+\mathbb{Z} \sqrt{-5}$.

Finally we show that

$$
<3,1+\sqrt{-5}>\cap \mathbb{Z}=<3>
$$

We have

```
\(<3,1+\sqrt{-5}>\cap \mathbb{Z}\)
    \(=\{3(x+y \sqrt{-5})+(1+\sqrt{-5})(u+v \sqrt{-5}) \mid x, y, u, v \in \mathbb{Z}, 3 y+u+v=0\}\)
    \(=\{3(x+y \sqrt{-5})+(1+\sqrt{-5})(-v-3 y+v \sqrt{-5}) \mid x, y, v \in \mathbb{Z}\}\)
    \(=\{3 x-3 y-6 v \mid x, y, v \in \mathbb{Z}\}\)
    \(=\{3 z \mid z \in \mathbb{Z}\}\)
    \(=\langle 3\rangle\).
```

Similarly we can show that $\langle 3,1-\sqrt{-5}\rangle \cap \mathbb{Z}=<3\rangle$.

June 19, 2004

