29. Give an example of an ideal in $\mathbb{Z} + \mathbb{Z}\sqrt{-6}$ which is not principal.

Solution. We show that the ideal $< 2, \sqrt{-6} > \text{of } \mathbb{Z} + \mathbb{Z}\sqrt{-6}$ is not principal. Suppose on the contrary that $< 2, \sqrt{-6} > \text{is principal}$. Then there exists $x + y\sqrt{-6} \in \mathbb{Z} + \mathbb{Z}\sqrt{-6}$ such that

$$< 2, \sqrt{-6} > = < x + y\sqrt{-6} > .$$

Now

$$2 \in <2, \sqrt{-6} > =$$

so that there exists $a + b\sqrt{-6} \in \mathbb{Z} + \mathbb{Z}\sqrt{-6}$ such that

$$2 = (x + y\sqrt{-6})(a + b\sqrt{-6}).$$

Taking the modulus of both sides, we obtain

$$4 = (x^2 + 6y^2)(a^2 + 6b^2).$$

As $x^2 + 6y^2 \in \mathbb{N}$ we deduce that

$$x^2 + 6y^2 = 1$$
, 2 or 4.

If $x^2 + 6y^2 = 1$ then $x = \pm 1$, y = 0 so that

$$< 2, \sqrt{-6} > = < \pm 1 > = < 1 > .$$

Hence there exist $s + t\sqrt{-6} \in \mathbb{Z} + \mathbb{Z}\sqrt{-6}$ and $u + v\sqrt{-6} \in \mathbb{Z} + \mathbb{Z}\sqrt{-6}$ such that

$$1 = (s + t\sqrt{-6})2 + (u + v\sqrt{-6})\sqrt{-6}.$$

Equating real parts, we obtain

$$1 = 2s - 6v,$$

which is impossible. Clearly $x^2 + 6y^2 \neq 2$ for $x, y \in \mathbb{Z}$. Hence $x^2 + 6y^2 = 4$. Thus $x = \pm 2$, y = 0 so that

$$< 2, \sqrt{-6} > = < \pm 2 > = < 2 >$$
.

Hence

$$\sqrt{-6} = 2(g + h\sqrt{-6})$$

for some $g+h\sqrt{-6} \in \mathbb{Z}+\mathbb{Z}\sqrt{-6}$. Equating imaginary parts, we obtain 2h = 1, which is impossible. This completes the proof that the ideal $< 2, \sqrt{-6} >$ is not principal.

June 19, 2004