22. Let D be an integral domain. Let $a, b, c \in D$ be such that $\langle a, c \rangle = D$. Prove that $\langle a, bc \rangle = \langle a, b \rangle$.

Solution. As $\langle a, c \rangle = D$ and $1 \in D$ there exist $r, s \in D$ such that

$$ra + sc = 1.$$

Let $\alpha \in \langle a, b \rangle$. Then there exist $k, l \in D$ such that

$$\alpha = ka + lb.$$

Hence

$$\alpha = ka + lb(ra + sc)$$

= $(k + lbr)a + (ls)bc$
 $\in \langle a, bc \rangle$.

This proves that

$$\langle a, b \rangle \subseteq \langle a, bc \rangle$$
.

Now suppose that $\beta \in \langle a, bc \rangle$. Then there exist $u, v \in D$ such that

$$\beta = ua + vbc.$$

Set $w = vc \in D$. Then $\beta = ua + wb \in \langle a, b \rangle$. This proves that

$$\langle a, bc \rangle \subseteq \langle a, b \rangle$$
.

The two inclusions give $\langle a, bc \rangle = \langle a, b \rangle$.

June 19, 2004