7. Let D be an integral domain. Let $u \in U(D)$. Let I be an ideal of D that contains u. Prove that I = D.

Solution. As $u \in U(D)$ there exists $v \in D$ such that

uv = 1.

Further, as $u \in I$, $v \in D$, and I is an ideal, we have

 $uv \in I$.

Thus

$$1 \in I$$
.

Let $d \in D$. As I is an ideal $d \cdot 1 \in I$. Thus $d \in I$ so $D \subseteq I$. But I is an ideal of D so that $I \subseteq D$. Hence I = D.

June 19, 2004