CHAPTER 1, QUESTION 7

7. Let D be an integral domain. Let $u \in U(D)$. Let I be an ideal of D that contains u. Prove that $I=D$.

Solution. As $u \in U(D)$ there exists $v \in D$ such that

$$
u v=1 .
$$

Further, as $u \in I, v \in D$, and I is an ideal, we have

$$
u v \in I .
$$

Thus

$$
1 \in I .
$$

Let $d \in D$. As I is an ideal $d \cdot 1 \in I$. Thus $d \in I$ so $D \subseteq I$. But I is an ideal of D so that $I \subseteq D$. Hence $I=D$.

June 19, 2004

