CHAPTER 1, QUESTION 3

3. Let m be an integer with $m<-1$. Prove that

$$
U(\mathbb{Z}+\mathbb{Z} \sqrt{m})=\{ \pm 1\} .
$$

Solution. Let $\alpha \in U(\mathbb{Z}+\mathbb{Z} \sqrt{m})$, where m is an integer with $m<-1$. Then there exists $\beta \in \mathbb{Z}+\mathbb{Z} \sqrt{m}$ such that

$$
\alpha \beta=1 .
$$

As $\alpha, \beta \in \mathbb{Z}+\mathbb{Z} \sqrt{m}$ there exist $a, b, c, d \in \mathbb{Z}$ such that $\alpha=a+b \sqrt{m}, \beta=$ $c+d \sqrt{m}$. Thus

$$
(a+b \sqrt{m})(c+d \sqrt{m})=1 .
$$

Hence

$$
(a c+b d m)+(a d+b c) \sqrt{m}=1 .
$$

As $m<-1, \sqrt{m} \in \mathbb{C} \backslash \mathbb{R}$ so that

$$
a c+b d m=1, a d+b c=0 .
$$

Thus

$$
\left(a^{2}-m b^{2}\right)\left(c^{2}-m d^{2}\right)=(a c+b d m)^{2}-m(a d+b c)^{2}=1 .
$$

As $m<-1, a^{2}-m b^{2}$ is a positive integer dividing 1. Hence

$$
a^{2}-m b^{2}=1 .
$$

If $b \neq 0$ then, as $m<-1$, we have

$$
1=a^{2}-m b^{2} \geq-m b^{2}>b^{2} \geq 1
$$

a contradiction. Hence $b=0$ and $a= \pm 1$. Thus $\alpha= \pm 1$ proving

$$
U(\mathbb{Z}+\mathbb{Z} \sqrt{m}) \subseteq\{-1,1\} .
$$

Clearly $\pm 1 \in U(\mathbb{Z}+\mathbb{Z} \sqrt{m})$ so that

$$
\{-1,1\} \subseteq U(\mathbb{Z}+\mathbb{Z} \sqrt{m}) .
$$

This completes the proof that

$$
U(\mathbb{Z}+\mathbb{Z} \sqrt{m})=\{ \pm 1\}
$$

for $m<-1$.

June 19, 2004

