22. Let D be an integral domain. Let $a, b, c \in D$ be such that $\langle a, c\rangle=D$. Prove that $\langle a, b c\rangle=\langle a, b\rangle$.

Solution. As $<a, c>=D$ and $1 \in D$ there exist $r, s \in D$ such that

$$
r a+s c=1 .
$$

Let $\alpha \in\langle a, b\rangle$. Then there exist $k, l \in D$ such that

$$
\alpha=k a+l b .
$$

Hence

$$
\begin{aligned}
\alpha & =k a+l b(r a+s c) \\
& =(k+l b r) a+(l s) b c \\
& \in<a, b c>
\end{aligned}
$$

This proves that

$$
<a, b>\subseteq<a, b c>.
$$

Now suppose that $\beta \in<a, b c>$. Then there exist $u, v \in D$ such that

$$
\beta=u a+v b c .
$$

Set $w=v c \in D$. Then $\beta=u a+w b \in\langle a, b\rangle$. This proves that

$$
<a, b c>\subseteq<a, b>.
$$

The two inclusions give $\langle a, b c\rangle=\langle a, b\rangle$.

June 19, 2004

