21. Prove that $\langle 2, 1+\sqrt{-5} \rangle$, $\langle 3, 1+\sqrt{-5} \rangle$ and $\langle 3, 1-\sqrt{-5} \rangle$ are prime ideals of $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$. Determine $\langle 2, 1+\sqrt{-5} \rangle \cap \mathbb{Z}$, $\langle 3, 1+\sqrt{-5} \rangle \cap \mathbb{Z}$ and $\langle 3, 1-\sqrt{-5} \rangle \cap \mathbb{Z}$.

Solution. Let $\alpha = a + b\sqrt{-5} \in \mathbb{Z} + \mathbb{Z}\sqrt{-5}$. We show first that

$$\alpha \in <2, 1 + \sqrt{-5} > \iff a \equiv b \pmod{2}. \tag{1}$$

If $a \equiv b \pmod{2}$ then there exists $c \in \mathbb{Z}$ such that a = b + 2c. Then

$$\alpha = a + b\sqrt{-5} = b + 2c + b\sqrt{-5} = c^2 + b(1 + \sqrt{-5}) \in <2, 1 + \sqrt{-5} > .$$

Conversely suppose that $\alpha \in <2, 1+\sqrt{-5}>$. Then there exist $x, y, z, w \in \mathbb{Z}$ such that

$$a + b\sqrt{-5} = (x + y\sqrt{-5})2 + (z + w\sqrt{-5})(1 + \sqrt{-5}).$$

Hence

$$a = 2x + z - 5w,$$

$$b = 2y + z + w.$$

Thus

$$a \equiv z - 5w \equiv z + w \equiv b \pmod{2}.$$

We now show that $< 2, 1 + \sqrt{-5} >$ is a prime ideal of $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$. Let $\alpha = a + b\sqrt{-5} \in \mathbb{Z} + \mathbb{Z}\sqrt{-5}$ and $\beta = c + d\sqrt{-5} \in \mathbb{Z} + \mathbb{Z}\sqrt{-5}$ be such that

$$\alpha\beta \in <2, 1+\sqrt{-5}>.$$

Now

$$\alpha\beta = (ac - 5bd) + (ad + bc)\sqrt{-5}$$

so that by (1)

$$ac - 5bd \equiv ad + bc \pmod{2}.$$

Thus

$$(a-b)(c-d) = ac - bc - ad + bd$$
$$\equiv (5bd + ad + bc) - bc - ad + bd \equiv 0 \pmod{2}$$

so that either $a - b \equiv 0 \pmod{2}$ or $c - d \equiv 0 \pmod{2}$. In the former case $\alpha = a + b\sqrt{-5} \in (2, 1 + \sqrt{-5})$ and in the latter case $\beta = c + d\sqrt{-5} \in (2, 1 + \sqrt{-5})$ $2, 1 + \sqrt{-5} >$. This proves that $< 2, 1 + \sqrt{-5} >$ is a prime ideal.

Next we show that

$$< 2, 1 + \sqrt{-5} > \cap \mathbb{Z} = < 2 > .$$

We empasize that $< 2, 1 + \sqrt{-5} >$ is an ideal of $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$ and < 2 > is a principal ideal of \mathbb{Z} .

Let $\alpha \in \langle 2, 1 + \sqrt{-5} \rangle \cap \mathbb{Z}$. Then $\alpha \in \mathbb{Z}$ and $\alpha \in \langle 2, 1 + \sqrt{-5} \rangle$. By (1) we have $\alpha \equiv 0 \pmod{2}$. Hence $\alpha \in \langle 2 \rangle$. This proves that

$$< 2, 1 + \sqrt{-5} > \cap \mathbb{Z} \subseteq < 2 > .$$

Now let $\alpha \in \langle 2 \rangle$. Then α is an even integer. Hence $\alpha \in \mathbb{Z}$ and by (1) we deduce that $\alpha \in < 2, 1 + \sqrt{-5} >$. Thus

$$\alpha \in <2, 1+\sqrt{-5} > \cap \mathbb{Z}.$$

This proves that

$$<2> \subseteq <2, 1+\sqrt{-5}> \cap \mathbb{Z}.$$

We have now shown that

$$< 2, 1 + \sqrt{-5} > \cap \mathbb{Z} = < 2 > .$$

We now turn to the ideals $< 3, 1 + \sqrt{-5} >$ and $< 3, 1 - \sqrt{-5} >$. By an argument similar to that used to prove (1) we can show that

$$a + b\sqrt{-5} \in <3, 1 + \sqrt{-5} > \Leftrightarrow a \equiv b \pmod{3}, \tag{2}$$

$$a + b\sqrt{-5} \in <3, 1 - \sqrt{-5} > \Leftrightarrow a \equiv -b \pmod{3}.$$
 (3)

Using (2) and (3) it is easy to show as above that $\langle 3, 1 + \sqrt{-5} \rangle$ and $< 3, 1 - \sqrt{-5} >$ are prime ideals of $\mathbb{Z} + \mathbb{Z}\sqrt{-5}$.

2

Finally we show that

$$< 3, 1 + \sqrt{-5} > \cap \mathbb{Z} = < 3 > .$$

We have

$$\begin{array}{l} <3,1+\sqrt{-5}>\cap \mathbb{Z}\\ =\left\{3(x+y\sqrt{-5})+(1+\sqrt{-5})(u+v\sqrt{-5})\mid x,y,u,v\in \mathbb{Z}, \ 3y+u+v=0\right\}\\ =\left\{3(x+y\sqrt{-5})+(1+\sqrt{-5})(-v-3y+v\sqrt{-5})\mid x,y,v\in \mathbb{Z}\right\}\\ =\left\{3x-3y-6v\mid x,y,v\in \mathbb{Z}\right\}\\ =\left\{3z\mid z\in \mathbb{Z}\right\}\\ =<3>. \end{array}$$

Similarly we can show that $< 3, 1 - \sqrt{-5} > \cap \mathbb{Z} = < 3 >$.

June 19, 2004