CHAPTER 1, QUESTION 33

33. Give an example of an ideal in $\mathbb{Z}+\mathbb{Z} \sqrt{10}$ which is not principal.

Solution. We show that the ideal $\langle 2, \sqrt{10}\rangle$ of $\mathbb{Z}+\mathbb{Z} \sqrt{10}$ is not principal. Suppose that there exists $x+y \sqrt{10} \in \mathbb{Z}+\mathbb{Z} \sqrt{10}$ such that

$$
<2, \sqrt{10}>=<x+y \sqrt{10}>
$$

Then $2 \epsilon<x+y \sqrt{10}>$ and $\sqrt{10} \in<x+y \sqrt{10}>$ so there exist $a+b \sqrt{10} \epsilon$ $\mathbb{Z}+\mathbb{Z} \sqrt{10}$ and $c+d \sqrt{10} \in \mathbb{Z}+\mathbb{Z} \sqrt{10}$ such that

$$
2=(x+y \sqrt{10})(a+b \sqrt{10})
$$

and

$$
\sqrt{10}=(x+y \sqrt{10})(c+d \sqrt{10}) .
$$

As $\sqrt{10} \notin \mathbb{Q}$ we obtain

$$
\begin{aligned}
& 2=x a+10 y b, 0=y a+x b, \\
& 0=x c+10 y d, 1=y c+x d .
\end{aligned}
$$

Thus

$$
\left(x^{2}-10 y^{2}\right)\left(a^{2}-10 b^{2}\right)=(x a+10 y b)^{2}-10(y a+x b)^{2}=4
$$

and

$$
\left(x^{2}-10 y^{2}\right)\left(c^{2}-10 d^{2}\right)=(x c+10 y d)^{2}-10(y c+x d)^{2}=-10
$$

The first of these equations tells us that

$$
x^{2}-10 y^{2}= \pm 1, \quad \pm 2 \text { or } \pm 4
$$

and the second that

$$
x^{2}-10 y^{2}= \pm 1, \quad \pm 2, \quad \pm 5 \text { or } \pm 10 .
$$

Hence

$$
x^{2}-10 y^{2}= \pm 1 \text { or } \pm 2 .
$$

If $x^{2}-10 y^{2}= \pm 1$ we see from Question 17 that $x+y \sqrt{10} \in U(\mathbb{Z}+\mathbb{Z} \sqrt{10})$ so that by Question 7

$$
<2, \sqrt{10}>=<x+y \sqrt{10}>=<1>.
$$

Hence there exist $s+t \sqrt{10} \in \mathbb{Z}+\mathbb{Z} \sqrt{10}$ and $u+v \sqrt{10} \in \mathbb{Z}+\mathbb{Z} \sqrt{10}$ such that

$$
(s+t \sqrt{10}) 2+(u+v \sqrt{10}) \sqrt{10}=1
$$

Thus

$$
2 s+10 v=1,2 t+u=0
$$

The first of these equations clearly cannot hold so that $x^{2}-10 y^{2} \neq \pm 1$. Hence $x^{2}-10 y^{2}= \pm 2$. Thus $x^{2} \equiv \pm 2(\bmod 5)$, which is impossible as the squares modulo 5 are $0, \pm 1$. Hence no such element $x+y \sqrt{10}$ can exist and $<2, \sqrt{10}>$ is not a principal ideal.

June 19, 2004

