36. Let p be a prime. Let m be an integer with $m \leq-(p+1)$. Prove that p is irreducible in $\mathbb{Z}+\mathbb{Z} \sqrt{m}$.

Solution. Let p be a prime. Let m be an integer with $m \leq-(p+1)$, so that m is a negative integer. Suppose that p is reducible in $\mathbb{Z}+\mathbb{Z} \sqrt{m}$. Then there exist $a+b \sqrt{m} \in \mathbb{Z}+\mathbb{Z} \sqrt{m}$ and $c+d \sqrt{m} \in \mathbb{Z}+\mathbb{Z} \sqrt{m}$ with $a+b \sqrt{m} \notin U(\mathbb{Z}+\mathbb{Z} \sqrt{m})$ and $c+d \sqrt{m} \notin U(\mathbb{Z}+\mathbb{Z} \sqrt{m})$ such that

$$
p=(a+b \sqrt{m})(c+d \sqrt{m}) .
$$

Taking the modulus of both sides, we obtain

$$
p^{2}=\left(a^{2}-m b^{2}\right)\left(c^{2}-m d^{2}\right) .
$$

As $a^{2}-m b^{2}$ and $c^{2}-m d^{2}$ are positive integers and p is a prime, we have

$$
a^{2}-m b^{2}=1, p \text { or } p^{2} .
$$

If $a^{2}-m b^{2}=1$ then

$$
(a+b \sqrt{m})(a-b \sqrt{m})=1
$$

so that $a+b \sqrt{m} \in U(\mathbb{Z}+\mathbb{Z} \sqrt{m})$, a contradiction. If $a^{2}-m b^{2}=p^{2}$ then $c^{2}-m d^{2}=1$ so that

$$
(c+d \sqrt{m})(c-d \sqrt{m})=1
$$

showing that $c+d \sqrt{m} \in U(\mathbb{Z}+\mathbb{Z} \sqrt{m})$, a contradiction. If $a^{2}-m b^{2}=p$ then $b \neq 0$ (as p being a prime is not a perfect square) so that

$$
p=a^{2}-m b^{2} \geq-m b^{2} \geq(p+1) b^{2} \geq p+1>p,
$$

a contradiction. Hence p is irreducible in $\mathbb{Z}+\mathbb{Z} \sqrt{m}$.

June 19, 2004

