CHAPTER 1, QUESTION 29

29. Give an example of an ideal in $\mathbb{Z}+\mathbb{Z} \sqrt{-6}$ which is not principal.

Solution. We show that the ideal $\langle 2, \sqrt{-6}\rangle$ of $\mathbb{Z}+\mathbb{Z} \sqrt{-6}$ is not principal. Suppose on the contrary that $\langle 2, \sqrt{-6}\rangle$ is principal. Then there exists $x+y \sqrt{-6} \in \mathbb{Z}+\mathbb{Z} \sqrt{-6}$ such that

$$
<2, \sqrt{-6}>=<x+y \sqrt{-6}>
$$

Now

$$
2 \in<2, \sqrt{-6}>=<x+y \sqrt{-6}>
$$

so that there exists $a+b \sqrt{-6} \in \mathbb{Z}+\mathbb{Z} \sqrt{-6}$ such that

$$
2=(x+y \sqrt{-6})(a+b \sqrt{-6}) .
$$

Taking the modulus of both sides, we obtain

$$
4=\left(x^{2}+6 y^{2}\right)\left(a^{2}+6 b^{2}\right) .
$$

As $x^{2}+6 y^{2} \in \mathbb{N}$ we deduce that

$$
x^{2}+6 y^{2}=1,2 \text { or } 4
$$

If $x^{2}+6 y^{2}=1$ then $x= \pm 1, y=0$ so that

$$
<2, \sqrt{-6}>=< \pm 1>=<1>
$$

Hence there exist $s+t \sqrt{-6} \in \mathbb{Z}+\mathbb{Z} \sqrt{-6}$ and $u+v \sqrt{-6} \in \mathbb{Z}+\mathbb{Z} \sqrt{-6}$ such that

$$
1=(s+t \sqrt{-6}) 2+(u+v \sqrt{-6}) \sqrt{-6} .
$$

Equating real parts, we obtain

$$
1=2 s-6 v
$$

which is impossible. Clearly $x^{2}+6 y^{2} \neq 2$ for $x, y \in \mathbb{Z}$. Hence $x^{2}+6 y^{2}=4$. Thus $x= \pm 2, y=0$ so that

$$
<2, \sqrt{-6}>=< \pm 2>=<2>
$$

Hence

$$
\sqrt{-6}=2(g+h \sqrt{-6})
$$

for some $g+h \sqrt{-6} \in \mathbb{Z}+\mathbb{Z} \sqrt{-6}$. Equating imaginary parts, we obtain $2 h=1$, which is impossible. This completes the proof that the ideal $\langle 2, \sqrt{-6}\rangle$ is not principal.

June 19, 2004

