CHAPTER 1, QUESTION 35
35. Let $r \in \mathbb{Z} \backslash\{-2,0\}$. Prove that

$$
D=\left\{a+b \theta+c \theta^{2} \mid a, b, c \in \mathbb{Z}\right\},
$$

where

$$
\theta^{3}+r \theta+1=0,
$$

is an integral domain. Prove that $\theta \in U(D)$.
Solution. As $r \neq-2,0$ the cubic polynomial $x^{3}+r x+1$ is irreducible in $\mathbb{Z}[x]$ so that D is a cubic domain. Let $\alpha=-r-\theta^{2}$. Clearly $\alpha \in D$. Moreover

$$
\theta \alpha=\theta\left(-r-\theta^{2}\right)=-r \theta-\theta^{3}=1
$$

Thus $\theta \in D$ is a unit. Hence $\theta \in U(D)$.

June 19, 2004

