34. Let P be a prime ideal of an integral domain D. Let A_{1}, \ldots, A_{k} be ideals of D such that $P \supseteq A_{1} \cdots A_{k}$. Prove that $P \supseteq A_{i}$ for some $i \in\{1,2, \ldots, k\}$.

Solution. Let P be a prime ideal of an integral domain D. Let A_{1}, \ldots, A_{k} be ideals of D such that $P \supseteq A_{1} \cdots A_{k}$. We wish to prove that $P \supseteq A_{i}$ for some $i \in\{1,2, \ldots, k\}$. If $k=1$ this is trivially true so we may suppose without loss of generality that $k \geq 2$. We assume that $P \nsupseteq A_{i}$ for all $i \in\{1,2, \ldots, k\}$ and obtain a contradiction. As

$$
P \supseteq\left(A_{1} \cdots A_{k-1}\right) A_{k}, P \nsupseteq A_{k}
$$

since P is a prime ideal we must have

$$
P \supseteq A_{1} \cdots A_{k-1} .
$$

Then, as

$$
P \supseteq\left(A_{1} \cdots A_{k-2}\right) A_{k-1}, P \nsupseteq A_{k-1},
$$

since P is a prime ideal we must have

$$
P \supseteq A_{1} \cdots A_{k-2}
$$

Continuing in this way, after a finite number of steps, we obtain

$$
P \supseteq A_{1},
$$

the required contradiction. Hence $P \supseteq A_{i}$ for some $i \in\{1,2, \ldots, k\}$.

June 19, 2004

